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Abstract. In this paper, we introduce a new algorithm for a generalized system for a relaxed
cocoercive nonlinear inequality and an asymptotically nonexpansive mapping in Hilbert spaces
by the convergence of projection methods. Our results include the previous results as special
cases extend and improve the main results of [R.U. Verma, General convergence analysis for
two-step projection methods and application to variational problems. Appl. Math. Lett. 18
(11) (2005), 1286-1292], [R.U. Verma, Generalized system for relaxed cocoercive variational
inequalities and its projection methods, J. Optim. Theory Appl. 121 (1) (2004), 203-210], [R.U.
Verma, Generalized class of partial relaxed monotonicity and its connections, Adv. Nonlinear
Var. Inequal. 7 (2) (2004), 155-164], [N.H. Xiu, J.Z. Zhang, Local convergence analysis of
projection type algorithms: Unified approach, J. Optim. Theory Appl. 115 (2002) 211-230],
[N.H. Nie, Z. Liu, K.H. Kim, S.M. Kang, A system of nonlinear variational inequalities involving
strong monotone and pseudocontractive mappings, Adv. Nonlinear Var. Inequal. 6 (2) (2003),
91-99], [S.S. Chang, H.W. Joseph Lee, C.K. Chan, Generalized system for relaxed cocoercive
variational inequalities in Hilbert spaces, Appl. Math. Lett. 20 (3) (2007), 329-334] and many
others.
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