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Abstract. In this paper, we introduce a new algorithm for a generalized system for a relaxed
cocoercive nonlinear inequality and an asymptotically nonexpansive mapping in Hilbert spaces
by the convergence of projection methods. Our results include the previous results as special
cases extend and improve the main results of [R.U. Verma, General convergence analysis for
two-step projection methods and application to variational problems. Appl. Math. Lett. 18
(11) (2005), 1286-1292], [R.U. Verma, Generalized system for relaxed cocoercive variational
inequalities and its projection methods, J. Optim. Theory Appl. 121 (1) (2004), 203-210], [R.U.
Verma, Generalized class of partial relaxed monotonicity and its connections, Adv. Nonlinear
Var. Inequal. 7 (2) (2004), 155-164], [N.H. Xiu, J.Z. Zhang, Local convergence analysis of
projection type algorithms: Unified approach, J. Optim. Theory Appl. 115 (2002) 211-230],
[N.H. Nie, Z. Liu, K.H. Kim, S.M. Kang, A system of nonlinear variational inequalities involving
strong monotone and pseudocontractive mappings, Adv. Nonlinear Var. Inequal. 6 (2) (2003),
91-99], [S.S. Chang, H.W. Joseph Lee, C.K. Chan, Generalized system for relaxed cocoercive
variational inequalities in Hilbert spaces, Appl. Math. Lett. 20 (3) (2007), 329-334] and many
others.

1. Introduction and Preliminaries

Variational inequalities introduced by Stampacchia [6] in the early sixties have
had a great impact and influence in the development of almost all branches of pure
and applied sciences and have witnessed an explosive growth in theoretical advances,
algorithmic development, see [1–11] and references therein. It combines novel theo-
retical and algorithmic advances with new domain of applications. Analysis of these
problems requires a blend of technics from convex analysis, functional analysis and nu-
merical analysis. As a result of interaction between different branches of mathematical
and engineering sciences, we now have a variety of techniques to suggest and analyze
various algorithms for solving variational inequalities and related optimization. It is
well known that the variational inequalities are equivalent to the fixed point problems.
This alternative equivalent formulation is very important from the numerical analysis
point of view and has played a significant part in several numerical methods for solving
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variational inequalities and complementarity; see [1,3]. In particular, the solution of the
variational inequalities can be computed using the iterative projection methods. It is
well known that the convergence of the projection method requires the operator T to be
strongly monotone and Lipschitz continuous. Gabay [4] has shown that the convergence
of a projection method can be proved for cocoercive operators. Note that cocoercivity
is a weaker condition than strong monotonicity. Recently, Verma [7] introduced a new
system of nonlinear strongly monotone variational inequalities and studied the approx-
imate solvability of this system based on a system of projection methods. Projection
methods have been applied widely to problems arising especially from complementar-
ity, convex quadratic programming, and variational problems. Additional research on
the approximate solvability of a system of nonlinear variational inequalities is due to
Nie et al. [5], Verma [10] and others.

In this paper, we consider, based on the projection method, the approximate solv-
ability of a system of nonlinear relaxed cocoercive variational inequalities in the frame-
work of Hilbert spaces. Solutions of the system of nonlinear relaxed cocoercive vari-
ational inequalities are also fixed points of an asymptotically nonexpansisve mapping.
Our results obtained in this paper generalize the results of Chang et al. [2], Nie et al.
[5], Verma [7–9], Xiu et al. [11] and some others.

Let H be a real Hilbert space, whose inner product and norm are denoted by 〈 ·, ·〉
and ‖ · ‖ respectively. Let C be a closed convex subset of H and let A : C → H be
a nonlinear mapping. Let PC be the projection of H onto the convex subset C . The
classical variational inequality which denoted by VI(C, A) is to find u ∈ C such that

〈Au, v− u〉 � 0, ∀v ∈ C. (1.1)

We now recall some well-known concepts and results:

LEMMA 1.1. For any z ∈ H , u ∈ C satisfies the inequality:

〈 u − z, v − u〉 � 0, ∀v ∈ C,

if and only if u = PCz.

It is known that the projection operator PC is nonexpansive and PC satisfies the
following:

〈 x − y, PCx − PCy〉 � ‖PCx − PCy‖2, ∀x, y ∈ H. (1.2)

Moreover, PCx is characterized by the properties:

PCx ∈ C, 〈 x − PCx, PC − y〉 � 0, ∀y ∈ C.

Using Lemma 1.1, one can show that the variational inequality (1.1) is equivalent
to a fixed point problem.

LEMMA 1.2. The point u ∈ C is a solution of the variational inequality (1.1) if
and only if u ∈ C satisfies the relation u = PC(u− λAu), where λ > 0 is a constant.

It is clear from Lemma 1.2 that the variational inequalities and the fixed point
problems are equivalent. This alternative equivalent formulation has played a significant
role in the study of the variational inequalities and related optimization problems.
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Recall the following definitions:
(1) A mapping A of C into H is called monotone if

〈Au − Av, u − v〉 � 0, ∀u, v ∈ C.

(2) A is called v -strongly monotone if there exists a constant v > 0 such that

〈Ax − Ay, x − y〉 � v‖x − y‖2, ∀x, y ∈ C.

This implies that

‖Ax − Ay‖ � v‖x− y‖, ∀x, y ∈ C,

that is, A is v -expansive and, when v = 1 , it is expansive.
(3) A is said to be μ -cocoercive [12,14] if there exists a constant μ > 0 such that

〈Ax − Ay, x − y〉 � μ‖Ax − Ay‖2, ∀x, y ∈ C.

Clearly, every μ -cocoercive mapping A is 1
μ -Lipschitz continuous.

(4) A is called relaxed u -cocoerceive if there exists a constant u > 0 such that

〈Ax − Ay, x − y〉 � (−u)‖Ax− Ay‖2, ∀x, y ∈ C.

(5) A is said to be relaxed (u, v) -cocoercive if there exist two constants u, v > 0
such that

〈Ax − Ay, x − y〉 � (−u)‖Ax− Ay‖2 + v‖x − y‖2, ∀x, y ∈ C.

For u = 0, A is v -strongly monotone. This class of mappings is more general that
the class of strongly monotone mappings. It is easy to see that we have the following
implication:

v -strongly monotonicity ⇒ relaxed (u, v) -cocoercivity.

(6) S : C → C is said to be nonexpansive if

‖Tx − Ty‖ � ‖x − y‖, ∀x, y ∈ C.

(7) S : C → C is said to be asymptotically nonexpansive if there exists a sequence
{kn} ∈ [0,∞) with limn→∞ kn = 1 such that

‖Snx − Sny‖ � kn‖x − y‖, ∀x, y ∈ C, n � 0.

Next, we denote the fixed point of S by F(S). We can characterize the problem.
If x∗ ∈ F(S) ∩ VI(C, A) , then it follows from Lemma 2.2 that

x∗ = Snx∗ = PC[x∗ − ρTx∗] = SnPC[x∗ − ρTx∗],

where ρ > 0 is a constant.
This formulation is used to suggest the following iterative methods for finding

a common element of two different sets of the fixed points of the asymptotically
nonexpansive mappings and solutions of the variational inequalities.
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Let T : C × C × C → H be a mapping. Consider a system (SNVI) of nonlinear
variational inequality problems as follows:

Find x∗, y∗, z∗ ∈ C such that

〈 sT(y∗, z∗, x∗) + x∗ − y∗, x − x∗〉 � 0, ∀x ∈ C, s > 0, (1.3)

〈 tT(z∗, x∗, y∗) + y∗ − z∗, x − x∗〉 � 0, ∀x ∈ C, t > 0, (1.4)

〈 rT(x∗, y∗, z∗) + z∗ − x∗, x − x∗〉 � 0, ∀x ∈ C, r > 0. (1.5)

One can easily see the SNVI problems (1.3), (1.4) and (1.5) are equivalent to the
following projection formulas:

x∗ = PC[y∗ − sT(y∗, z∗, x∗)], s > 0,

y∗ = PC[z∗ − tT(z∗, x∗, y∗)], t > 0,

z∗ = PC[x∗ − rT(x∗, y∗, z∗)], r > 0,

respectively, where PC is the projection of H onto C .
Next, we consider some special classes of the SNVI problems (1.3), (1.4) and

(1.5) as follows:
(I) If r = 0, then the SNVI problems (1.3), (1.4) and (1.5) collapse to the

following SNVI:
Find x∗, y∗ ∈ C such that

〈 sT(y∗, x∗, x∗) + x∗ − y∗, x − x∗〉 � 0, ∀x ∈ C, s > 0, (1.6)

〈 tT(x∗, x∗, y∗) + y∗ − x∗, x − x∗〉 � 0, ∀x ∈ C, t > 0. (1.7)

(II) If t = r = 0, then the SNVI problems (1.3), (1.4) and (1.5) reduce to the
following nonlinear variational inequality problem (NVI):

Find an x∗ ∈ C such that

〈T(x∗, x∗, x∗), x − x∗〉 � 0, ∀x ∈ C. (1.8)

(III) If C is a closed convex cone of H , then the SNVI problems (1.3), (1.4)
and (1.5) are equivalent to the following system (SNC) of nonlinear complementarity
problems:

Find x∗, y∗, z∗ ∈ C such that

T(x∗, y∗, z∗) ∈ C∗, T(y∗, z∗, x∗) ∈ C∗, T(z∗, x∗, y∗) ∈ C∗,

〈 sT(y∗, z∗, x∗) + x∗ − y∗, x∗〉 = 0, s > 0, (1.9)

〈 tT(z∗, x∗, y∗) + y∗ − z∗, x∗〉 = 0, t > 0, (1.10)

〈 rT(x∗, y∗, z∗) + z∗ − x∗, x∗〉 = 0, r > 0, (1.11)

where C∗ is the polar cone to C defined by

C∗ = {f ∈ H : 〈 f , x〉 � 0, ∀x ∈ C}.
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(IV) If T : C → H is a univariate mapping, then the SVNI problems (1.3), (1.4)
and (1.5) are reduced to the following SNVI problems:

Find x∗, y∗ ∈ C such that

〈 sT(y∗) + x∗ − y∗, x − x∗〉 � 0, ∀x ∈ C, s > 0, (1.12)

〈 tT(z∗) + y∗ − z∗, x − x∗〉 � 0, ∀x ∈ C, t > 0, (1.13)

〈 rT(x∗) + z∗ − x∗, x − x∗〉 � 0, ∀x ∈ C, r > 0. (1.14)

One can easily get the SNVI problems (1.12), (1.13) and (1.14) are equivalent to
the following projection formulas:

x∗ = PC[y∗ − sT(y∗)], s > 0, (1.15)

y∗ = PC[z∗ − tT(z∗)], t > 0, (1.16)

z∗ = PC[x∗ − rT(x∗)], r > 0. (1.17)

2. Algorithms

In this section, we consider an introduction of the general three-step models for
the projection methods and its special form can be applied to the convergence analysis
for the projection methods in the context of the approximation solvability of the SNVI
problems (1.3)– (1.5) and (1.12)– (1.14) .

Algorithm 2.1. For any x0, y0, z0 ∈ C , compute the sequences {xn} , {yn} and
{zn} by the iterative processes:

⎧⎨
⎩

zn = (1 − γn)xn + γnSnPC[xn − rnT(xn, yn, zn)],
yn = (1 − βn)xn + βnSnPC[zn − tnT(zn, xn, yn)],
xn+1 = (1 − αn)xn + αnSnPC[yn − snT(yn, zn, xn)],

(2.1)

where {αn} , {βn} , {γn} are sequences in [0, 1] for all n � 0 and S is an asymptoti-
cally nonexpansive mapping.

(I) If T : C → H is a univariate mapping, then the Algorithm 2.1 is reduced to the
following:

Algorithm 2.2. For any x0, y0, z0 ∈ C , compute the sequences {xn} , {yn} and
{zn} by the iterative processes:

⎧⎨
⎩

zn = (1 − γn)xn + γnSnPC[xn − rnT(xn)],
yn = (1 − βn)xn + βnSnPC[zn − tnT(zn)],
xn+1 = (1 − αn)xn + αnSnPC[yn − snT(yn)],

(2.2)

where {αn} , {βn} , {γn} are sequences in [0, 1] for all n � 0 and S is an asymptoti-
cally nonexpansive mapping.

(II) If γn = 1 in Algorithm 2.1, then we have the following:
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Algorithm 2.3. For any x0, y0, z0 ∈ C , compute the sequences {xn} , {yn} and
{zn} by the iterative processes:

⎧⎨
⎩

zn = SnPC[xn − rnT(xn, yn, zn)],
yn = (1 − βn)xn + βnSnPC[zn − tnT(zn, xn, yn)],
xn+1 = (1 − αn)xn + αnSnPC[yn − snT(yn, zn, xn)],

(2.3)

where {αn}, {βn} are sequences in [0, 1] for all n � 0 and S is an asymptotically
nonexpansive mapping.

(III) If βn = γn = 1 in Algorithm 2.1, then we have the following:

Algorithm 2.4. For any x0, y0, z0 ∈ C , compute the sequences {xn} , {yn} and
{zn} by the iterative processes:

⎧⎨
⎩

zn = SnPC[xn − rnT(xn, yn, zn)],
yn = SnPC[zn − tnT(zn, xn, yn)],
xn+1 = (1 − αn)xn + αnSnPC[yn − snST(yn, zn, xn)],

(2.4)

where {αn} is a sequence in [0, 1] for all n � 0 and S is an asymptotically nonex-
pansive mapping.

(IV) If rn = tn = 0 in Algorithm 2.1, then we have the following:

Algorithm 2.5. For any x0 ∈ C , compute the sequence {xn} by the iterative
process:

xn+1 = (1 − αn)xn + αnS
nPC[xn − snT(xn, xn, xn)], (2.5)

where {αn} is a sequence in [0, 1] for all n � 0 and S is an asymptotically nonex-
pansive mapping.

In order to prove our main results, we need the following lemmas and definitions.

LEMMA 2.1.. Assume that {an} is a sequence of nonnegative real numbers such
that

an+1 � (1 − λn)an + bn + cn, ∀n � n0,

where n0 is some nonnegative integer, {λn} is a sequence in (0, 1) with
∑∞

n=1 λn = ∞,
bn = ◦(λn) and

∑∞
n=0 cn < ∞ , then limn→∞ an = 0.

DEFINITION 2.1. A mapping T : C × C × C → H is said to be relaxed (u, v) -
cocoercive if there exist constants u, v > 0 such that, for all x, x′ ∈ C ,

〈T(x, y, z) − T(x′, y′, z′), x − x′〉
� (−u)‖T(x, y, z) − T(x′, y′, z′)‖2 + v‖x − x′‖2, ∀y, y′, z, z′ ∈ C.

DEFINITION 2.2. A mapping T : C × C × C → H is said to be μ -Lipschitz
continuous in the first variable if there exists a constant μ > 0 such that, for all
x, x′ ∈ C ,

‖T(x, y, z) − T(x′, y′, z′)‖ � μ‖x − x′‖, ∀y, y′, z, z′ ∈ C.
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3. Main results

THEOREM 3.1. Let C be a closed convex subset of a real Hilbert space H . Let
T : C × C × C → H be a relaxed (u, v) -cocoerceive and μ -Lipschitz continuous
mapping in the first variable and S : C → C be an asymptotically nonexpansive
mapping. Suppose that x∗, y∗, z∗ ∈ C are solutions of the SNVI problems (1.3)– (1.5) ,
x∗, y∗, z∗ ∈ F(S) and {xn} , {yn} , {zn} are the sequences generated by Algorithm
2.1. If {αn} , {βn} and {γn} are three sequences in [0, 1] satisfying the following
conditions:

(i)
∑∞

n=0 αn = ∞;

(ii)
∑∞

n=0(1 − βn) < ∞ and
∑∞

n=0(1 − γn) < ∞;

(iii) 0 < sn, tn, rn < 2(v−uμ2)
μ2 ;

(iv) v > uμ2,

then the sequences {xn} , {yn} and {zn} converges strongly to x∗ , y∗ and z∗ , respec-
tively.

Proof. Since x∗ , y∗ and z∗ are the common elements in the set of solutions of
the SNVI problems (1.3)– (1.5) and the set of fixed points of S , we have

⎧⎨
⎩

x∗ = SnPC[y∗ − snT(y∗, z∗, x∗)], s > 0,

y∗ = SnPC[z∗ − tnT(z∗, x∗, y∗)], t > 0,

z∗ = SnPC[x∗ − rnT(x∗, y∗, z∗)], r > 0.

Observing (2.1), we obtain

‖xn+1−x∗‖
= ‖(1 − αn)xn + αnS

nPC[yn − snT(yn, zn, xn)] − x∗‖
� (1−αn)‖xn−x∗‖+αnkn‖yn−y∗−sn[T(yn, zn, xn)−T(y∗, z∗, x∗)]‖.

(3.1)

By the assumption that T is relaxed (u, v) -cocoercive and μ -Lipschitz continuous in
the first variable, we obtain

‖yn−y∗−sn[T(yn, zn, xn) − T(y∗, z∗, x∗)]‖2

= ‖yn − y∗‖ − 2sn〈 yn − y∗, T(yn, zn, xn) − T(y∗, z∗, x∗)〉
+ s2

n‖T(yn, zn, xn) − T(y∗, z∗, x∗)‖2

� ‖yn − y∗‖ − 2sn[−u‖T(yn, zn, xn) − T(y∗, z∗, x∗)‖2 + v‖yn − y∗‖2]

+ s2
nμ

2‖yn − y∗‖2

� ‖yn − y∗‖ + 2snuμ2‖yn − y∗‖2 − 2snv‖yn − y∗‖2 + s2
nμ

2‖yn − y∗‖2

= θ2
1n‖yn − y∗‖2,

(3.2)

where θ2
1n = 1 + s2

nμ2 − 2snv + 2snuμ2 . From the conditions (iii) and (iv), we know
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θ1n < 1 . Substituting (3.2) into (3.1) yields that

‖xn+1 − x∗‖ � (1 − αn)‖xn − x∗‖ + knαnθ1n‖yn − y∗‖. (3.3)

Now, we estimate

‖yn−y∗‖
= ‖(1 − βn)xn + βnS

nPC[zn − tnT(zn, xn, yn)] − y∗‖
� (1−βn)‖xn−y∗‖ + knβn‖zn−z∗−tn[T(zn, xn, yn)−T(z∗, x∗, y∗)]‖.

(3.4)

By the assumption that T is relaxed (u, v) -cocoercive and μ -Lipschitz continuous in
the first variable, we obtain

‖zn − z∗ − tn[T(zn, xn, yn) − T(z∗, x∗, y∗)]‖2

= ‖zn − z∗‖2 − 2tn〈 zn − z∗, T(zn, xn, yn) − T(z∗, x∗, y∗)〉
+ t2n‖T(zn, xn, yn) − T(z∗, x∗, y∗)‖2

� ‖zn − z∗‖2 − 2tn[−u‖T(zn, xn, yn) − T(z∗, x∗, y∗)‖2 + v‖zn − z∗‖2]

+ t2nμ
2‖zn − z∗‖2

� ‖zn − z∗‖2 + 2tnuμ2‖zn − z∗‖2 − 2tnv‖zn − z∗‖2 + t2nμ
2‖zn − z∗‖2

� θ2
2n‖zn − z∗‖2, (3.5)

where θ2
2n = 1 + t2nμ2 − 2tnv + 2tnuμ2 . From the conditions (iii) and (iv), we know

θ2n < 1 . Substituting (3.5) into (3.4) yields that

‖yn − y∗‖ � (1 − βn)‖xn − x∗‖ + (1 − βn)‖x∗ − y∗‖ + knβnθ2n‖zn − z∗‖ (3.6)

Similarly, Substituting (3.6) into (3.3), we have

‖xn+1 − x∗‖
� (1 − αn)‖xn − x∗‖

+ knαnθ1n[(1 − βn)‖xn − x∗‖ + (1 − βn)‖x∗ − y∗‖ + knβnθ2n‖zn − z∗‖]
= (1 − αn + knαnθ1n(1 − βn))‖xn − x∗‖

+ knαnθ1n[(1 − βn)‖x∗ − y∗‖ + knβnθ2n‖zn − z∗‖]. (3.7)

Next, we show that

‖zn − z∗‖ = ‖(1 − γn)xn + γnSnPC[xn − rnT(xn, yn, zn)] − z∗‖
� (1−γn)‖xn−z∗‖+knγn‖xn−x∗−rn[T(xn, yn, zn)−T(x∗, y∗, z∗)]‖.

(3.8)
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By the assumption that T is relaxed (u, v) -cocoercive and μ -Lipschitz continuous in
the first variable, we obtain

‖xn − x∗ − rn[T(xn, yn, zn) − T(x∗, y∗, z∗)]‖2

= ‖xn − x∗‖ − 2rn〈 xn − x∗, T(xn, yn, zn) − T(x∗, y∗, z∗)〉
+ r2

n‖T(xn, yn, zn) − T(x∗, y∗, z∗)‖2

� ‖xn − x∗‖ − 2rn[−u‖T(xn, yn, zn) − T(x∗, y∗, z∗)‖2 + v‖xn − x∗‖2]

+ r2
nμ

2‖xn − x∗‖2

� ‖xn − x∗‖ + 2rnuμ2‖xn − x∗‖2 − 2rnv‖xn − x∗‖2 + r2
nμ

2‖xn − x∗‖2

= θ2
3n‖xn − x∗‖2, (3.9)

where θ2
3n = 1 + r2

nμ2 − 2rnv + 2rnuμ2 . From the conditions (iii) and (iv), we know
θ3n < 1 . Substituting (3.9) into (3.8), we obtain

‖zn − z∗‖
� (1 − γn)‖xn − z∗‖ + knγnθ3n‖xn − x∗‖
� (1 − γn)‖xn − x∗‖ + (1 − γn)‖x∗ − z∗‖ + knγnθ3n‖xn − x∗‖
� kn‖xn − x∗‖ + (1 − γn)‖x∗ − z∗‖. (3.10)

Similarly, substituting (3.10) into (3.7) yields that

‖xn+1−x∗‖
� (1−αn+knαnθ1n(1−βn))‖xn−x∗‖+knαnθ1n(1−βn)‖x∗−y∗‖

+ knαnβnθ1nθ2n[‖xn − x∗‖ + (1 − γn)‖x∗ − z∗‖]
� (1 − αn(1 − knθ1n(1 − βn) − knβnθ1nθ2n))‖xn − x∗‖

+ M(1 − βn)‖x∗ − y∗‖ + M(1 − γn)‖x∗ − z∗‖,
(3.11)

where M is an appropriate constant such that M � sup{kn}n�0 . Applying Lemma 2.1
into (3.11), we can get the desired conclusion easily. This completes the proof. �

From Theorem 3.1, we can get the following results immediately:

THEOREM 3.2. Let C be a closed convex subset of a real Hilbert space H . Let
T : C → H be a relaxed (u, v) -cocoerceive and μ -Lipschitz continuous mapping and
S : C → C be an asymptotically nonexpansive mapping. Suppose that x∗, y∗, z∗ ∈ C
are solutions of the SNVI problems (1.12)– (1.14) , x∗, y∗, z∗ ∈ F(S) and {xn} , {yn} ,
{zn} are the sequences generated by Algorithm 2.2. If {αn} , {βn} and {γn} are three
sequences in [0, 1] satisfying the following conditions:

(i)
∑∞

n=0 αn = ∞;
(ii)

∑∞
n=0(1 − βn) < ∞ and

∑∞
n=0(1 − γn) < ∞;

(iii) 0 < sn, tn, rn < 2(v−uμ2)
μ2 ;

(iv) v > uμ2,
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then the sequences {xn} , {yn} and {zn} converge strongly to x∗ , y∗ and z∗ , respec-
tively.

REMARK 1. Theorem 3.1 and Theorem 3.2 extends and improves the main results
in Chang et al. [2] and Verma [7–9].

THEOREM 3.3. Let C be a closed convex subset of a real Hilbert space H . Let
T : C → H be a relaxed (u, v) -cocoerceive and μ -Lipschitz continuous mapping and
S : C → C be an asymptotically nonexpansive mapping. Suppose that x∗, y∗, z∗ ∈ C
are solutions of the SNVI problems (1.3)– (1.5) , x∗, y∗, z∗ ∈ F(S) and {xn} , {yn} ,
{zn} are the sequences generated by Algorithm 2.3. If {αn} , {βn} and {γn} are three
sequences in [0, 1] satisfying the following conditions:

(i)
∑∞

n=0 αn = ∞;
(ii)

∑∞
n=0(1 − βn) < ∞;

(iii) 0 < sn, tn, rn < 2(v−uμ2)
μ2 ;

(iv) v > uμ2,

then the sequences {xn} , {yn} and {zn} converge strongly to x∗ , y∗ and z∗ , respec-
tively.

THEOREM 3.4. Let C be a closed convex subset of a real Hilbert space H . Let
T : C × C × C → H be a relaxed (u, v) -cocoerceive and μ -Lipschitz continuous
mapping in the first variable and S : C → C be an asymptotically nonexpansive
mapping. Suppose that x∗, y∗, z∗ ∈ C are solutions of the SNVI problems (1.3)– (1.5) ,
x∗, y∗, z∗ ∈ F(S) and {xn} , {yn} , {zn} are the sequences generated by Algorithm
2.4. If {αn} , {βn} and {γn} are three sequences in [0, 1] satisfying the following
conditions:

(i)
∑∞

n=0 αn = ∞;

(ii) 0 < sn, tn, rn < 2(v−uμ2)
μ2 ;

(iii) v > uμ2,

then the sequences {xn} , {yn} and {zn} converge strongly to x∗ , y∗ and z∗ , respec-
tively.

THEOREM 3.5. Let C be a closed convex subset of a real Hilbert space H . Let
T : C → H be a relaxed (u, v) -cocoerceive and μ -Lipschitz continuous mapping in
the first variable and S : C → C be an asymptotically nonexpansive mapping. Suppose
that x∗ ∈ C is a solution of the NVI problem (1.8) , x∗ ∈ F(S) and {xn} is a sequence
generated by Algorithm 2.5. If {αn} is a sequence in [0, 1] satisfying the following
conditions:

(i)
∑∞

n=0 αn = ∞;

(ii) 0 < sn, tn, rn < 2(v−uμ2)
μ2 ;

(iii) v > uμ2,

then the sequence {xn} converges strongly to x∗ .
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