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INEQUALITIES FOR THE p-ANGULAR
DISTANCE IN NORMED LINEAR SPACES

SEVER S. DRAGOMIR

(Communicated by L. Maligranda)

Abstract. New upper and lower bounds for the p -angular distance in normed linear spaces are
given. Some of the obtained upper bounds are better than the corresponding results due to L.
Maligranda recently established in the paper [Simple norm inequalities, Amer. Math. Monthly,
113(2006), 256-260).

1. Introduction

In the recent paper [5], L. Maligranda has considered the p -angular distance
- -1
0 [,y o= (1P~ x = Iyl

between the vectors x and y in the normed linear space (X,|.||) over the real or
complex number field K and showed that

% [,y < =yl (1.1)

(X117 My 11 .
(pr)-%w if p€ (—00,0) and x,y # 0;

X if pe[0,1] and x,y # 0;

J— . 71
2 =P) G T
p - [max {[|x]|, [ly[})P~"if p e (1,00).

The constants 2—p and p in (1.1) are best possible in the sense that they cannot be
replaced by smaller quantities. As pointed out in [5], the inequality (1.1) for p € [1, c0)
is better than the Bourbaki inequality obtained in 1965, [1, p. 257] (see also [6, p. 516]):

—1
0 [x,] < 3p =yl Il + I, xy e X (1.2)

The following result which provides a lower bound for the p -angular distance was
stated without a proof by Gurarii in [3] (see also [6, p. 516]):

27 k= yl” < o [x,y] (1.3)
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392 S. S. DRAGOMIR

where p € [1,00) and x,y € X.
Finally, we recall the results of G.N. Hile from [3]:

xll” — Iyl
[l = vl
for p € [1,00) and x,y € X with ||x|| # ||y||, and

0 [x, y] < e =l (1.4)

l” = A ll” 1l =yl
[l 17 R 1

for p € [1,00) and x,y € X \ {0} with ||x|| # ||y]| .

The main aim of the present paper is to provide other upper and lower bounds
for the p-angular distance. Some of the obtained upper bounds are better than the
corresponding results due to Maligranda from [5].

oy eyl < (1)

2. Upper Bounds

We start with a lemma that provides upper bounds for the norm of the linear
combination ox £+ By where o, 3 are scalars while x,y are vectors in the normed
linear space (X, |-]|) -

LEMMA 1. Forany o, € K and x,y € X we have

[love & Byl| < [be £yl max {|ec] , B[} + |o¢ = Blmin {[|x][, [y} (2.1)

and
[|oex £ Byl < [lx & y|| min {|oc|, B[} + o — B max {lx]|, [ly]|} (2.2)

respectively.
Proof. By the triangle inequality we have

lloce + Byll < laf [lx+ vl + o = Bl Iyl

and
[[oex + Byll < |B |lx + x| + |ee — Bl [|x]|

which implies the following inequality that is of interest in itself

[[oex £ Byl| < min {[or] [[x £ y[| + e = Bl [y[| , |B] [|x £ y|| + [oe = B [|x[|} =: 1.
(2.3)

However

I < min{|lx+ y||max {|o , [B[} + | = Bl |y (2.4)
[lx + yl| max {|e|, | B[} + [oc = B [[x[[}
= | ylfmax {[af, [B[} + [or — Bl min {lx[], |y}

and the inequality (2.1) is proved.
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Similarly,
I < min{|lx+ [ o] + o — Bl max {|lx]|, [[[[}, (2.5)
[lx £ I B] + o — Bl max {|lx]| , |ly[|}}
= |x £ y[f min {ee|, |B[} + |or — B max {{lx[] , [|yl[}
and the proof is complete. O

By adding the above inequalities one can obtain the following result:

COROLLARY 1. Forany a,f € K and x,y € X we have

o] + |B] [l + (11
2 2 ’

The following result concerning upper bounds for the p -angular distance holds:

l[ox £ Byl < flx £yl - +la—PBl- (2.6)

THEOREM 1. Forany two nonzero vectors x,y in the normed linear space (X, |.||)
we have

—1 —1 —1 .
[lx — y[| fmax {|lx], [[v[[}]" +IIIXH” = IyII” ’mm{IIXII,HyH}
if p € (1,00);
llx=vll ’ 1-p _ l—p‘ : { [lx]1” I\yl\”}
o [x,y] < i |1 VI min { =7 =
if pel0,1];
[lx—=yl 1 i P
iy ™ max Il P 7}
Uﬁp € 0_0070);
(2.7)
and
. —1 —1 —1
[lx — | fmin {[}x][ , [[y[[}}" +‘IIXH” — IyII” ’maX{IIXII,HyH}
if p € (1,00);
llx—yll ‘ 1—p _ l—p‘ { [ }
o [x,y] < 4 O Il = I max 5= =
if p€0,1];
llx—yll [Ixll' =" = Iyl 7|
max I min Il 7}
Uﬁp € 0_0070);
(2.8)
respectively.

Proof. We use the inequality (2.1) in which we choose o = ||x||’”" and f =
I o get

. —1 —1 —1 —1
0 [x,3] < Jle =yl min {1~ 1P~} = |l ™" = vl max el vl
(2.9)
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It is well known that, for a,b > 0 and g € R, we have

[min (max) {a,b}]? if g > 0;
min (max) {a?, b7} = (2.10)
! if g <0.

[max(min){a,b}] ™1

The case when p € (1,00) in (2.7) is obvious from (2.9).
Now, if we assume that p < 1, then by (2.10) we can state that

. -1 -1 —1 —1
Joe = llmin e~ AP+ [t = ol [ max (] 1} (2.11)

I—p I—p
e [ g
+ L max (], 1}
max {|Jx], ]} P

x> A [
= = [l = Iyl | max :

- -
[

1— -
[max {{|x]|, [|y[|}] 5 I

which together with (2.9) produces the second and the third part of (2.7).
The proof of (2.8) can be done in a similar way by utilising (2.2) and the details
are omitted. g

The following coarser but perhaps more useful result can be stated as well:

COROLLARY 2. For any two nonzero vectors X,y in the normed linear space
X, ).1I) we have

b=y -

P—1 4 y(P—! 1 1 ,
Ed] ;H}H + ‘HXHP - HyHP ‘ . HXHJZrH}H
if p€ll,00);
ol S [ I I lsll+ I @12)
— || -l Ty P _ Py
lbe =3l == + ‘Hx” il ‘ T
lf[) € (700, 1) .

3. Lower Bounds

The following lemma may be stated as well:

LEMMA 2. For any two vectors x,y € X and two scalars o, 3 € K we have the
inequalities

[lx + y[fmin {|e|, |B[} — |oc — B min {[lx][, [[y[|]} < [[ew & By]| (3-1)

and

[lx £yl max {[af, [B[} — |oc — Bl max {lx]|, [¥[|} < [loex £ Byll, (3-2)

respectively.
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Proof. Utilising the triangle inequality we obviously have

lal [lx + vl = o = Bl Iy[l < [lox + Byl
and

BHIx + vl — o = Bl Ix]| < [loex + By
which implies the following inequality that is of interest in itself

max {|e [|x + y[| = |oc = B Iyll |B] llxc £ Il = Joe = Bl Ixl[} < llox £ Byll, (3.3)

and holds for any two vectors x,y € X and two scalars o, f € K.
Now the proof goes like in the Lemma 1 and the details are omitted. |
By adding the above two inequalities we can get the following lower bound that
might be more convenient for some applications:
COROLLARY 3. For any two vectors x,y € X and two scalars o, 3 € K we have
o] + 1B WWHM
-l

The following result providing lower bounds for the p-angular distance may be
stated as well:

e+ - < [loex & Byl - (3-4)

THEOREM 2. For any two nonzero vectors x,y € X we have the lower bounds for
the p -angular distance:

1 1
e — | foin {[|x[|, [y}~ — ’\IXII” — [Iy[IP~| min {[|x[], [[vl|}
if pe(l,00);
llx—yl ’ —p 1p’ {IMF WW}
fmax{ {1 |7 ™7 = I Min | 1417 Ti=7
a[) [X,y} 2 .
if pe0,1];
llx—yll _ 1B e o
max (<L max{ Il P Iyl P Il 7
lfp S (70070);
(3.5)
and
1 1
[l — yl| fmax { [l , [[y[[}}"~ — ‘HXII” — [Iy[IP~"| max {|lx[| , lly]l}
if p€(l,00);
=yl ‘ 1—p 1q {nw \Mp}
gl — [ = I max = =
a[) [X,y} 2
if pel0,1];
llx—yll B 1 i %
ming (<37 mind ol P2 7 P
lfp € (_0070)'

(3.6)
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Proof. Writing the inequality (3.1) for o = [|x|”~" and B = ||y|]’”" we get
-1 -1
[t~ = iyl (3.7)
: -1 -1 -1 —1 .
> e =yl i P P} = e = P min {1 1}

which easily implies (3.5).
The second part follows from (3.2) and the details are omitted. |

COROLLARY 4. For any two nonzero vectors X,y in the normed linear space
X, ).1I) we have

p—1 qp—1 —1 —1 )
e =y - APt — - el
o) if p € [1,00); 8
O X, ] = 3.8
ST i 7 ’ l—p _ I—P’ iyl
||‘x yH 2HxH17PHy‘|17’) ||‘x|| ||y|| 2”)(”17’)”}’”17’)
lf D€ (_007 1) :

4. Further Norm Inequalities

Firstly, we observe that the Corollaries 1 and 3 can be encompassed in the following
result:

PROPOSITION 1.  For any two vectors x,y € X and two scalars o, € K we
have

oo £ Byl — [lx + vl -

Also the results for the p-angular distance from Corollaries 2 and 4 can be em-
bodied in:

PROPOSITION 2.  For any two nonzero vectors x,y in the normed linear space
(X, ].1I) we have

"~ + 1 —1] [l vl
0 e, = e =y - P <[l = Il R @)
if pe[l,o0) and
[ i 1-p 1-p x| + [y
0p [xv)’]*Hx*)’H'ﬁ < ’HXH — [yl ‘ﬁ
2 [l Iyl 21l Iyl
(4.3)

if p € (=00, 1), respectively.
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Now, for s € [—00,00] and a,b > 0,a # b, by following [2, p. 385], we can
introduce the s-generalised logarithmic means by

P g5t s

(m) 1fs7é—l,0,j:oo;
b—a : _ .

’ nb—Ina if s=-1
L¥ (a,b) .= p\ 1/(b—a)
( ) i‘ (22) 5= 0’
max {a,b} s = 00;
min {a, b} s = —o0.

The mapping R > s — LI (a, b) is strictly increasing and (see [2, p. 386])
min {a, b} < LV (a,b) < max {a, b} (4.4)

forany s € R and a,b > 0, with a # b.
The following lemma holds:

LEMMA 3. For any two nonzero vectors x,y € X we have

(p = 1) [min {1 (1317~ [l = vl (4.5)
<P = I < o = D)l = vl fmax {1y}~

ifp€(2,00),

(-1 1

X

[max {lx]], y][}]* .
1 1

< | = 1P < = D {1 = [yl

= vl (4.6)

1
[min {||x]|, [ly1 3}~

if pell,2], and

1— 1—

X" Iyl "
2—
[max {[|x[|, [ly[|}]"™"

1— 1—
< (Il = I < (1 =p) Il = vl

[l = 1v| (4.7)

(1-p)

1— 1—
[l vl

[min {[|x]|, [ly| 3}~

if p € (=00, 1), respectively.

Proof. If x,y € X \ {0} with ||x|| = ||y| then the equality case is realised in all
inequalities.
If ||x|| # ||y||, then by (4.4) we have

-1 -1
[l — 1Iyll”

1/(p=2)
min {{lx[], [ly[[} < <(p — (] - |y|)> < max {lx[|, [|yl[}
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for p # 1,2. Observe also that

- -

(v — 0 (=l —

and the above inequality can be written as

(P = 1) (llxll = il

—1 —1
[ & ’|x — Iyl ’

1/(p—2)

= = P~ it
<max{lll, b}, (@438)

(= 1) (Il = lIvlD)

If p > 2, then taking the power p — 2 in (4.8) produces the desired inequality
(4.5). The inequality (4.5) remains also valid for p = 2.

If p <2 and p # 1, then on taking the power p — 2 in (4.8) we get the other two
inequalities. The details are omitted. |

min {lx[|, [lyl[} <

In the following, we discuss some upper bounds for the p-angular distance that
contain as a multiplicative term the quantity ||x — y|| . The obtained results are compared
with the inequalities of Maligranda mentioned in the introduction.

CASE 1. For p € [2,00), we get from Lemma 3 that

P = P < G = 1) e =yl max {1137

1]

forany x,y € X.
Utilising the first branch of the inequalities (2.7) and (2.8) we can state that

max {132
oyl < Ie=ylxq x max{ll Il + (o — Dmin {1}, (49)
min (b 117" =+ 2 = 1) fmax ] )17
(< p e = ) e {1l 1)

forany x,y € X.
We observe that both inequalities in (4.9) are better than Maligranda’s result in
(1.1) for p € [2,00).

CASE 2. For p € [1,2), we get from Lemma 3 that

p—1 p—1 1 [[x = ¥l
I S e T b

[x]

forany x,y € X \ {0}.
Utilising the first branch of the inequalities (2.7) and (2.8) we can state that

[max {[|x]| , Y[}~ + (p — 1) [min {[x[], Iy}~
o [x, y] < [lx = yl| % (4.10)

. p—1 _ max { ||x||,|1y[| }
[min {llxll, IV + (7 = D) G n e
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forany x,y € X\ {0}.

Due to the fact that the second term in the first branch of (4.10) is smaller than
(p — 1) [max {||x||, ||y||}]p_1 it follows that the first inequality in (4.10) is better than
Maligranda’s result in (1.1) for p € [1,2).

Now, let us denote

Bl X, := |min x|, p—1 -1 max{||x||,||y||}
o L O Gty

and

B: (x,y) = p - [max {|lx]], [ly]}}"~"

with x,y € X\ {0} and p € [1,2).

If we consider the difference A, (x,y) := Bi(x,y) — B> (x,y) and plot it for
p =3/2 and (x,y) pairs of real numbers in the box [0.2,1.5]x [0.2, 1.5] (see Figure 1),
then we can conclude that neither of the bounds ||x — y|| By (x,y) and |jx — y|| B2 (x,y)
for oy, [x,y] is always better.

Figure 1. Plot of A, (x,y) for p = 3/2.

CASE 3. For p € [0,1), we get from Lemma 3 that

1— 1—
[l Ml

[min {]lx]|, |yl }]*~

1— 1—
7 = P < (1 =p) [lx =y

forany x,y € X\ {0}.
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Utilising the second branch of the inequalities (2.7) and (2.8), and performing the
necessary calculations, we get that

2—p

fmin ]I 7
0 [x, 3] <l =yl " ot by . (1D

max {|lx][.[Iy[I}] =P +(1=p) min{||x]}.|[y[[}]*7P”

forany x,y € X\ {0}.
We notice that Maligranda’s result from the second branch of (1.1) is better than
the both inequalities in (4.11).

CASE 4. For p € (—00,0), we get from Lemma 3 that

1— 1—
[l vl

el = I 7| < (L= p) e = vl — o
[min {{lx], [[y[[}]"™"

forany x,y € X \ {0}.
Utilising the third branch of the inequalities (2.7) and (2.8) and performing the
necessary calculations we get that

2—p .
(min{ [lx[l, Iyl 3] =P
o ] =yl >y T (1 p) ooty (412)
(max { |||, |yl }]' =7 P) in Il Iy 27
forany x,y € X\ {0}.
Now, observe that Maligranda’s first inequality in (1.1) can be written as
2 _

max {|lx]], ly[|} fmin {[lx[], [y] 37"

forany x,y € X\ {0}, and is better than the first inequality in (4.12).
Finally, consider

1 max {|lx[|, flv[l}
1 —
[max { <[, [y} e [min {]|x], [y}~

C (x,y) =

and

G (x’y) = (2 p) >

max {[|x][ , |yI[} [min {[lx]] , [lyl[}]~"

where x,y € X\ {0} and p € (—00,0). If T}, (x,y) := Ci (x,y) — C2 (x,y) then
several numerical experiments conducted for (x,y) € R? and p € (—o0,0) have lead
us to conjecture that Maligranda’s first inequality in (1.1) is better than the second
inequality in (4.12). However, we do not have an analytic proof even in the case of real
numbers. The plot depicted in Figure 2 shows the behavior of T, (x,y) for p = —3
and (x,y) € [0.5,1.5] x [0.5,1.5].
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Figure 2. Plot of T, (x,y) for p = =3.
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