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Abstract. This paper deals with the reverse inequalities of Erdös-Mordell type. Our result con-
tains as special case the following reverse Erdös-Mordell inequality:

R1 +R2 +R3 <
√

2 (ρ1 +ρ2 +ρ3) ,

where Ri and ρi (i=1, 2, 3) denote respectively the distances from an interior point Q of �A1A2A3
to the vertexes A1, A2, A3 and to the circumcenters of �A2QA3 , �A3QA1 , �A1QA2 . Some
other closely related inequalities are also considered.

1. Introduction

For a given triangle A1A2A3 , let Ai and ai (i=1, 2, 3) denote respectively the ver-
tices and its opposite sides. Let Ri and ri (i=1, 2, 3) represent respectively the distances
from an interior point Q of �A1A2A3 to the vertex Ai and to the side opposite to Ai .

In 1935, P. Erdös proposed [1] the following conjectured inequality as an Open
Problem:

R1 +R2 +R3 � 2(r1 + r2 + r3). (1)

Inequality (1) was first proved by Mordell and Barrow in 1937 [2], and since then,
this inequality is known as the Erdös–Mordell’s inequality. Over the past years, the
Erdös–Mordell’s inequality has received considerable attention from researchers in the
fields of geometry, and has drawn a large number of research papers involving its new
proofs, various generalizations, variations and applications etc. Some related results
with historical comments on the Erdös–Mordell’s inequality can be found in [3] to
[28]. We recall here some improved forms of the Erdös–Mordell’s inequality involving
weights and exponents.

In 2001, Dar and Gueron [29] gave us for positive numbers λ1,λ2,λ3 the following
weighted Erdös–Mordell’s inequality:

λ1R1 +λ2R2 +λ3R3 � 2
√
λ1λ2λ3

(
r1√
λ1

+
r2√
λ2

+
r3√
λ3

)
. (2)
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In 2004, Janous [30] generalized Dar-Gueron’s inequality (2) by introducing an
exponential parameter, as follows

λ1R
t
1 +λ2R

t
2 +λ3R

t
3 � 2min{t,1}√λ1λ2λ3

(
rt
1√
λ1

+
rt
2√
λ2

+
rt
3√
λ3

)
, (3)

where λ1,λ2,λ3 and t are positive numbers.
In a recent paper [31], the second author sharpened Janous’s inequality (3) in the

following form:

λ1R
t
1 +λ2R

t
2 +λ3R

t
3 � 2min{t,1}√λ1λ2λ3

(
wt

1√
λ1

+
wt

2√
λ2

+
wt

3√
λ3

)
, (4)

where λ1,λ2,λ3 and t are positive numbers, w1 , w2 , w3 denote respectively the
lengths of the bisectors of ∠A2QA3 , ∠A3QA1 , ∠A1QA2 from Q to its intersection
with the sides of �A1A2A3 .

The purpose of this paper is to establish a new class of inequalities of Erdös–
Mordell type, we show that several interesting inequalities including the reverse Erdös–
Mordell’s inequality and reverse Oppenheim’s inequality can be obtained as direct con-
sequences of our result.

Our main result is stated in the following theorem:

THEOREM 1. Suppose Q is an interior point of �A1A2A3 , the bisectors of
∠A2QA3 , ∠A3QA1 , ∠A1QA2 intersect respectively the circumcircles of �A2QA3 ,
�A3QA1 , �A1QA2 in the points A′

1 , A′
2 , A′

3 . Let QA1 = R1 , QA2 = R2 , QA3 = R3 ,
QA′

1 = �1 , QA′
2 = �2 , QA′

3 = �3 . Then for λi > 0 (i = 1,2,3) and t > 0 , we have the
inequality

λ1R
t
1 +λ2R

t
2 +λ3R

t
3 < 2−min{ t

2 ,1− t
2}(λ1λ2λ3)

(
�t
1

λ 2
1

+
�t
2

λ 2
2

+
�t
3

λ 2
3

)
. (5)

For λi > 0 (i = 1,2,3) and t < 0 , we have the inequality

λ1R
t
1 +λ2R

t
2 +λ3R

t
3 � 2min{−t,1}√λ1λ2λ3

(
�t
1√
λ1

+
�t
2√
λ2

+
�t
3√
λ3

)
. (6)

When t = −1 , equality holds in (6) if and only if a1 : a2 : a3 =
√
λ1 :

√
λ2 :

√
λ3

and Q is the circumcenter of �A1A2A3 ; when −1 < t < 0 , equality holds in (6) if and
only if �A1A2A3 is equilateral, Q is its center and λ1 = λ2 = λ3 ; when t < −1 , (6) is
a strict inequality.

2. Lemmas

In order to prove Theorem 1, we need the following lemmas.
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LEMMA 1. Let Q be an interior point of �A1A2A3 , and let ∠A2QA3 = 2α1 ,
∠A3QA1 = 2α2 , ∠A1QA2 = 2α3 . Then, under the definitions of Ri and �i ( i = 1, 2, 3 )
in Theorem 1, we have the following identities

�1 =
R2 +R3

2cosα1
, �2 =

R3 +R1

2cosα2
, �3 =

R1 +R2

2cosα3
. (7)

AA

A’

Q

P

A

32

1

1

Figure 1: Lemma 1.

Proof. Using Ptolemy’s equality for cyclic quadrangle QA2A′
1A3 (see Figure 1) :

A2A3 ·QA′
1 = QA2 ·A3A

′
1 +QA3 ·A2A

′
1,

we obtain

QA′
1 = A2Q ·

(
A3A′

1

A2A3

)
+A3Q ·

(
A2A′

1

A2A3

)
. (8)

On the other hand, by the law of sine, we have

A3A′
1

A2A3
=

sin ∠A3A2A′
1

sin ∠A2A′
1A3

=
sinα1

sin(π−2α1)
=

1
2cosα1

,

A2A′
1

A2A3
=

sin ∠A2A3A′
1

sin ∠A2A′
1A3

=
sinα1

sin(π−2α1)
=

1
2cosα1

,

applying the above identities to (8) yields

�1 =
R2 +R3

2cosα1
.

Similarly, the second and third identities in (7) can be proved. The proof of
Lemma 1 is complete. �
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LEMMA 2. (Power means inequality [31],[32]). If ai > 0 (i = 1,2, . . . ,n) and
λ > 0 , then (

n

∑
i=1

ai

)λ

� nmin{λ−1, 0}
(

n

∑
i=1

aλi

)
, (9)

with equality holding if and only if λ = 1 , or a1 = a2 = · · · = an for the case of 0 <
λ < 1 .

If ai > 0 , μi > 0 , ( i = 1,2, . . . ,n) and 0 < λ � 1 , then

n

∑
i=1

μia
λ
i �

(
n

∑
i=1

μi

)1−λ ( n

∑
i=1

μiai

)λ

, (10)

with equality holding if and only if λ = 1 , or a1 = a2 = · · · = an for the case of 0 <
λ < 1 .

LEMMA 3. Let xi > 0 , 0 < ϕi <
π
2 (i = 1,2,3) and ϕ1 +ϕ2 +ϕ3 = π . Then for

λ > 0 the following inequality holds true

x2x3 cosλ ϕ1 + x3x1 cosλ ϕ2 + x1x2 cosλ ϕ3 � 2−min{λ ,1} (x2
1 + x2

2 + x2
3

)
. (11)

Equality holds in (11) if and only if x2x3 sinϕ1 = x3x1 sinϕ2 = x1x2 sinϕ3 for the
case of λ = 1 , or x1 = x2 = x3 and ϕ1 = ϕ2 = ϕ3 for the case of 0 < λ < 1 .

Proof. Case (I): When 0 < λ � 1. It follows from Lemma 2 and the arithmetic-
geometric means inequality that

x2x3 cosλ ϕ1 + x3x1 cosλ ϕ2 + x1x2 cosλ ϕ3

� (x2x3 + x3x1 + x1x2)1−λ (x2x3 cosϕ1 + x3x1 cosϕ2 + x1x2 cosϕ3)λ

� (x2
1 + x2

2 + x2
3)

1−λ (x2x3 cosϕ1 + x3x1 cosϕ2 + x1x2 cosϕ3)λ

� 2−λ (x2
1 + x2

2 + x2
3).

The latter inequality follows from the well-known Wolstenholme’s inequality (see
[4, p. 421])

x2
1 + x2

2 + x2
3 � 2x2x3 cosϕ1 +2x3x1 cosϕ2 +2x1x2 cosϕ3, (12)

where xi > 0, 0<ϕi <
π
2 (i = 1,2,3) and ϕ1 +ϕ2+ϕ3 = π . Furthermore, the equality

holds in (12) if and only if x2x3 sinϕ1 = x3x1 sinϕ2 = x1x2 sinϕ3 .
Case (II): When λ > 1. we have

x2x3 cosλ ϕ1 + x3x1 cosλ ϕ2 + x1x2 cosλ ϕ3 < x2x3 cosϕ1 + x3x1 cosϕ2 + x1x2 cosϕ3,

Now, using the Wolstenholme’s inequality (12) leads us to

x2x3 cosλ ϕ1 + x3x1 cosλ ϕ2 + x1x2 cosλ ϕ3 < 2−1(x2
1 + x2

2 + x2
3).

The Lemma 3 is proved. �
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3. Proof the main result (Theorem 1)

In our proof of Theorem 1, we consider the following two cases.
Case (I): When t > 0. By applying Lemma 1 and Lemma 2, we obtain

�t
1

λ 2
1

+
�t
2

λ 2
2

+
�t
3

λ 2
3

=
1

λ 2
1

(
R2 +R3

2cosα1

)t

+
1

λ 2
2

(
R3 +R1

2cosα2

)t

+
1

λ 2
3

(
R1 +R2

2cosα3

)t

� 2min{t−1,0}−t
(

Rt
2 +Rt

3

λ 2
1 cost α1

+
Rt

3 +Rt
1

λ 2
2 cost α2

+
Rt

1 +Rt
2

λ 2
3 cost α3

)

= 2min{−t,−1}
[(

λ−2
2

cost α2
+

λ−2
3

cost α3

)
Rt

1

+

(
λ−2

3

cost α3
+

λ−2
1

cost α1

)
Rt

2+

(
λ−2

1

cost α1
+

λ−2
2

cost α2

)
Rt

3

]
. (13)

On the other hand, it follows from the arithmetic-geometric means inequality that

λ−2
1

cost α1
+

λ−2
2

cost α2
� 2λ−1

1 λ−1
2

(cosα1 cosα2)
t
2
. (14)

From α1 +α2 +α3 = π , 0 < α1 < π
2 , 0 < α2 < π

2 and 0 < α3 < π
2 , we conclude

that
π
2

< α1 +α2 < π ,

we thus have

cosα1 cosα2 =
1
2

[cos(α1 −α2)+ cos(α1 +α2)]

� 1
2

[1+ cos(α1 +α2)] <
1
2
.

(15)

Combining inequalities (14) and (15) gives

λ−2
1

cost α1
+

λ−2
2

cost α2
>

2
2+t
2

λ1λ2
.

Similarly to the above, we can obtain

λ−2
2

cost α2
+

λ−2
3

cost α3
>

2
2+t
2

λ2λ3
,

and
λ−2

3

cost α3
+

λ−2
1

cost α1
>

2
2+t
2

λ3λ1
.
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Applying the above inequalities to (13) gives

�t
1

λ 2
1

+
�t
2

λ 2
2

+
�t
3

λ 2
3

> 2min{ t
2 ,1− t

2 }
(

1
λ2λ3

Rt
1 +

1
λ3λ1

Rt
2 +

1
λ1λ2

Rt
3

)
,

which leads to the desired inequality (5).
Case (II): When t < 0. It follows from Lemma 1 that

√
λ1λ2λ3

(
�t
1√
λ1

+
�t
2√
λ2

+
�t
3√
λ3

)

=
√
λ2λ3

(
2cosα1

R2+R3

)−t

+
√
λ3λ1

(
2cosα2

R3+R1

)−t

+
√
λ1λ2

(
2cosα3

R1+R2

)−t

.

(16)

Since −t > 0, by using the arithmetic-geometricmeans inequality and the inequal-
ity given by Lemma 3, we obtain

√
λ2λ3

(
2cosα1

R2 +R3

)−t

+
√
λ3λ1

(
2cosα2

R3 +R1

)−t

+
√
λ1λ2

(
2cosα3

R1 +R2

)−t

�
√
λ2λ3Rt

2R
t
3

(
cos−t α1

)
+
√
λ3λ1Rt

3R
t
1

(
cos−t α2

)
+
√
λ1λ2Rt

1R
t
2

(
cos−t α3

)
� 2−min{−t,1} (λ1R

t
1 +λ2R

t
2 +λ3R

t
3

)
. (17)

Combining inequalities (16) and (17) yields the inequality (6). The condition
of equality in (6) can be deduced from the condition of equality in the arithmetic-
geometric means inequality and inequality (11). This completes the proof of Theo-
rem 1. �

4. Applications of Theorem 1

In this section, we show some consequences of Theorem 1. Putting λ1 = λ2 =
λ3 = 1 in (5), we obtain

COROLLARY 1. For real numbers t > 0 , the following inequality holds true

Rt
1 +Rt

2 +Rt
3 < 2−min{ t

2 ,1− t
2}
(
�t
1 + �t

2 + �t
3

)
. (18)

For real numbers t < 0 , the following inequality holds true

Rt
1 +Rt

2 +Rt
3 � 2min{−t,1} (�t

1 + �t
2 + �t

3

)
. (19)

Choosing in particular t = 1 in (18) yields the following reverse Erdös-Mordell’s
inequality:

COROLLARY 2.

R1 +R2 +R3 <
1√
2

(�1 + �2 + �3) . (20)
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REMARK. It is worth noticing that the coefficient 1√
2

in (20) is best possible in the
sense that it cannot be replaced by a smaller constant. In order to prove this statement
we consider the inequality (20) in a general form as

R1 +R2 +R3 < μ (�1 + �2 + �3) ,

i.e.,

R1 +R2 +R3 < μ
(

R2 +R3

2cosα1
+

R3 +R1

2cosα2
+

R1 +R2

2cosα3

)
. (21)

A

A A
D

Q

1

2 3

Figure 2: Remark

We construct an isosceles triangle A1A2A3 (see Figure 2): let A1D be the altitude
from the vertex A1 to the side A2A3 , and let A1A2 = A1A3 = 1, ∠DA1A2 = ∠DA1A3 =
β , ∠DA2Q = ∠DA3Q =

√
β (0 < β < π

6 ). Then we have

R1 = QA1 =
cos(β +

√
β )

cos
√
β

, R2 = QA2 =
sinβ

cos
√
β

, R3 = QA3 =
sinβ

cos
√
β

,

α1 =
π
2
−
√
β , α2 =

π
4

+

√
β

2
, α3 =

π
4

+

√
β

2
.

Now, substituting the above identities into (21) with a simple calculation yields that

cos(β +
√
β )+2sinβ < μ

⎡
⎣ sinβ

sin
√
β

+
sinβ + cos(β +

√
β )

cos(π4 +
√

β
2 )

⎤
⎦ . (22)

In (22), passing the limit as β → 0, we find that μ > 1√
2
. Thus the best possi-

ble values for μ in (21) is that μ = 1√
2
, which implies that 1√

2
is the best possible

coefficient in (20).
Putting in the inequality (19) t = −1, we obtain the following result

COROLLARY 3.

1
R1

+
1
R2

+
1
R3

� 2

(
1
�1

+
1
�2

+
1
�3

)
. (23)
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It provides a reverse version of the following inequality of Oppenheim [6]:

1
R1

+
1
R2

+
1
R3

� 1
2

(
1
r1

+
1
r2

+
1
r3

)
. (24)

In addition, let ρ1 , ρ2 , ρ3 denote the distances from Q to the circumcenters of
�A2QA3 , �A3QA1 , �A1QA2 respectively. Then, from inequalities (20) and (23), the
following reverse inequalities of Erdös-Mordell and Oppenheim type are derived:

COROLLARY 4.

R1 +R2 +R3 <
√

2(ρ1 +ρ2 +ρ3) , (25)

1
R1

+
1
R2

+
1
R3

� 1
ρ1

+
1
ρ2

+
1
ρ3

. (26)
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