
Mathematical
Inequalities

& Applications

Volume 12, Number 2 (2009), 377–390

EQUALITY CONDITIONS FOR NORM INEQUALITIES

IN REPRODUCING KERNEL HILBERT SPACES

AKIRA YAMADA

Dedicated to the memory of
Professor Nobuyuki Suita

(Communicated by S. Saitoh)

Abstract. Weconsider norm inequalities arising from nonlinear maps between reproducing kernel
Hilbert spaces. In many cases we know that equality for such inequalities occurs only for the
reproducing kernels. To investigate this phenomenon we introduce a new class of RKHSs and
give fairly general equality conditions for norm inequalities.

1. Introduction

In 1965Lebedev andMilin [8] found the following inequality: If f (z) is an analytic
function in the unit disk Δ = {|z| < 1} with the expansions f (z) =

∑∞
n=1 anzn and

ef (z) =
∑∞

n=0 bnzn , then
∞∑

n=0

|bn|2 � exp
∞∑

n=1

n|an|2, (1)

where equality occurs if and only if there exists ρ ∈ Δ with an = ρn/n for all n . This
is a prototype of the inequalities treated in this paper, that is, we can rewrite the above
inequality as

‖ef ‖2
H2 � e‖f ‖2

D ,

where ‖f ‖D = (1/π
∫∫

Δ |f ′(z)|2dxdy)1/2 is the Dirichlet norm, and
‖ef ‖H2 = (

∑∞
n=0 |bn|2)1/2 is the Hardy H2 norm of the function ef . Also we remark

that in this case we have the identity

kH2(z, w) = ekD(z,w) = 1/(1 − zw), z, w ∈ Δ,

where kH2 and kD are the kernel functions for the Hardy H2 space and the Dirichlet
space D on Δ normalized by f (0) = 0 , respectively. Moreover, the above equality
condition is equivalent to f (z) = kD(z, ρ) for some ρ ∈ Δ . Thus it is obvious that
there exists a deep connection between the Lebedev-Milin inequality and reproducing
kernels. For reproducingkernelHilbert spaces (RKHSs), the reader is referred to [1, 16].
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Let ϕ(z) =
∑∞

n=1 cnzn and ψ(z) =
∑∞

n=1 pnzn be entire functions such that 1)
pn � 0 for all n and 2) cn = 0 whenever pn = 0 . If HK is a complex RKHS on
a set E with the reproducing kernel K and the norm ‖ · ‖K , then from the general
theory of RKHSs there exists a unique RKHS Hψ(K) on E with the reproducing kernel

ψ(K) . Putting ϕψ (z) =
∑

pn>0
|cn|2
pn

zn , we have the following norm inequality which
generalizes the Lebedev-Milin inequality (1) [2, 17]: For all f ∈ HK ,

‖ϕ(f )‖2
ψ(K) � ϕψ (‖f ‖2

K). (2)

In the special case where ϕ(z) = ψ(z) , it is easy to see [2] that if f = Kq(= K(·, q))
for some q ∈ E , then equality holds in (2). Although the converse of this does not
hold in general [13], by studying various special but important RKHSs, there are many
papers [2, 3, 4, 5, 9, 10, 11, 12, 14, 15, 20] asserting that equality occurs in (2) if and
only if f = Kq for some q ∈ E . Unfortunately, in order to investigate the condition
for equality, all these papers relied on case-by-case arguments. The aim of this paper
is to obtain more general and satisfactory theory of equality conditions for such norm
inequalities. To this end, we shall introduce a class of RKHSs called “algebra-dense"
and study relations between equality conditions and C -algebra homomorphisms. We
hope that our results will yield a unified approach for solving the equality problems as
treated in the papers cited above.

The paper is organized as follows. In Section 2 we define a tensor product of
RKHSs on E to be regular or weakly regular in connection with equality conditions.
We introduce the class of RKHSs called algebra-dense and study algebra-dense RKHSs
which is “maximal". In Section 3 we study equality conditions for norm inequalities of
nonlinear maps by using results obtained in Section 2. In Sections 4 and 5 we consider
more concrete cases with special algebras such as polynomial rings. In Section 6 as an
application we prove that some typical RKHSs on compact bordered Riemann surfaces
are algebra-dense and maximal.

The author would like to thank Professor Saburou Saitoh for his encouragement
and valuable comments on this paper.

2. Main results

Let m be a fixed integer greater than or equal to two. Let Hj (j = 1, 2, . . . , m)
be a complex RKHS on the set E with the reproducing kernel K(j)

x at x ∈ E . Then
the Hilbert tensor product H = ⊗m

j=1Hj is a RKHS on Em =
∏m

j=1 E . (We note that
in [1, p. 358] the term “direct product" is used instead of “tensor product".) Denote by
(H)0 the subspace of H defined by {f ∈ H: f |Em

d
= 0} , where Em

d is the diagonal
{(x, x, . . . , x): x ∈ E} of the set Em . For f , g ∈ H define an equivalence relation “∼ "
by f ∼ g if and only if f |Em

d
= g|Em

d
. An element φ ∈ H is said to be extremal if

φ ∈ (H)⊥0 . Thus, φ is extremal if and only if f ∼ g implies 〈 f , φ〉 = 〈 g, φ〉 .

REMARK 2.1. The definition of the extremality above is closely related to equality
conditions of norm inequalities for the tensor product. As is well known, if H′ denotes
the unique RKHS with the kernel functions

∏m
j=1 K(j)

x , x ∈ E , then H′ consists of
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functions on E induced from the restrictions of functions in H to the diagonal Em
d . For

φj ∈ Hj (j = 1, 2 . . . , m) , we have

‖φ1 · · ·φm‖H′ � ‖φ1 ⊗ · · · ⊗ φm‖H = ‖φ1‖H1 · · · ‖φm‖Hm ,

where equality occurs if and only if ⊗m
j=1φj is extremal (cf. Section 3).

DEFINITION 2.2. Let Hj (j = 1, . . . , m) be RKHSs on E . Then the tensor product
H = ⊗jHj is called regular (cf. [13]) if for every nonzero extremal ⊗m

j=1φj ∈ H , there

exist a point q ∈ E and constants cj ∈ C such that φj = cjK
(j)
q (j = 1, 2, . . . , m) . Also,

H is called weakly regular if for every nonzero extremal ⊗m
j=1φj ∈ H , there exists a

point q ∈ E such that for each j (j = 1, 2, . . . , m) , either of the following holds:
(i) q is a common zero of the functions in Hj , or

(ii) φj = cjK
(j)
q for some constant cj ∈ C .

For later reference, we shall call Case I(i) above the exceptional case.

In what follows, we always assume that R denotes a C -subalgebra of CE , the
algebra of complex-valued functions on E . The existence of the identity of R is not
assumed. For a complex subspace H of CE , let R−1H denote the subspace of H
defined by {f ∈ H: rf ∈ H for all r ∈ R} .

LEMMA 2.3. Assume that φ = ⊗m
j=1φj ∈ ⊗m

j=1Hj is nonzero extremal. If each
R−1Hj is dense in Hj (j = 1, 2, . . . , m) , then there exists a unique C -algebra homo-
morphism Λφ : R → C satisfying, for every f ∈ R and for every u ∈ R−1Hj (j =
1, 2, . . . , m) ,

〈 f u, φj〉 = Λφ(f )〈 u, φj〉 . (3)

Proof. Recall that the inner product of the tensor product satisfies

〈⊗m
j=1ϕj,⊗m

j=1ψj〉 =
m∏

j=1

〈ϕj,ψj〉

for any ⊗m
j=1ϕj,⊗m

j=1ψj ∈ H . Hence, for f j, gj ∈ Hj (j = 1, 2, . . . , m) we have

m∏
j=1

f j =
m∏

j=1

gj on E =⇒
m∏

j=1

〈 f j, φj〉 =
m∏

j=1

〈 gj, φj〉 , (4)

since φ is extremal and ⊗m
j=1f j ∼ ⊗m

j=1gj .
Since R−1Hj is dense in Hj and φj 
= 0 , there exists an element uj ∈ R−1Hj with

〈 uj, φj〉 
= 0 . Fixing such an element uj for each j , we define Λφ for f ∈ R by

Λφ(f ) =
〈 f uj, φj〉
〈 uj, φj〉 . (5)

Nowwe show that this definition iswell-defined, that is, Λφ is determined independently
of the choice of j and uj . For f ∈ R set f k, gk ∈ Hk (k = 1, 2, . . . , m) by

f k =
{

f ui (k = i)
uk (k 
= i)

, gk =
{

f uj (k = j)
uk (k 
= j)

.
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From (4) we have
〈 f ui, φi〉 〈 uj, φj〉 = 〈 ui, φi〉 〈 f uj, φj〉 . (6)

Thus, for all f ∈ R and i, j ,

〈 f ui, φi〉
〈 ui, φi〉 =

〈 f uj, φj〉
〈 uj, φj〉 .

Similarly, for f , g ∈ R , setting

f k =

⎧⎨
⎩

f ui (k = i)
guj (k = j)
uk (k 
= i, j)

, gk =
{

f gui (k = i)
uk (k 
= i)

,

we have
〈 f ui, φi〉 〈 guj, φj〉 = 〈 f gui, φi〉 〈 uj, φj〉 .

Hence,
〈 f gui, φi〉
〈 ui, φi〉 =

〈 f ui, φi〉 〈 guj, φj〉
〈 ui, φi〉 〈 uj, φj〉 =

〈 f ui, φi〉 〈 gui, φi〉
〈 ui, φi〉 〈 ui, φi〉 .

Therefore, we have proved that the linear functional Λφ on R is multiplicative and
that its definition is well-defined. Since the right hand side of (5) is unchanged if we
multiply φj by any nonzero constant, Λφ is dependent only on the tensor product φ .
Hence Λφ : R → C is a well-defined C -algebra homomorphism. The uniqueness of
Λφ is clear from definition.

Finally, to show that the identity (3) holds for every u ∈ R−1Hj , it suffices only to
show that if 〈 u, φj〉 = 0 , then 〈 f u, φj〉 = 0 . Indeed, from (6) we have, for k 
= j ,

〈 f u, φj〉 〈 uk, φk〉 = 〈 u, φj〉 〈 f uk, φk〉 = 0.

Thus 〈 f u, φj〉 = 0 , since 〈 uk, φk〉 
= 0 . �

REMARK 2.4. If R has the identity, then from (3) we have Λφ(1) = 1 .

Given complex subspaces R1 and R2 of R , let R1 ·R2 denote the complex subspace
of R given by

R1 · R2 = {
n∑

i=1

aibi: ai ∈ R1 and bi ∈ R2}.

DEFINITION 2.5. Let H be a RKHS on E . H is called R -dense if R · (R ∩ H) is
a dense subspace of H . If H is R -dense for some C -algebra R on E , H is called
algebra-dense.

REMARK 2.6. If H is R -dense, then R∩H is both 1) a dense subspace of H and
2) an ideal of R . Moreover, if 1 ∈ R , then H is R -dense if and only if 1) and 2) hold.

DEFINITION 2.7. Let H be an R -dense RKHS on E . Let χ: R → C be a C -
algebra homomorphism. If there exists a constant C > 0 such that

|χ(f )| � C‖f ‖ for all f ∈ R ∩ H,

χ is called an H -bounded homomorphism of R . The set of nonzero H -bounded
homomorphisms of R is called an H -hull of E and is denoted by ÊH .
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If Hj (j = 1, 2, . . . , m) is R -dense, then R ∩ Hj is a dense R -invariant subspace
of Hj and we can apply Lemma 2.3 to the tensor product ⊗jHj . The following is our
main

THEOREM 2.8. For each j = 1, 2, . . . , m, assume that Hj is an R -dense RKHS on
E . If φ = ⊗m

j=1φj ∈ ⊗m
j=1Hj is nonzero extremal, then there exists a unique C -algebra

homomorphism Λφ ∈ ⋂m
j=1 ÊHj satisfying (3). Furthermore, for each j = 1, 2, . . . , m,

either of the following holds:
(i) Λφ |R∩Hj = 0 .
(ii) There exists a constant Cj 
= 0 such that for each f ∈ R ∩ Hj , we have

〈 f , φj〉 = CjΛφ(f ) .

Proof. First, we prove that either I(i) or I(ii) holds. Assume that Case I(i)
does not hold. Then there exists an element f 0 ∈ R ∩ Hj such that Λφ(f 0) 
= 0 . Since
R∩Hj is dense in Hj , there exists an element g ∈ R∩Hj with 〈 g, φj〉 
= 0 . For every
f ∈ R ∩ Hj , Lemma 2.3 implies the identity

〈 f g, φj〉 = Λφ(f )〈 g, φj〉 = Λφ(g)〈 f , φj〉 .

Putting f = f 0 above, we obtain Λφ(g) 
= 0 . Hence, Case I(ii) holds if we set
Cj = 〈 g, φj〉 /Λφ(g) 
= 0 .

Now it is clear that Λφ is an Hj -bounded homomorphism of R . For, if Case I(i)
holds then this is trivial, otherwise this follows from Schwarz’s inequality. We must
show that Λφ 
= 0 . Since R ·(R∩Hj) is dense in Hj , there exist f i ∈ R and gi ∈ R∩Hj

such that 〈∑
i f igi, φj〉 =

∑
i〈 f igi, φj〉 
= 0 . Thus, there exists an index i such that

〈 f igi, φj〉 = Λφ(f i)〈 gi, φj〉 
= 0 . Hence, Λφ(f i) 
= 0 and so Λφ 
= 0 . Thus, Λφ ∈ ÊHj

for every j (j = 1, 2, . . . , m) . �

DEFINITION 2.9. Let H be an R -dense RKHS on E . Then H is called maximal
if every nonzero H -bounded homomorphism of R is a point evaluation of R at some
point in E . If we need to distinguish the algebra R when H is maximal, then H is
called R -maximal.

EXAMPLE 2.10. Let �2(E) be the complexHilbert space {f ∈ CE | ∑
x∈E |f (x)|2 <

∞} equippedwith the inner product 〈 f , g〉 =
∑

x∈E f (x)g(x) , f , g ∈ �2(E) . The iden-
tity 〈 f , δp〉 = f (p) implies that the function δp is the reproducing kernel of �2(E) at
p ∈ E where δp is the function defined by δp(x) = δxp (Kronecker’s delta). Hence,
�2(E) is a RKHS on E . It is easy to see that �2(E) is a C -subalgebra of CE (without
the identity). Putting R = �2(E) we shall show that �2(E) is R -dense and maximal.
From δ 2

x = δx we see that R · R is dense in R , which implies that �2(E) is R -dense.
Let χ: R → C be a nonzero C -algebra homomorphism. From δ 2

x = δx , χ(δx) is equal
to 0 or 1 . Also, δxδy = 0 (x 
= y) implies that χ(δx)χ(δy) = 0 (x 
= y) . From χ 
= 0 ,
we conclude that there exists a point q ∈ E such that χ(δx) = δx(q) for x ∈ E . Since
the span of δx ’s is dense in R , χ(f ) = f (q) for all f ∈ R . Thus �2(E) is maximal.

As a corollary to Theorem 2.8, we have

COROLLARY 2.11. Let Hj (j = 1, 2, . . . , m) be R -dense RKHSs on E . If Hj is
maximal for some j , then their tensor product ⊗m

j=1Hj is weakly regular.
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Proof. Let φ = ⊗jφj be nonzero extremal in ⊗m
j=1Hj . Then by Theorem 2.8 the

algebra homomorphism Λφ is an Hj -bounded homomorphismof R (j = 1, 2, . . . , m) .
Since Hj is maximal for some j , Λφ is a point evaluation of R at some point q ∈ E . For
fixed j = 1, 2, . . . , m assume that q is not a common zero of Hj . Since R∩Hj is dense
in Hj , Case I(i) of Theorem 2.8 does not hold. Thus there exists a constant Cj 
= 0
such that 〈 f , φj〉 = Cjf (q) for all f ∈ R ∩ Hj . Since Hj is R -dense, for each f ∈ Hj

there exists a sequence f n ∈ R∩Hj (n = 1, 2, . . . ) such that f n → f (n → ∞) (strong
convergence). From 〈 f n, φj〉 = Cjf n(q) , letting n → ∞ we have 〈 f , φj〉 = Cjf (q)
for f ∈ Hj . Since Cj 
= 0 , φj induces a constant multiple of the point evaluation of Hj

at q ∈ E . Thus, φj is the reproducing kernel of Hj at q up to a nonzero multiplicative
constant. Hence ⊗m

j=1Hj is weakly regular. �

3. Equality conditions for the norm inequality

Before studying equality conditions we first recall some facts from the theory of
kernel functions. Let A: H1 → H2 be a linear map from a Hilbert space H1 into a
linear space H2 with closed kernel kerA (= A−1(0)) . The range norm of A(H1) is
the norm which makes A a partial isometry from H1 onto A(H1) . In fact, the range
A(H1) equipped with this range norm is a Hilbert space isomorphic to H1 
 kerA and
is called the operator range of the map A . With this terminologies, the RKHS HK1+K2

on E is the operator range of the map HK1 ⊕ HK2 � f ⊕ g �→ f + g ∈ HK1+K2 . Hence
we have the Pythagorean inequality

‖f + g‖2
K1+K2

� ‖f ‖2
K1

+ ‖g‖2
K2

, (7)

for all f 1 ∈ HK1 and f 2 ∈ HK2 , where equality holds if and only if

〈 f 1, h〉 K1 = 〈 f 2, h〉 K2 , ∀h ∈ HK1 ∩ HK2 . (8)

Also, the RKHS HK1K2 on E is the operator range of the map HK1 ⊗HK2 �
∑

i f i⊗gi �→∑
i f igi ∈ HK1K2 which is induced by the restriction map from E × E to its diagonal.

Hence, for all f 1 ∈ HK1 and f 2 ∈ HK2

‖f g‖K1K2 � ‖f ⊗ g‖K1⊗K2 = ‖f ‖K1‖g‖K2, (9)

where equality holds if and only if f ⊗ g ∈ (HK1 ⊗ HK2)⊥0 . As a special case we note
that

‖f ‖cK = ‖f ‖K/
√

c (10)
for any positive constant c . For proofs of these statements, see, for instance, [6, p. 32]
and [16].

Applying (7), (9) and (10), for f ∈ HK we have

‖ϕ(f )‖2
ψ(K) �

∑
pn>0

‖cnf
n‖2

pnKn =
∑
pn>0

|cn|2
pn

‖f n‖2
Kn �

∑
pn>0

|cn|2
pn

‖f ‖2n
K . (11)

Thus we obtain the inequality (2) stated in the introduction.
The next Theorem asserts that if the RKHS HK is algebra-dense and maximal,

then “usually" its kernel functions are, up to constants, the only functions which attain
equality in (2), and hence the exceptional case does not occur.
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THEOREM 3.1. Let HK be a RKHS on E which is R -dense and maximal. Assume
that ϕ(z) =

∑∞
n=1 cnzn and ψ(z) =

∑∞
n=1 pnzn are entire functionswith the properties:

(i) pn � 0 for all n .
(ii) cn = 0 whenever pn = 0 .
(iii) cicj 
= 0 for some i, j with 1 � i < j .

Then, equality holds in the inequality (2) if and only if there exist a point q ∈ E and
constants C , C′ such that ϕ(Cz) = C′ψ(z) for all z ∈ C and f = CKq .

Proof. If ϕ(Cz) = C′ψ(z) , then cnCn = C′pn for all n � 1 . Thus ϕψ(|C|2z) =
|C′|2ψ(z) . Hence we have

‖ϕ(CKq)‖2
ψ(K) = ‖C′ψ(Kq)‖2

ψ(K) = |C′|2
∑

n

pnK
n(q, q)

= |C′|2ψ(‖Kq‖2
K) = ϕψ (‖CKq‖2

K),

proving the sufficiency part of Theorem.
To prove the necessity assume that equality holds in (2) for f ∈ HK . Noting

that the case f = 0 corresponds to the choice with C = C′ = 0 , we may assume
that f 
= 0 . By the hypotheses I(ii) and I(iii) there exist indices i and j with
pipj 
= 0, 1 � i < j . From the chain of inequalities (11) and since j � 2 , f ⊗j must be
nonzero extremal in H⊗j

K . By Corollary 2.11 H⊗j
K is weakly regular. Thus, there exists

a point q ∈ E such that Λf ⊗j(g) = g(q) for all g ∈ R , and that q is either a common
zero of HK or f = CKq for some nonzero constant C .

Next we shall show that q is not a common zero of HK . To prove this we note
that if ⊗nφn is extremal in ⊗nHn , then by the basic properties of the range norm and
the tensor product, for any ⊗ngn ∈ ⊗nHn we have

〈Πngn,Πnφn〉 ΠnKn = 〈⊗ngn,⊗nφn〉⊗nKn = Πn〈 gn, φn〉 Kn .

Since HK is R -dense and f 
= 0 , there exists u ∈ R ∩ HK with 〈 f , u〉 K 
= 0 . Since
f ⊗j is extremal in H⊗j

K , we have

〈 cjf
j, uj〉 pjKj =

cj

pj
〈 f j, uj〉 Kj =

cj

pj
〈 f , u〉 j

K. (12)

On the other hand, if i � 2 , f ⊗i is extremal in H⊗i
K , and so by decomposing uj as a

product uj−i+1 · ui−1 , we have

〈 cif
i, uj〉 piKi =

ci

pi
〈 f , uj−i+1〉 K〈 f , u〉 i−1

K . (13)

Obviously, this identity also holds for i = 1 . Since f ⊗j is nonzero extremal, it follows
from Lemma 2.3

〈 uj−i+1, f 〉 K = uj−i(q)〈 u, f 〉 K. (14)

Decomposing uj as above we see that uj ∈ HpiKi ∩ HpjKj . The equality condition (8)
implies, for any k, l with pkpl 
= 0 ,

〈 ckf
k, ul〉 pkKk = 〈 clf

l, ul〉 plKl . (15)



384 AKIRA YAMADA

Combining (12)–(15), we have

uj−i(q) =
cjpi

cipj
〈 f , u〉 j−i

K 
= 0.

Since j > i , the point q is not a common zero of HK , as desired.
Thus, f = CKq for some constant C 
= 0 . By (15) the reproducing property of f

yields, for any k , l with pkpl 
= 0 ,

ckCk

pk
=

clCl

pl
.

Putting C′ = ckCk/pk , we immediately obtain the identity ϕ(Cz) = C′ψ(z) . �

4. The case of polynomial ring

As an important example, we first consider the case where E is a subset of the
complex n -dimensional space C

n , and R is a restriction to E of the polynomial
ring C[z1, . . . , zn] . For simplicity, we use the standard multi-index notation: If z =
(z1, z2, . . . , zn) and α = (α1,α2, . . . ,αn) , then |α| = α1+· · ·+αn and zα =

∏n
i=1 zαi

i .
A power series with center at the origin is denoted by

∑
α aαzα .

DEFINITION 4.1. Let H be a RKHS on a subset E of Cn . If H is C[z1, . . . , zn]|E -
dense, then H is called polynomially dense.

Let χ: C[z1, . . . , zn] → C be a C -algebra homomorphism with χ(1) = 1 . For
any polynomial f (z) =

∑
α aαzα , we have

χ(f ) =
∑
α

aαχ(z)α = f (χ(z)),

where χ(z) = (χ(z1), χ(z2), . . . , χ(zn)) ∈ Cn . Hence we conclude that any nonzero
C -algebra homomorphismof C[z1, . . . , zn]|E is a point evaluation at some point of C

n .
Thus we have immediately

PROPOSITION 4.2. Let H be a polynomially dense RKHS on E . Then H is
maximal if and only if the following holds: Given a point q ∈ C

n , if there exists a
constant C > 0 with |f (q)| � C‖f ‖ for all f ∈ C[z1, . . . , zn] ∩ H , then q ∈ E .

We next give an example of polynomially dense RKHSs and provide a sufficient
condition for these RKHSs to be maximal.

EXAMPLE 4.3. ([5]) For z, ζ ∈ Cn we put zζ = (z1ζ1, . . . , znζn) ∈ Cn . Fix
a power series with positive coefficients η(z) =

∑
α cαzα , (cα > 0, α ∈ Zn

+) , and
assume that the domain of convergence D of the function η(zz) is nonempty. A function
f holomorphic in the domain D has a power series expansion f (z) =

∑
α aαzα on D .

Define the norm of f by

‖f ‖2 =
∑
α

|aα |2
cα

,
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and let Hη denote the space of holomorphic functions in D with ‖f ‖ < ∞ . Define
an inner product of f and g ∈ Hη by

〈 f , g〉 =
∑
α

aαbα
cα

, g(z) =
∑
α

bαzα ,

then Hη is a Hilbert space. For ζ ∈ D let kζ (z) denote the function η(zζ ) . Then
we easily see that kζ ∈ Hη and that f (ζ) = 〈 f , kζ〉 for all f ∈ Hη . Thus, kζ is
the reproducing kernel at ζ for the space Hη , and hence Hη is a RKHS on D . By
definition of the norm, Hη is clearly polynomially dense.

PROPOSITION 4.4. If η(zz ) = ∞ for every z ∈ ∂D, then Hη is polynomially
dense and maximal.

Proof. Since η(zz) is a series with nonnegative terms, if η(zz) < ∞ , then
η(tztz) < ∞ for all t with 0 < t < 1 . Thus, from the hypothesis it is easy to see that

η(zz) = ∞ for every z /∈ D . For ζ /∈ D and n ∈ N , let k(n)
ζ (z) =

∑
|α|�n cαζαzα ∈

Hη be the n -th partial sum of kζ (z) . Then,

|k(n)
ζ (ζ)|
‖k(n)

ζ ‖
=

√
k(n)
ζ (ζ) →

√
η(ζζ) = ∞ (n → ∞).

Thus, the point evaluation at ζ /∈ D is not Hη -bounded. In view of Proposition 4.2
this implies that Hη is maximal. �

REMARK 4.5. Theorems in Sections 5 and 6 of [5] are immediate consequences of
our Theorem 3.1 and Proposition 4.4.

5. Algebra of meromorphic functions

Throughout this section, let E be a regular subregionof a compactRiemann surface
S . Here, a proper subregion E of S is called regular if E and its exterior have the
same boundary consisting of a finite number of analytic Jordan curves. Let RE denote
the complex algebra of meromorphic functions on S which are holomorphic on E .

DEFINITION 5.1. A RKHS H on E is called meromorphically dense if H is
RE -dense.

We prepare the following Proposition which is useful for testing the maximality of
meromorphically dense RKHSs.

PROPOSITION 5.2. Let χ: RE → C be a C -algebra homomorphism with χ(1) =
1 . Then there exists a unique point q ∈ E such that χ(f ) = f (q) for all f ∈ RE .

Proof. First we show that χ(f ) ∈ f (E) for any f ∈ RE . If f 
= 0 on E ,
then 1/f ∈ RE , and from the identity χ(f )χ(1/f ) = χ(1) = 1 we have χ(f ) 
= 0 .
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Therefore, χ(f −χ(f )) = 0 implies that f −χ(f ) vanishes for some point in E . Thus
χ(f ) ∈ f (E) .

Choose any f ∈ RE \ C and set ζ = χ(f ) . Let f −1(ζ) consists of distinct
points q1, . . . , qr (1 � r � n) where n is the degree of the meromorphic function f
on the compact Riemann surface S . From the above remark, f −1(ζ) ∩ E 
= ∅ . Let us
choose a point ζ0 ∈ C such that ζ0 
= ζ and f −1(ζ0) consists of n distinct points.
Applying the Riemann-Roch theorem, one verifies easily that there exists g0 ∈ RE

with the following properties:
i) g0 takes different values at different points of f −1(ζ0) .
ii) g0(p) 
= 0 for any p ∈ E .
iii) g0(qj) = 0 for all qj /∈ E .

Then, for sufficiently small ε 
= 0 , the function g = 1/(g0 + ε) is an element of RE

holomorphic at all points qj (j = 1, . . . , r) and satisfies the inequality

sup
z∈E

|g(z)| < |g(qj)| for any qj /∈ E. (16)

By the general theory of compact Riemann surfaces [7], there exist rational functions
ak (k = 0, . . . , n) such that

n∑
k=0

ak(f )gk = 0, (an(z) = 1). (17)

Since g is holomorphic at all points q1, . . . , qr , it is clear from well known constructions
of (17) that the rational functions ak(z) (k = 0, 1, . . . , n) are holomorphic at z = ζ .
Thus, we may assume that ak is of the form bk/ck such that bk, ck ∈ C[z] and
ck(ζ) 
= 0 . Put s =

∏n
k=0 ck and multiply the identity (17) by s(f ) . Since g ∈ RE

and each sak (k = 0, . . . , n) is a polynomial, we can apply the homomorphism χ to
the resulting identity. Thus

n∑
k=0

sak(ζ)χ(g)k = 0.

Since sak(ζ) = s(ζ)ak(ζ) with s(ζ) 
= 0 , we have
∑n

k=0 ak(ζ)χ(g)k = 0 . Hence by
construction of (17), χ(g) = g(qj) for some j (1 � j � r) . Therefore, we have proved
that there exists a point q such that χ(f ) = f (q) and χ(g) = g(q) . From (16) we
conclude that q ∈ E , since χ(g) ∈ g(E) .

We now show that the homomorphism χ is the point evaluation at q . By the
property i) above, the meromorphic functions f and g form a primitive pair (cf. [7,
p. 233]). Thus, it is well known that for any meromorphic function h on S , there exist
rational functions Ak (k = 0, . . . , n − 1) such that

h =
n−1∑
k=0

Ak(f )gk. (18)

First, consider the case where h ∈ RE is holomorphic at each point of the set f −1(ζ) .
Then, from well known constructions of (18), every coefficient Ak is holomorphic at
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ζ . Again, by multiplying suitable polynomial as above, we obtain

χ(h) =
n−1∑
k=0

Ak(ζ)g(q)k = h(q).

Second, for general h ∈ RE , choose a function h2 ∈ RE such that h2(q) 
= 0 and that
the product h2h is holomorphic at each point of f −1(ζ) . This is possible if h2 has
sufficiently large order of zeros at every qj /∈ E . From

h2(q)h(q) = χ(h2h) = χ(h2)χ(h) = h2(q)χ(h),

we conclude that χ(h) = h(q) for all h ∈ RE , as desired. The uniqueness of the point
q is obvious, since the algebra of functions RE separates points of S . �

From Proposition 5.2, we immediately have

PROPOSITION 5.3. Let H be a meromorphically dense RKHS on E . Then H
is maximal if and only if the following holds: Given a point q ∈ E , if there exists a
constant C > 0 with |f (q)| � C‖f ‖ for all f ∈ RE ∩ H , then q ∈ E .

6. Application

As an application of the results obtained in the previous sections we study the
regularity of tensor products of RKHSs consisting of analytic functions or analytic
differentials on a compact bordered Riemann surface. Let E be the interior of a
compact bordered Riemann surface E = E ∪ ∂E with nonempty boundary ∂E . Let Ê
be the Schottky double [19] of E . Then E can be viewed as a regular subregion of the
compact Riemann surface Ê . Define the C -algebra RE in this context. Consider the
following RKHSs on E :

(i) H1(E, ρ) : (Weighted Szegö space) The Hardy H2 space of analytic functions
f on E with norm ‖f ‖2 =

∫
∂E |f |2ρ|dz| where ρ|dz| is a positive continuous

metric on ∂E . In the integrand f denotes the nontangential boundary value of
f on ∂E .

(ii) H2(E, ρ) : (Weighted Dirichlet space) The space of analytic functions f on E
with finite Dirichlet norm ‖f ‖2 = i

2π
∫∫

E ρ df ∧ df satisfying f (a) = 0 for a
fixed point a ∈ E , where ρ is a positive continuous function on E .

(iii) H3(E, ρ) : (Weighted Bergman space) The Bergman space of analytic differen-
tials f on E with norm ‖f ‖2 = i

2π
∫∫

E ρf ∧ f , where ρ is a positive continuous
function on E .

For the proof of Theorem below we need a weaker form of the result in [18,
Theorem 8] on uniform approximation.

PROPOSITION 6.1. (S. Scheinberg) Let E be a regular subregion of a compact
Riemann surface S . For every holomorphic function f on E and for every positive
constant ε , there exists a function g ∈ RE such that ‖f − g‖∞ < ε on E , where
‖ · ‖∞ denotes the sup-norm on E .

THEOREM 6.2. The following hold:
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(i) RKHS Hj(E, ρ) (j = 1, 2, 3) is meromorphically dense and maximal.
(ii) For any integer n � 2 , Hj(E, ρ)⊗n (j 
= 2) is regular and H2(E, ρ)⊗n is weakly

regular.
(iii) Let Δ be the unit disk {|z| < 1} and set a = 0 . Then φ⊗2 is extremal in

H2(Δ, 1)⊗2 if and only if φ(z) = cz or φ = ckq (q ∈ Δ \ {0}) for some c ∈ C ,
where kq(z) = − log(1− qz) is the reproducing kernel of H2(Δ, 1) at q . Thus,
H2(Δ, 1)⊗2 is not regular.

Proof. I(i) First we remark that the norm of the RKHS Hj(E, ρ) is equivalent
for each weight ρ and, as a set, the space Hj(E, ρ) is independent of ρ , since ρ is
positive and continuous on compact set E . Thus we may assume ρ = 1 without loss
of generality. Let Hj(E) = Hj(E, 1) for simplicity.

Since 1 ∈ RE , to prove that Hj(E) is meromorphically dense, it suffices to show
that RE ∩ Hj(E) is dense in Hj(E) and is an ideal of RE . To establish that the
space RE ∩ Hj(E) is dense in Hj(E) (j = 1, 2, 3) , we recall that the Szegö kernels,
the exact Bergman kernels and the Bergman kernels are analytically continued to a
neighborhood of E [19, 16]. Since the linear span of the kernel functions is dense, the
set of functions holomorphic on E are dense in Hj(E) , and by Proposition 6.1 we see
easily that RE ∩ Hj(E) is dense in Hj(E) (j = 1, 2, 3) . On the other hand, it is clear
that RE ∩ Hj(E) is an ideal of RE . Thus, Hj(E) (j = 1, 2, 3) is meromorphically
dense.

Next, we show that all the Hj(E) (j = 1, 2, 3) are maximal. In view of Proposition
5.3 it suffices to show that, for fixed b ∈ ∂E , there exists a family of functions
{f p}, f p ∈ RE ∩ Hj(E) such that |f p(b)|/‖f p‖ tends to ∞ as p → b . Consider the
case of the Dirichlet space H2(E) . The proof of the other cases is similar but more
easy. Now we claim that we need only to show that there exists a family of functions
{f p} holomorphic on E with the above property. This is seen as follows. Given a
holomorphic function f on E , there exists a regular subregion E1 with E ⊂ E1 such
that f is holomorphic on E1 . Applying Cauchy’s integral formula we see that there
exists a constant C > 0 with ‖f ‖ � C‖f ‖∞,E1 where ‖f ‖∞,E1 denotes supx∈E1

|f (x)| .
From Proposition 6.1 there exists g ∈ RE1 such that ‖f − g‖∞,E1 � ε‖f ‖ . Then

|g(b)| � |f (b)| − ‖f − g‖∞,E1 � |f (b)| − ε‖f ‖,
‖g‖ � ‖f ‖ + ‖f − g‖ � ‖f ‖ + C‖f − g‖∞,E1 � (1 + εC)‖f ‖.

By choosing ε so small that 0 < ε < min{1, 1/C} is satisfied, we have

|g(b)|
‖g‖ � 1

1 + εC
|f (b)|
‖f ‖ − ε >

|f (b)|
2‖f ‖ − 1,

which implies our claim, as desired.
By definition we have the identity

kB(x, y) =
∂2

∂x∂y
kD(x, y),

where kD(x, y) is the kernel function for the Dirichlet space H2(E) and kB(x, y)dxdy
is the exact Bergman kernel for E . Let φ be the canonical anti-conformal involution
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for the double Ê fixing ∂E . It is well known [19, p. 118] that the exact Bergman kernel
kB(x, y) is extended to a meromorphic bilinear differential on Ê with double pole only
at x = φ(y) , and that kB(x, y) has the expansion

kB(x, y) = − 1
π(x − φ(y))2 + regular terms (19)

for x, y in a coordinate neighborhood U centered at b ∈ ∂E . Integrating (19) we
see that for p ∈ E the Dirichlet kernel kD(x, p) is extended holomorphically to a
neighborhood of E with the expansion

kD(x, y) =
1
π

log
1

x − φ(y)
+ regular terms (20)

for x, y ∈ U ∩ E . Setting f p(x) = kD(x, p) for p ∈ E near b , we have

|f p(b)|/‖f p‖ = |kD(b, p)|/
√

kD(p, p).

By (20) this tends to ∞ as p → b ∈ ∂E nontangentially. Thus H2(E) is maximal.
I(ii) By Corollary 2.11 and I(i) all the tensor products of these spaces are weakly

regular. Moreover, since both H1(E, ρ) and H3(E, ρ) have no common zeros, the
products Hj(E, ρ)⊗n (j = 1, 3; n � 2) are regular.

I(iii) By definition, if φ = ckq , it is clear that φ⊗2 is extremal. We shall
show that z⊗2 ∈ (H2(Δ, 1)⊗2)⊥0 . Since the set of functions {zi/

√
i}∞i=1 is a complete

orthonormal system (CONS) for H2(Δ, 1) , the set {zi ⊗ zj/
√

ij}∞i,j=1 is a CONS for
the tensor product H2(Δ, 1)⊗2 . Hence, any f ∈ H2(Δ, 1)⊗2 is given by

f =
∞∑

i,j=1

cij√
ij

zi ⊗ zj, with
∞∑

i,j=1

|cij|2 < ∞.

Then we see that f ∈ (H2(Δ, 1)⊗2)0 if and only if
∑

i+j=n cij/
√

ij = 0 for all n � 2 .
In particular, f ∈ (H2(Δ, 1)⊗2)0 implies c11 = 0 . Since 〈 f , z⊗2〉 = c11 , z⊗2 ∈
(H2(Δ, 1)⊗2)⊥0 , that is, z⊗2 is extremal

Contrarily, suppose that φ⊗2 ∈ (H2(Δ, 1)⊗2)⊥0 . We may assume without loss of
generality φ 
= 0 . From Lemma 2.3 there exists a point q ∈ Δ such that

〈 zf , φ〉 = f (q)〈 z, φ〉 . (21)

If q 
= 0 , then q is not a common zero of H2(Δ, 1) . Since H2(Δ, 1)⊗2 is weakly
regular, φ = ckq for some constant c ∈ C . On the other hand, if q = 0 , then by (21)
φ ⊥ zn for all n � 2 . Therefore, φ is a constant multiple of the function z . Thus
the first assertion of I(iii) is proved. H2(Δ, 1)⊗2 is not regular, since the function z
cannot be a constant multiple of the kernel function kq for any q ∈ Δ . �

REMARK 6.3. The paper [9, p. 73] overlooked that z⊗2 is also extremal. Therefore,
the proof of equality condition in [9] needs a slight modification.
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