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Abstract. The purpose of the present paper is to derive several Fekete-Szegö type coefficient
inequalities for certain subclasses of normalized analytic functions f (z) defined in the open
unit disk. Various applications of our main results involving (for example) the Owa-Srivastava
operator of fractional calculus are also considered. Thus, as one of these applications of our
result, we obtain the Fekete-Szegö type inequality for a class of normalized analytic functions,
which is defined here by means of the Hadamard product (or convolution) and the Owa-Srivastava
operator.

1. Introduction and Definitions

Let A denote the class of functions f (z) of the form:

f (z) = z +
∞∑

n=2

anz
n, (1.1)

which are analytic in the open unit disk

Δ = {z : z ∈ C and |z| < 1} . (1.2)

Also let S be the subclass of A consisting of all univalent functions in Δ.
For functions f and g, analytic in Δ, we say that the function f is subordinate to g

if there exists a Schwarz function w(z), analytic in Δ with

w(0) = 0 and |w(z)| < 1 (z ∈ Δ),

such that
f (z) = g

(
w(z)

)
(z ∈ Δ).

We denote this subordination by

f ≺ g or f (z) ≺ g(z) (z ∈ Δ).
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In particular, if the function g is univalent in Δ, the above subordination is equivalent to

f (0) = g(0) and f (Δ) ⊂ g(Δ).

Let φ(z) be an analytic function in Δ with

φ(0) = 1, φ ′(0) > 0 and �(φ(z)
)

> 0 (z ∈ Δ),

which maps the open unit disk Δ onto a region starlike with respect to 1 and is symmetric
with respect to the real axis. Then, by S ∗(φ) and C (φ), respectively, we denote the
subclasses of the normalized analytic function class A , which satisfy the following
subordination relations:

zf ′(z)
f (z)

≺ φ(z) (z ∈ Δ) and 1 +
zf ′′(z)
f ′(z)

≺ φ(z) (z ∈ Δ).

These function classes were introduced and studied by Ma and Minda [3]. In their
particular case when

φ(z) =
1 + (1 − 2α)z

1 − z
(z ∈ Δ; 0 �α < 1),

these function classes would reduce, respectively, to the well-known classes S ∗(α)
(0 �α < 1) of starlike functions of order α in Δ and C (α) (0 �α < 1) of convex
functions of orderα in Δ. In the work by Ma and Minda [3], the Fekete-Szegö inequality
for functions in the class C (φ) was derived and, in view of the Alexander result relating
the function classes S ∗(φ) and C (φ), the Fekete-Szegö inequality for functions in the
class S ∗(φ) was also deduced. For a brief history of the Fekete-Szegö problem for the
starlike, convex, and various other subclasses of the normalized analytic function class
A , we refer the interested reader to the recent work by Srivastava et al. [13].

Motivated essentially by the aforementioned works, we prove the Fekete-Szegö
type coefficient inequalities in Theorem 1 below for a more general class of normalized
analytic functions which we introduce here in Definition 1. We also give several
applications of our main results to certain interesting function classes which are defined
by means of the Hadamard product (or convolution) and the Owa-Srivastava operator
of fractional calculus (see Section 3). Some of the results obtained in this paper would
generalize the results given in several earlier works (see, for example, [3], [8] and [12]).

We begin by introducing the following unification of the function classes S ∗(φ)
and C (φ):

DEFINITION 1. Let φ(z) be a univalent starlike function with respect to 1, which
maps the open unit disk Δ onto a region in the right half-plane and is symmetric with
respect to the real axis, with

φ(0) = 1 and φ ′(0) > 0.

A function f ∈ A is said to be in the class Mα,β ,λ (φ) if(
zf ′(z)
f (z)

)α [
(1 − λ )

zf ′(z)
f (z)

+ λ
(

1 +
zf ′′(z)
f ′(z)

)]β
≺ φ(z)
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(0 < β � 1; 0 �α � 1; 0 �λ � 1).

We note that (see [3])

M0,1,0(φ) ≡ S ∗(φ) and M0, 1, 1(φ) ≡ C (φ).

In order to prove one of our main results, we need the following lemma.

LEMMA 1. [3]. If
p1(z) = 1 + c1z + c2z

2 + · · ·
is a function with positive real part in Δ, then

|c2 − vc2
1|�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−4v + 2 (v � 0)

2 (0 � v � 1)

4v− 2 (v � 1).

When v < 0 or v > 1, the equality holds true if and only if p1(z) is
1 + z
1 − z

or one of its

rotations. If 0 < v < 1, then the equality holds true if and only if p1(z) is
1 + z2

1 − z2
or one

of its rotations. If v = 0, the equality holds true if and only if

p1(z) =
(

1
2

+
1
2
η
)

1 + z
1 − z

+
(

1
2
− 1

2
η
)

1 − z
1 + z

(0 �η� 1)

or one of its rotations. If v = 1, the equality holds true if and only if p1(z) is the
reciprocal of one of the functions such that the equality holds true in the case when
v = 0.

Although the above upper bound is sharp, in the case when 0 < v < 1, it can be
further improved as follows:

|c2 − vc2
1| + v|c1|2 � 2

(
0 < v � 1

2

)

and

|c2 − vc2
1| + (1 − v)|c1|2 � 2

(
1
2

< v � 1

)
.

We also need the following result in our investigation.

LEMMA 2. [9]. If
p1(z) = 1 + c1z + c2z

2 + · · ·
is a function with positive real part in Δ, then

|c2 − vc2
1|� 2 · max{1, |2v− 1|}.

The result is sharp for the functions p1(z) given by

p1(z) =
1 + z2

1 − z2
and p1(z) =

1 + z
1 − z

.
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2. Fekete-Szegö Problem for the Function Class Mα,β ,λ (φ)

By making use of Lemma 1, we first prove the Fekete-Szegö type inequalities
asserted by Theorem 1 below.

THEOREM 1. Let

0 �μ � 1, 0 �α � 1, 0 < β � 1 and 0 �λ � 1.

Also let
φ(z) = 1 + B1z + B2z

2 + B3z
3 + · · · ,

where the coefficients Bn are real with

B1 > 0 and B2 � 0.

If f (z) given by (1.1) belongs to the function class Mα,β ,λ (φ), then

|a3 − μa2
2|�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4ξ

(
2B2 − B2

1

ρ2
γ
)

(μ �σ1)

B1

2ξ
(σ1 � μ �σ2)

1
4ξ

(
−2B2 +

B2
1

ρ2
γ
)

(μ �σ2),

where, for convenience,

σ1 :=
2ρ2(B2 − B1) − (ρ2 − 3τ)B2

1

4ξB2
1

,

σ2 :=
2ρ2(B2 + B1) − (ρ2 − 3τ)B2

1

4ξB2
1

,

σ3 :=
2ρ2B2 − (ρ2 − 3τ)B2

1

4ξB2
1

,

γ := ρ2 − 3 [α + β(1 + 3λ )] + 4μρ, (2.1)

ρ := α + (1 + λ )β , (2.2)

ξ := α + (1 + 2λ )β , (2.3)

and

τ := α + (1 + 3λ )β . (2.4)

If σ1 � μ �σ3, then

|a3 − μa2
2| +

ρ2

2ξB1

(
1 − B2

B1
+

γB1

2ρ2

)
|a2|2 � B1

2ξ
.
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Furthermore, if σ3 � μ �σ2, then

|a3 − μa2
2| +

ρ2

2ξB1

(
1 +

B2

B1
− γB1

2ρ2

)
|a2|2 � B1

2ξ
.

Each of these results is sharp.

Proof. If f (z) ∈ Mα,β ,λ (φ), then there exists a Schwarz function w(z), analytic in
Δ with

w(0) = 0 and |w(z)| < 1 (z ∈ Δ),

such that

(
zf ′(z)
f (z)

)α [
(1 − λ )

zf ′(z)
f (z)

+ λ
(

1 +
zf ′′(z)
f ′(z)

)]β
= φ

(
w(z)

)
. (2.5)

Define the function p1(z) by

p1(z) :=
1 + w(z)
1 − w(z)

= 1 + c1z + c2z
2 + · · · . (2.6)

Since w(z) is a Schwarz function, we see that

�(p1(z)
)

> 0 (z ∈ Δ) and p1(0) = 1.

Now, defining the function p(z) by

p(z) :=
(

zf ′(z)
f (z)

)α [
(1−λ )

zf ′(z)
f (z)

+λ
(

1+
zf ′′(z)
f ′(z)

)]β
= 1+b1z+b2z

2+ · · · , (2.7)

we find from (2.5) and (2.6) that

p(z) = φ
(

p1(z) − 1
p1(z) + 1

)
. (2.8)

Thus, by using (2.6) in (2.8), we obtain

b1 =
1
2
B1c1 and b2 =

1
2
B1

(
c2 − 1

2
c2
1

)
+

1
4
B2c

2
1.

An easy computation would show that

(
zf ′(z)
f (z)

)α [
(1 − λ )

zf ′(z)
f (z)

+ λ
(

1 +
zf ′′(z)
f ′(z)

)]β
= 1 + [α + (1 + λ )β ] a2z + 2 [α + (1 + 2λ )β ] a3z

2

+
(
α(α−3)

2
+
β(β−1)

2
(1+λ )2+αβ(1+λ )−β(1+3λ )

)
a2

2z
2+ · · · ,
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which, in view of (2.7), yields

b1 = [α + (1 + λ )β ] a2

and

b2 = 2 [α + (1 + 2λ )β ] a3

+
(
α(α − 3)

2
+

β(β − 1)
2

(1 + λ )2 + α(1 + λ )β − (1 + 3λ )β
)

a2
2.

Equivalently, we have

a2 =
B1c1

2 [α + (1 + λ )β ]
and

a3 =
B1

4 [α + (1 + 2λ )β ]

[
c2 − 1

2

(
1 − B2

B1
+ B1Λ0

)
c2
1

]
,

where

Λ0 =
(
α(α−3)

2
+
β(β−1)

2
(1+λ )2+α(1+λ )β−(1+3λ )β

)(
1

[α+(1+λ )β ]2

)
.

Therefore, we obtain

a3 − μa2
2 =

B1

4 [α + (1 + 2λ )β ]
(
c2 − vc2

1

)
, (2.9)

where

v :=
1
2

(
1−B2

B1
+

[α + (1 + λ )β ]2 + 4μ[α + (1 + 2λ )β ] − 3 [α + (1 + 3λ )β ]

2 [α + (1 + λ )β ]2
B1

)
.

The assertion of Theorem 1 now follows by an application of Lemma 1.
To show that the bounds asserted by Theorem 1 are sharp, we define the following

functions:
Kφn(z) (n ∈ N \ {1}; N := {1, 2, 3, · · · }),

with
Kφn(0) = 0 = K′

φn
(0) − 1,

by (
zK′

φn
(z)

Kφn(z)

)α [
(1 − λ )

zK′
φn

(z)
Kφn(z)

+ λ

(
1 +

zK′′
φn

(z)
K′
φn

(z)

)]β
= φ(zn−1),

and the functions Fη(z) and Gη(z) (0 �η� 1), with

Fη(0) = 0 = F′
η(0) − 1 and Gη(0) = 0 = G′

η(0) − 1,

by (
zF′

η(z)
Fη(z)

)α [
(1 − λ )

zF′
η(z)

Fη(z)
+ λ

(
1 +

zF′′
η (z)

F′
η(z)

)]β
= φ

(
z(z + η)
1 + ηz

)
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and (
zG′

η(z)
Gη(z)

)α [
(1 − λ )

zG′
η(z)

Gη(z)
+ λ

(
1 +

zG′′
η(z)

G′
η(z)

)]β
= φ

(
− z(z + η)

1 + ηz

)
,

respectively. Then, clearly, the functions Kφn , Fη, Gη ∈ Mα,β ,λ (φ). We also write

Kφ := Kφ2 .

If μ < σ1 or μ > σ2, then the equality in Theorem 1 holds true if and only if f is
Kφ or one of its rotations. When σ1 < μ < σ2, then the equality holds true if and only
if f is Kφ3 or one of its rotations. If μ = σ1, then the equality holds true if and only if f
is Fη or one of its rotations. If μ = σ2, then the equality holds true if and only if f is
Gη or one of its rotations. �

By making use of Lemma 2, we immediately obtain the following Fekete-Szegö
type inequality.

THEOREM 2. Let

0 �α � 1, 0 < β � 1 and 0 �λ � 1.

Also let
φ(z) = 1 + B1z + B2z

2 + B3z
3 + · · · ,

where the coefficients Bn are real with

B1 > 0 and B2 � 0.

If f ∈ Mα,β ,λ (φ), then

|a3−μa2
2| =

(
B1

[α+(1+2λ )β ]

)
max

{
1,

∣∣∣∣∣−B2

B1
+

γ
2 [α+(1+λ )β ]2

B1

∣∣∣∣∣
}

(μ ∈ C),

where γ is defined as in (2.1). The result is sharp.

REMARK 1. The coefficient bounds for |a2| and |a3| are special cases of those
asserted by Theorem 1.

REMARK 2. In its special case when λ = 1, Theorem 1 reduces to the result
obtained in [8]. Moreover, by setting α = 0 and β = 1, Theorem 1 reduces at once to
the following result.

COROLLARY. Let

0 �μ � 1 and 0 �λ � 1.

Also let
φ(z) = 1 + B1z + B2z

2 + B3z
3 + · · · ,
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where the coefficients Bn are real with

B1 > 0 and B2 � 0,

and suppose that

σ1 :=
2(1 + λ )2(B2 − B1) − [(1 + λ )2 − 3(1 + 3λ )]B2

1

4(1 + 2λ )B2
1

,

σ2 :=
2(1 + λ )2(B2 + B1) − [(1 + λ )2 − 3(1 + 3λ )]B2

1

4(1 + 2λ )B2
1

and

σ3 :=
2(1 + λ )2B2 − [(1 + λ )2 − 3(1 + 3λ )]B2

1

4(1 + 2λ )B2
1

.

If f (z) given by (1.1) belongs to the class M0,1,λ (φ), then

|a3 − μa2
2|�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4(1 + 2λ )

(
2B2 − B2

1

(1 + λ )2
γ2
)

(μ �σ1)

1
2(1 + 2λ )

B1 (σ1 � μ �σ2)

1
4(1 + 2λ )

(
−2B2 +

B2
1

(1 + λ )2
γ2
)

(μ �σ2),

where, for convenience,

γ2 := (1 + λ )2 − 3(1 + 3λ ) + 4μ(1 + 2λ ). (2.10)

If σ1 � μ �σ3, then

|a3 − μa2
2| +

(1 + λ )2

2(1 + 2λ )B1

(
1 − B2

B1
+

γ2B1

2(1 + λ )2

)
|a2|2 � B1

2(1 + 2λ )
.

Furthermore, if σ3 � μ �σ2, then

|a3 − μa2
2| +

(1 + λ )2

2(1 + 2λ )B1

(
1 +

B2

B1
− γ2B1

2(1 + λ )2

)
|a2|2 � B1

2(1 + 2λ )
.

Each of these results is sharp.

REMARK 3. If, in Theorem 1, we set

λ = 1, α = 0 and β = 1,

we arrive at a known result due to Ma and Minda [3].
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3. Applications to Analytic Functions Defined by Using Fractional Calculus
Operators and Convolution

The subject of fractional calculus (that is, calculus of integrals and derivatives of
any arbitrary real or complex order) has gained considerable popularity and importance
during the past three decades or so. Two of the most recent works on this subject of
widespread investigations include the rather comprehensive treatises on the theory and
applications of fractional differential equations by Podlubny [7] and Kilbas et al. [2].

For the applications of the results given in the preceding sections, we first intro-
duce the class M δ

α, β ,λ (φ), which is defined by means of the Hadamard product (or
convolution) and a certain operator of fractional calculus, known as the Owa-Srivastava
operator (see, for details, [11] and [15]; see also [5], [6], and [14]).

DEFINITION 2. The fractional integral of order δ is defined, for a function f (z), by

D−δ
z f (z) =

1
Γ(δ)

∫ z

0

f (ζ)
(z − ζ)1−δ dζ (δ > 0), (3.1)

where the function f (z) is analytic in a simply-connected domain of the complex
z-plane containing the origin and the multiplicity of (z− ζ)δ−1 is removed by requiring
log(z − ζ) to be real when z − ζ > 0.

DEFINITION 3. The fractional derivative of order δ is defined, for a function f (z),
by

Dδ
z f (z) =

1
Γ(1 − δ)

∫ z

0

f (ζ)
(z − ζ)δ

dζ (0 � δ < 1), (3.2)

where f (z) is constrained, and the multiplicity of (z− ζ)−δ is removed, as in Definition
2.

DEFINITION 4. Under the hypotheses of Definition 3, the fractional derivative of
order n + δ is defined, for a function f (z), by

Dn+δ
z f (z) =

dn

dzn

{
Dδ

z f (z)
}

(0 � δ < 1; n ∈ N0). (3.3)

Using Definitions 2, 3 and 4 of fractional derivatives and fractional integrals, Owa
and Srivastava [6] introduced what is popularly referred to in the current literature as
the Owa-Srivastava operator Ωδ : A → A defined by

(Ωδ f )(z) := Γ(2 − δ)zδDδ
z f (z), (δ �= 2, 3, 4, · · · ). (3.4)

In terms of the Owa-Srivastava operator Ωδ defined by (3.4), we now introduce the
function class M δ

α, β , λ (φ) in the following way:

M δ
α,β ,λ (φ) := {f : f ∈ A and Ωδ f ∈ Mα,β , λ (φ)}. (3.5)
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It is easily seen that the function class M δ
α, β , λ (φ) is a special case of the function class

M g
α,β ,λ (φ) when

g(z) = z +
∞∑

n=2

Γ(n + 1)Γ(2 − δ)
Γ(n + 1 − δ)

zn. (3.6)

Suppose now that

g(z) = z +
∞∑

n=2

gnz
n (gn > 0).

Then, since

f (z) = z +
∞∑

n=2

anz
n ∈ M g

α,β ,λ (φ)

⇐⇒ (f ∗ g)(z) = z +
∞∑

n=2

gnanz
n ∈ Mα,β ,λ (φ), (3.7)

we can obtain the coefficient estimates for functions in the class M g
α, β , λ (φ) from the

corresponding estimates for functions in the class Mα, β , λ (φ). By applying Theorem 1
to the following Hadamard product (or convolution):

(f ∗ g)(z) = z + g2a2z
2 + g3a3z

3 + · · · ,

we get Theorem 3 below after an obvious change of the parameter μ.

THEOREM 3. Let

0 �μ � 1, 0 �α � 1, 0 < β � 1 and 0 �λ � 1.

Suppose also that
φ(z) = 1 + B1z + B2z

2 + B3z
3 + · · · ,

where the coefficients Bn are real with

B1 > 0, B2 � 0 and Bn > 0 (n ∈ N \ {1, 2}).
If f (z) given by (1.1) belongs to the class M g

α,β ,λ (φ), then

|a3 − μa2
2|�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4ξg3

(
2B2 − B2

1

ρ2
γ2
)

(μ �σ1)

B1

2ξg3
(σ1 �μ �σ2)

1
4ξg3

(
−2B2 +

B2
1

ρ2
γ2
)

(μ �σ2),

where, for convenience,

σ1 :=
g3

g2
2

(
2ρ2(B2 − B1) − (ρ2 − 3τ)B2

1

4ξB2
1

)
,



CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS 361

σ2 :=
g3

g2
2

(
2ρ2(B2 + B1) − (ρ2 − 3τ)B2

1

4ξB2
1

)
,

and
γ2 := ρ2 − 3τ + 4μ

g3

g2
2

ξ , (3.8)

and ρ, ξ and τ are defined as in (2.2), (2.3) and (2.4), respectively. These results are
sharp.

Since, by (1.1) and the definition (3.4),

(Ωδ f )(z) = z +
∞∑
n=2

Γ(n + 1)Γ(2 − δ)
Γ(n + 1 − δ)

anz
n, (3.9)

we readily obtain

g2 :=
Γ(3)Γ(2 − δ)
Γ(3 − δ)

=
2

2 − δ
(3.10)

and

g3 :=
Γ(4)Γ(2 − δ)
Γ(4 − δ)

=
6

(2 − δ)(3 − δ)
. (3.11)

For g2 and g3 given by (3.10) and (3.11), respectively, Theorem 3 reduces to the
following interesting result.

THEOREM 4. Let

0 �μ � 1, 0 �α � 1, 0 < β � 1 and 0 �λ � 1.

Suppose also that
φ(z) = 1 + B1z + B2z

2 + B3z
3 + · · · ,

where the coefficients Bn are real with B1 > 0 and B2 � 0. If f (z) given by (1.1) belongs
to the function class M g

α, β , λ (φ), then

|a3 − μa2
2|�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2 − δ)(3 − δ)
24ξ

(
2B2 − B2

1

ρ2
γ3
)

(μ �σ1)

(2 − δ)(3 − δ)
12ξ

B1 (σ1 �μ �σ2)

(2 − δ)(3 − δ)
24ξ

(
−2B2 +

B2
1

ρ2
γ3
)

(μ �σ2),

where, for convenience,

σ1 :=
2(3 − δ)
3(2 − δ)

2ρ2(B2 − B1) − (ρ2 − 3τ)B2
1

4ξB2
1

,

σ2 :=
2(3 − δ)
3(2 − δ)

2ρ2(B2 + B1) − (ρ2 − 3τ)B2
1

4ξB2
1

,
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and

γ3 := ρ2 − 3τ + 4μξ
2(3 − δ)
3(2 − δ)

, (3.12)

and ρ, ξ and τ are defined as in (2.2), (2.3) and (2.4), respectively.

REMARK 4. In its special case when

λ = 0, β = 1, α = 0, B1 =
8
π2

and B2 =
16
3π2

,

Theorem 4 coincides with the following result due to Srivastava et al. [12] for which
Ωλ f (z) is a parabolic starlike function ([1] and [10]).

THEOREM 5. (Srivastava and Mishra [12]) Let 0 �μ � 1. Suppose also that

σ1 :=
(

3 − δ
2 − δ

)(
1
3

+
5π2

72

)
and σ2 :=

(
3 − δ
2 − δ

)(
1
3
− π2

72

)
.

If f (z) given by (1.1) belongs to the function class M δ
0, 1, 0(φ), then

|a3 − μa2
2|�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
3π2

(3 − δ)(2 − δ)
(

12(2 − δ)μ
(3 − δ)π2

− 4
π2

− 1
3

)
(μ �σ1)

2
3π2

(3 − δ)(2 − δ) (σ1 �μ �σ2)

4
3π2

(3 − δ)(2 − δ)
(

1
3

+
4
π2

− 12(2 − δ)μ
(3 − δ)π2

)
(μ �σ2).

These results are sharp.

REMARK 5. For the following choices:

λ = 0, β = 1, α = 0, δ = 1, B1 =
8
π2

and B2 =
16
3π2

,

Theorem 4 would coincide with the result obtained earlier by Ma and Minda [4].
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