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Abstract. We consider the inequalities of type

MJn(f , xxx, qqq) � Jn(f , xxx, ppp) � mJn(f , xxx, qqq),

where f is a convex function and Jn(f , xxx, ppp) =
∑n

i=1pif (xi) − f
(∑n

i=1pixi
)
, recently

introduced by S.S. Dragomir. We give an alternative proof of such inequalities and prove another
similar result for the case when f is a convex function on an interval in the real line, while ppp
and qqq satisfy the conditions for Jensen-Steffensen inequality. We show that our result improves
the result of Dragomir in this special case. We also prove the integral versions of all our results,
including those related to Boas’ generalization of Jensen-Steffensen integral inequality.

1. Introduction

Jensen’s inequality for convex functions is probably one of the most important
inequalities which is extensively used in almost all areas of mathematics. For a compre-
hensive inspection of the classical and recent results related to this inequality the reader
is referred to [4]. There are many forms of this inequality (discrete and integral). Here
we recall classical discrete form:

Suppose X is a real linear space, C ⊆ X is a convex set in X and f : C → R is a
convex function defined on C. If z1, z2, . . . , zn ∈ C, n � 2 are any vectors and ri � 0,
i = 1, 2, . . . , n are nonnegative real numbers such that Rn > 0, Rn :=

∑n
i=1 ri, then

the weighted Jensen’s inequality

f

(
1
Rn

n∑
i=1

rizi

)
� 1

Rn

n∑
i=1

rif (zi) (J)

is valid. If f is a strictly convex function on C and ri > 0, i = 1, 2, . . . , n , then the
equality case holds in (J) if and only if z1 = z2 = . . . = zn .

It is interesting that in the case when X = R that is when f : I → R is a convex
function defined on an interval I ⊆ R , if zzz = (z1, . . . , zn) ∈ In is a monotonic (either
nondecreasing or nonincreasing) n -tuple, then (J) remains valid even in the case when
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the condition “ rrr = (r1, . . . , rn) is nonnegative n -tuple” is somewhat relaxed. More
precisely the following is true [4, p. 57]:

THEOREMA. (Jensen-Steffensen)Let I ⊆ R bean interval and let zzz = (z1, . . . , zn) ∈
In be a monotonic n -tuple. Let rrr = (r1, . . . , rn) be a real n -tuple and denoteRk :=∑k

i=1 ri, k = 1, 2, . . . , n . If

0 � Rk � Rn, k = 1, 2, . . . , n, Rn > 0,

then (J) holds for any convex function f : I → R .

When (J) is considered under assumptions of Theorem A we refer it as (JS) and
call it Jensen-Steffensen inequality. A detailed discussion of the equality case in (JS)
for a strictly convex function f : I → R can be found in [1].

Another inequality closely related to (J) and which we shall use in this paper is the
reversal of Jensen’s inequality [4, p. 83]:

THEOREM B. (Jensen reversed) Let rrr = (r1, . . . , rn) be a real n -tuple such that

r1 > 0, ri � 0, i = 2, . . . , n, Rn =
n∑

i=1

ri > 0.

Let C ⊆ X be a convex set in a real linear spaceX and let zi ∈ C, i = 1, . . . , n be a
vectors such that 1

Rn

∑n
i=1rizi ∈ C . If f : C → R is a convex function, then the reversed

Jensen’s inequality

f

(
1
Rn

n∑
i=1

rizi

)
� 1

Rn

n∑
i=1

rif (zi) (JR)

holds.

Recently Dragomir [3] proved an interesting result for the difference between the
right side and the left side of (J).

To be more specific, let Pn denotes the set of all nonnegative real n -tuples
(p1, . . . , pn) with the property that

∑n
i=1pi = 1 . For any convex function f : C → R

defined on a convex set C in a real linear space X and for any choice of n -tuples
xxx = (x1, . . . , xn) ∈ Cn and ppp = (p1, . . . , pn) ∈ Pn we define

Jn(f , xxx, ppp) :=
n∑

i=1

pif (xi) − f

(
n∑

i=1

pixi

)

and we call it the normalized Jensen functional. For a fixed function f and n -tuple xxx,
Jn(f , xxx, ·) can be observed as a function on Pn . Note that Pn is obviously a convex
subset in R

n and that because of (J) we have Jn(f , xxx, ppp) � 0, for all ppp ∈ Pn . Now
we state Dragomir’s result [3, Th. 1]:

THEOREM C. (Dragomir) If p, q ∈ Pn and qi > 0, i = 1, . . . , n , then

max
1�i�n

{
pi
qi

}
Jn(f , xxx, qqq) � Jn(f , xxx, ppp) � min

1�i�n

{
pi
qi

}
Jn(f , xxx, qqq). (JB)
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Dragomir’s proof of (JB) is based on a direct application of (J) for appropriate
choices of the elements in (J).

In this paper we give an alternative proof of (JB) based on a direct applications
of (J) and (JR). This proof is more suitable for further generalizations. To be more
specific our proof of (JB) allows us to prove another result analogous to (JB) in the
case when f : I → R is a convex function defined on an interval I ⊆ R and n -tuple
ppp = (p1, . . . , pn) satisfies the conditions for Jensen-Steffensen inequality, i.e. pi need
not be nonnegative. Moreover we show that our result in that case is an improvement
of (JB). We also prove the integral versions of all our results, including those related to
Boas’ generalization of Jensen-Steffensen integral inequality.

2. Alternative proof of (JB)

Proof. (of THEOREM C) We assume the notations from introduction. For given
ppp = (p1, . . . , pn) and qqq = (q1, . . . , qn) from Pn such that qi > 0, i = 1, . . . , n , let
us denote

m = m(ppp, qqq) := min
1�i�n

{
pi
qi

}
, M = M(ppp, qqq) := max

1�i�n

{
pi
qi

}
.

Obviously we have

pi
qi
− m � 0, M − pi

qi
� 0, i = 1, . . . , n,

which implies
pi − mqi � 0, Mqi − pi � 0, i = 1, . . . , n. (2.1)

If m � 1, then pi−qi � pi−mqi � 0, i = 1, . . . , n. On the other hand
∑n

i=1(pi−qi) =
0 since both ppp and qqq are from Pn . This implies pi − qi = 0, i = 1, . . . , n that is
qqq = ppp and Jn(f , xxx, qqq) = Jn(f , xxx, ppp) . Since qqq = ppp , the condition (2.1) is possible
only with m = 1 and M � 1 so that (JB) obviously holds. Similarly, if M � 1, then
we have qi − pi � Mqi − pi � 0, i = 1, . . . , n and by the same argument we conclude
that qqq = ppp and Jn(f , xxx, qqq) = Jn(f , xxx, ppp) . In this case (2.1) is possible only with
M = 1 and m � 1 so that (JB) obviously holds.

It remains to consider the case when m < 1 and M > 1. To prove the right
inequality in (JB) note that pi − mqi � 0, i = 1, . . . , n and

∑n
i=1 (pi − mqi) =

1 − m > 0 . Now, applying (J) twice we get

m

[
f

(
n∑

i=1

qixi

)
−

n∑
i=1

qif (xi)

]
+

n∑
i=1

pif (xi)

=mf

(
n∑

i=1

qixi

)
+

n∑
i=1

(pi − mqi) f (xi)

�mf

(
n∑

i=1

qixi

)
+

n∑
j=1

(pj − mqj) · f
(∑n

i=1
(pi−mqi)xi∑n

j=1
(pj−mqj)

)
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=mf

(
n∑

i=1

qixi

)
+ (1 − m)f

(∑n
i=1

pixi−m
∑n

i=1
qixi

1−m

)

�f

(
m

n∑
i=1

qixi +
n∑

i=1

pixi − m
n∑

i=1

qixi

)

=f

(
n∑

i=1

pixi

)
,

that is

m

[
f

(
n∑

i=1

qixi

)
−

n∑
i=1

qif (xi)

]
+

n∑
i=1

pif (xi) � f

(
n∑

i=1

pixi

)

and this is equivalent to the right inequality in (JB).
To prove the left inequality in (JB) note that Mqi − pi � 0, i = 1, . . . , n and∑n

i=1 (Mqi − pi) = M − 1 > 0 . Now, applying (J) once and (JR) after that, we get

M

[
f

(
n∑

i=1

qixi

)
−

n∑
i=1

qif (xi)

]
+

n∑
i=1

pif (xi)

=Mf

(
n∑

i=1

qixi

)
−

n∑
i=1

(Mqi − pi) f (xi)

�Mf

(
n∑

i=1

qixi

)
−

n∑
j=1

(Mqj − pj) · f
(∑n

i=1
(Mqi−pi)xi∑n

j=1
(Mqj−pj)

)

=Mf

(
n∑

i=1

qixi

)
+ (1 − M)f

(
M
∑n

i=1
qixi−

∑n
i=1

pixi

M−1

)

�f

(
M

n∑
i=1

qixi − M
n∑

i=1

qixi +
n∑

i=1

pixi

)

=f

(
n∑

i=1

pixi

)
,

that is

M

[
f

(
n∑

i=1

qixi

)
−

n∑
i=1

qif (xi)

]
+

n∑
i=1

pif (xi) � f

(
n∑

i=1

pixi

)

and this is equivalent to the left inequality in (JB). �
By careful inspection of the above proof we see that in fact we proved somewhat

more general result in which Dragomir’s condition qi > 0, i = 1, . . . , n is eliminated:

THEOREM 1. Assume that ppp, qqq ∈ Pn. If m andM are any real constants such that

pi − mqi � 0, Mqi − pi � 0, i = 1, . . . , n,

then
MJn(f , xxx, qqq) � Jn(f , xxx, ppp) � mJn(f , xxx, qqq).
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3. Bounds for the normalized Jensen functional
under Jensen-Steffensen conditions

For any real n -tuple ppp = (p1, . . . , pn) and for k ∈ {1, 2, . . . , n} let us denote
Pk :=

∑k
i=1 pi . Let P̃n denotes the set of all real n -tuples (p1, . . . , pn) satisfying the

following Jensen-Steffensen conditions

0 � Pk � 1, k = 1, . . . , n − 1, Pn = 1. (3.1)

Any n -tuple ppp from Pn obviously satisfies (3.1) so that Pn ⊆ P̃n . Also it is easy
to see that P̃n is a convex subset of R

n ,
Let f : I → R be a convex function defined on an interval I ⊆ R . If

xxx = (x1, . . . , xn) ∈ In is any monotonic n -tuple and ppp = (p1, . . . , pn) ∈ P̃n , then∑n
i=1pixi ∈ I (see the proof of (JS) [4, p. 57]) and

Jn(f , xxx, ppp) :=
n∑

i=1

pif (xi) − f

(
n∑

i=1

pixi

)

is well defined. Also, because of (JS) we have Jn(f , xxx, ppp) � 0, for all ppp ∈ P̃n .

THEOREM 2. Let ppp = (p1, . . . , pn) and qqq = (q1, . . . , qn) be two n -tuples from
P̃n . For k ∈ {1, . . . , n} denote Pk :=

∑k
i=1pi , Qk :=

∑k
i=1qi . Let m and M be

any real constants such that

Pk − mQk � 0, (1 − Pk) − m (1 − Qk) � 0, k = 1, . . . , n − 1 (3.2)

and

MQk − Pk � 0, M (1 − Qk) − (1 − Pk) � 0, k = 1, . . . , n − 1. (3.3)

If f : I → R is a convex function defined on an interval I ⊆ R and if xxx = (x1, . . . , xn) ∈
In is any monotonic n -tuple, then

MJn(f , xxx, qqq) � Jn(f , xxx, ppp) � mJn(f , xxx, qqq). (3.4)

Proof. Let us first consider the case m � 1 . Since 0 � Qk � 1 , from (3.2) we
get for all k ∈ {1, . . . , n − 1}

Pk − Qk � Pk − mQk � 0,

Qk − Pk = (1 − Pk) − (1 − Qk) � (1 − Pk) − m (1 − Qk) � 0,

which implies that Pk = Qk for all k ∈ {1, . . . , n−1}. This, togetherwith Pn = Qn = 1
implies that ppp = qqq and Jn(f , xxx, qqq) = Jn(f , xxx, ppp) . Since qqq = ppp , the condition (3.2)
is possible only with m = 1 , while the condition (3.3) is possible only with M � 1 so
that (3.4) obviously holds. Similarly, if we consider the case M � 1, then from (3.3)
we get for all k ∈ {1, . . . , n − 1}

Qk − Pk � MQk − Pk � 0,

Pk − Qk = (1 − Qk) − (1 − Pk) � M (1 − Qk) − (1 − Pk) � 0,
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which implies that Pk = Qk for all k ∈ {1, . . . , n − 1} and by the same argument we
again conclude that ppp = qqq and Jn(f , xxx, qqq) = Jn(f , xxx, ppp) . Also the condition (3.3)
is possible only with M = 1 , while the condition (3.2) is possible only with m � 1 so
that (3.4) obviously holds.

It remains to consider the case when m < 1 and M > 1. To prove the right
inequality in (3.4) we consider the n -tuple rrr = (r1, . . . , rn) defined by ri := pi −mqi,
i = 1, . . . , n . For k ∈ {1, . . . , n} we have

Rk =
k∑

i=1

ri = Pk − mQk, k = 1, . . . , n − 1, Rn = 1 − m > 0.

Now, using (3.2) we get

Rk = Pk − mQk � 0,

Rn − Rk = 1 − m − Pk + mQk = (1 − Pk) − m (1 − Qk) � 0,

for all k ∈ {1, . . . , n − 1}. Now, we follow our proof of Theorem C, but instead of
using (J) twice we first use (JS) and then we use (J). So we get

m

[
f

(
n∑

i=1

qixi

)
−

n∑
i=1

qif (xi)

]
+

n∑
i=1

pif (xi) � f

(
n∑

i=1

pixi

)
,

which is equivalent to the right inequality in (3.4).
To prove the left inequality in (3.4) we consider the n -tuple sss = (s1, . . . , sn)

defined by si := Mqi − pi, i = 1, . . . , n . For k ∈ {1, . . . , n} we have

Sk =
k∑

i=1

si = MQk − Pk, k = 1, . . . , n − 1, Sn = M − 1 > 0.

Using (3.3) we get

Sk = MQk − Pk � 0,

Sn − Sk = M − 1 − MQk + Pk = M (1 − Qk) − (1 − Pk) � 0,

for all k ∈ {1, . . . , n − 1}. We follow again our proof of Theorem C, first using (JS)
instead of (J) and then using (JR). So we get

M

[
f

(
n∑

i=1

qixi

)
−

n∑
i=1

qif (xi)

]
+

n∑
i=1

pif (xi) � f

(
n∑

i=1

pixi

)

and this is equivalent to the left inequality in (3.4). �

COROLLARY 1. Let ppp = (p1, . . . , pn) and qqq = (q1, . . . , qn) be two n -tuples
from P̃n . For k ∈ {1, . . . , n} denote Pk :=

∑k
i=1pi , Qk :=

∑k
i=1qi . Assume that

0 < Qk < 1 for all k ∈ {1, . . . , n − 1} and define

m̃ = m̃(ppp, qqq) := min
{

Pk
Qk

, 1−Pk
1−Qk

: k = 1, . . . , n − 1
}

, (3.5)
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M̃ = M̃(ppp, qqq) := max
{

Pk
Qk

, 1−Pk
1−Qk

: k = 1, . . . , n − 1
}

. (3.6)

If f : I → R is a convex function defined on an interval I ⊆ R and if xxx = (x1, . . . , xn) ∈
In is any monotonic n -tuple, then

M̃Jn(f , xxx, qqq) � Jn(f , xxx, ppp) � m̃Jn(f , xxx, qqq). (3.7)

Proof. Since 0 < Qk < 1 for all k ∈ {1, . . . , n − 1} , m̃ and M̃ are well defined
and obviously (3.2) and (3.3) are satisfied for m = m̃ and M = M̃ . Therefore we can
apply Theorem 2 to obtain (3.7). �

We can consider the uniform distribution uuu =
(

1
n , . . . ,

1
n

)
and corresponding

nonweighted Jensen functional

Jn(f , xxx) := Jn(f , xxx, uuu) = 1
n

n∑
i=1

f (xi) − f

(
1
n

n∑
i=1

xi

)
.

Then we can state the following special case of the above Corollary:

COROLLARY 2. Let ppp = (p1, . . . , pn) be n -tuple from P̃n . For k ∈ {1, . . . , n}
denote Pk :=

∑k
i=1 pi and define

m̃0 := n · min
{

Pk
k , 1−Pk

n−k : k = 1, . . . , n − 1
}

,

M̃0 := n · max
{

Pk
k , 1−Pk

n−k : k = 1, . . . , n − 1
}

.

If f : I → R is a convex function defined on an interval I ⊆ R and if xxx = (x1, . . . , xn) ∈
In is any monotonic n -tuple, then

M̃0Jn(f , xxx) � Jn(f , xxx, ppp) � m̃0Jn(f , xxx).

Proof. We apply Corollary 1 with arbitrary ppp ∈ Pn and qqq = uuu . In this case we
have Qk = k

n , k = 1, . . . , n so that we get m̃ = m̃0 and M̃ = M̃0 . �
Next we show that Theorem 2 in some way provides improvement of Theorem C

in case when X = R.
Denote by Πn the set off all permutations of (1, 2, . . . , n) . Suppose π =

(π(1), π(2), . . . , π(n)) ∈ Πn . If aaa = (a1, a2, . . . , an) is any n -tuple (anywhere),
then we denote

aaaπ := (aπ(1), aπ(2), . . . , aπ(n)).

First we prove one simple auxiliary result.

LEMMA 1. Let ppp = (p1, . . . , pn) and qqq = (q1, . . . , qn) be two nonnegative n -
tuples from Pn . If qi > 0 for all i ∈ {1, . . . , n} , then m̃(ppp, qqq) and M̃(ppp, qqq) are well
defined by (3.5) and (3.6) and

max
1�i�n

{
pi
qi

}
� M̃(ppp, qqq), m̃(ppp, qqq) � min

1�i�n

{
pi
qi

}
.
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Proof. Since qi > 0 for all i it is obvious that 0 < Qk < 1 for all k ∈
{1, . . . , n− 1}, so that m̃(ppp, qqq) and M̃(ppp, qqq) are well defined by (3.5) and (3.6). Also
for any k ∈ {1, . . . , n − 1} we can write

Pk :=
k∑

i=1

pi =
k∑

i=1

pi
qi

qi, 1 − Pk =
n∑

i=k+1

pi =
n∑

i=k+1

pi
qi

qi.

Now

max
1�i�n

{
pi
qi

}
Qk = max

1�i�n

{
pi
qi

} k∑
i=1

qi � Pk � min
1�i�n

{
pi
qi

} k∑
i=1

qi = min
1�i�n

{
pi
qi

}
Qk,

i.e.

max
1�i�n

{
pi
qi

}
� Pk

Qk
� min

1�i�n

{
pi
qi

}
.

Similarly we get for all k ∈ {1, . . . , n − 1}

max
1�i�n

{
pi
qi

}
� 1−Pk

1−Qk
� min

1�i�n

{
pi
qi

}

and desired conclusion follows. �

REMARK 1. It is clear that inequalities stated in Lemma1 can be strict. For example
if n = 4, ppp = ( 1

5 ,
2
5 ,

1
10 ,

3
10 ) and qqq = ( 1

4 ,
1
4 ,

1
4 ,

1
4 ), then we get

max
1�i�n

{
pi
qi

}
= 8

5 > M̃(ppp, qqq) = 6
5 , m̃(ppp, qqq) = 4

5 > min
1�i�n

{
pi
qi

}
= 2

5 .

It is not hard to see that generally

max
1�i�n

{
pi
qi

}
= max

π∈Πn
M̃(pppπ , qqqπ), min

1�i�n

{
pi
qi

}
= min

π∈Πn
m̃(pppπ , qqqπ).

THEOREM 3. Let f : I → R be a convex function defined on an interval I ⊆ R

and let xxx = (x1, . . . , xn) ∈ In be any n -tuple. Let π = (π(1), π(2), . . . , π(n)) be a
permutation of (1, 2, . . . , n) such that xxxπ is monotonic (nondecreasing or nonincreas-
ing). If ppp = (p1, . . . , pn) and qqq = (q1, . . . , qn) are two n -tuples from Pn such that
qi > 0 for all i ∈ {1, . . . , n} , then

max
1�i�n

{
pi
qi

}
Jn(f , xxx, qqq) � M̃(pppπ , qqqπ)Jn(f , xxx, qqq) � Jn(f , xxx, ppp)

� m̃(pppπ , qqqπ)Jn(f , xxx, qqq) � min
1�i�n

{
pi
qi

}
Jn(f , xxx, qqq),

where m̃(pppπ , qqqπ) and M̃(pppπ , qqqπ) are defined as in (3.5) and (3.6). The first and the last
inequality can be strict.
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Proof. Since π is chosen so that xxxπ is monotonic we can apply Corollary 1 and
Lemma 1 to the n -tuples pppπ and qqqπ to get

max
1�i�n

{
pπ(i)
qπ(i)

}
Jn(f , xxxπ , qqqπ) � M̃(pppπ , qqqπ)Jn(f , xxxπ , qqqπ) � Jn(f , xxxπ , pppπ)

� m̃(pppπ , qqqπ)Jn(f , xxxπ , qqqπ) � min
1�i�n

{
pπ(i)
qπ(i)

}
Jn(f , xxxπ , qqqπ).

Since Jn(f , xxx, ppp) doesn’t change if we simultaneously permute the components of
xxx and ppp , we have Jn(f , xxxπ , pppπ) = Jn(f , xxx, ppp) and Jn(f , xxxπ , qqqπ) = Jn(f , xxx, qqq) .

Also it is obvious that max1�i�n

{
pπ(i)
qπ(i)

}
= max1�i�n

{
pi
qi

}
and min1�i�n

{
pπ(i)
qπ(i)

}
=

min1�i�n

{
pi
qi

}
. Therefore, the proposed inequalities indeed hold. By Remark 1 the

first and the last inequality can be strict. �

4. Integral versions

There are various integral versions of Jensen’s inequality. Here we recall the
simplest one for Riemann-Stieltjes integral [4, p. 58]: Suppose x : [α, β ] → (a, b) ,
where −∞ < α < β < ∞ and −∞ � a < b � ∞, is a continuous function and
f : (a, b) → R is a convex function. If λ : [α, β ] → R is any nondecreasing function
such that λ (β) �= λ (α) , then

f

(
1

λ (β)−λ (α)

∫ β

α
x(t)dλ (t)

)
� 1

λ (β)−λ (α)

∫ β

α
f (x(t))dλ (t). (JI)

An integral analogue of (JS) was also proved by Steffensen, but here we consider
a variant given by R. P. Boas [2] (see also [4, p. 59]):

THEOREM D. (Steffensen-Boas) Let x : [α, β ] → (a, b) be a continuous and
monotonic function (either nondecreasing or nonincreasing), where−∞ < α < β <
∞ and−∞ � a < b � ∞, and let f : (a, b) → R be a convex function. If λ :
[α, β ] → R is either continuous or of bounded variation satisfying

λ (α) � λ (t) � λ (β) for all t ∈ [α, β ] , λ (β) − λ (α) > 0, (4.1)

then (JI) holds.

The condition (4.1) on λ can be regarded as a very weak version of monotonicity,
but the monotonicity condition on x is very restrictive. In the same paper [2] R. P. Boas
proved that we can strengthen the hypothesis on λ and correspondingly weaken the
hypothesis on x so that (JI) still holds:

THEOREM E. (Boas) Let λ : [α, β ] → R be either continuous or of bounded
variation and such that there exist k � 2 pointsα = γ0 < γ1 < . . . < γk = β so that

λ (α) � λ (t1) � λ (γ1) � λ (t2) � . . . � λ (γk−1) � λ (tk) � λ (β) ,

for all ti ∈ [γi−1, γi] , i = 1, . . . , k, λ (β) − λ (α) > 0.
(4.2)
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If x : [α, β ] → (a, b) is a continuous function and monotonic (either nondecreasing or
nonincreasing) on each of the intervals [γi−1, γi] , i = 1, . . . , k , then (JI) holds for any
convex function f : (a, b) → R .

When (JI) is considered under assumptions of Theorem D we refer it as (JSI) and
call it Jensen-Steffensen integral inequality. When (JI) is considered under assumptions
of TheoremE we refer it as (JSBI) and call it Jensen-Steffensen-Boas integral inequality.

There is no loss in generality if we assume λ (β) − λ (α) = 1 and consider the
normalized Jensen functional

J (f , x, λ ) :=
∫ β

α
f (x(t))dλ (t) − f

(∫ β

α
x(t)dλ (t)

)
.

Under appropriate assumptions on f , x and λ , either for (JI) or for (JSI) or for (JSBI)
we always have J (f , x, λ ) � 0 .

For−∞ < α < β < ∞ let Λ[α,β ] denotes the class of all functions λ : [α, β ] →
R which are either continuous or of bounded variation and satisfy the condition

λ (α) � λ (t) � λ (β) for all t ∈ [α, β ] , λ (β) − λ (α) = 1.

Note that any nondecreasing function λ : [α, β ] → R with λ (β)− λ (α) = 1 belongs
to Λ[α,β ] . Also let Λ̃[α,β ] denotes the subclass of Λ[α,β ] containing each λ ∈ Λ[α,β ]
which satisfies the condition (4.2) defined in Theorem E.

Now we can state the integral analogues of the results from previous section. The
first one is related to (JI).

THEOREM 4. Let λ and μ be two functions fromΛ[α,β ] ,−∞ < α < β < ∞ .
Let x : [α, β ] → (a, b) ,−∞ � a < b � ∞ be a continuous function and let f :
(a, b) → R be a convex function.
a) If μ is nondecreasing and if m � 0 is a constant such that the function ρ : [α, β ] →
R defined by

ρ(t) := λ (t) − mμ (t) , t ∈ [α, β ] (4.3)

is also nondecreasing, then

J (f , x, λ ) � mJ (f , x,μ). (4.4)

b) If λ is nondecreasing and if M > 0 is a constant such that the function σ : [α, β ] →
R defined by

σ(t) := Mμ (t) − λ (t) , t ∈ [α, β ] (4.5)

is also nondecreasing, then

MJ (f , x,μ) � J (f , x, λ ). (4.6)

Proof. a) Since μ and ρ = λ −mμ are assumed to be nondecreasing and m � 0 ,
the function λ = ρ+mμ is nondecreasing too. Hence J (f , x, λ ) and J (f , x,μ) are
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well defined. First we consider the case m � 1 . Since λ (β)−λ (α) = μ(β)−μ(α) =
1 , we have

ρ(β) − ρ(α) = μ(β) − μ(α) − m(λ (β) − λ (α)) = 1 − m � 0.

But ρ is nondecreasing by our assumption so that we must have ρ(β) − ρ(α) � 0 .
Hence we must have m = 1, ρ(t) = λ (t)− μ (t) , t ∈ [α, β ] and ρ(β) = ρ(α) . This
is possible only when ρ is a constant function that is λ (t) = μ (t) + c, t ∈ [α, β ] , for
some constant c . But then the integral with respect to λ coincides with the integral
with respect to μ so that J (f , x, λ ) = J (f , x,μ) and (4.4).holds with equality sign.

It remains to consider the case m < 1 . In this case we have ρ(β) − ρ(α) =
1−m > 0 and ρ is nondecreasing by our assumption so that (JI) can be applied to ρ .
Hence we first apply (JI) and then we apply (J) to obtain

m

[
f

(∫ β

α
x(t)dμ(t)

)
−
∫ β

α
f (x(t))dμ(t)

]
+
∫ β

α
f (x(t))dλ (t)

= mf

(∫ β

α
x(t)dμ(t)

)
+
∫ β

α
f (x(t))dρ(t)

� mf

(∫ β

α
x(t)dμ(t)

)
+ (ρ(β) − ρ(α)) · f

(∫ β
α

x(t)dρ(t)

ρ(β)−ρ(α)

)

= mf

(∫ β

α
x(t)dμ(t)

)
+ (1 − m)f

(∫ β
α

x(t)dλ (t)−m
∫ β
α

x(t)dμ(t)

1−m

)

� f

(
m
∫ β

α
x(t)dμ(t) +

∫ β

α
x(t)dλ (t) − m

∫ β

α
x(t)dμ(t)

)

= f

(∫ β

α
x(t)dλ (t)

)
,

that is

m

[
f

(∫ β

α
x(t)dμ(t)

)
−
∫ β

α
f (x(t))dμ(t)

]
+
∫ β

α
f (x(t))dλ (t) � f

(∫ β

α
x(t)dλ (t)

)

and this is equivalent to (4.4).
b) Since λ and σ = Mμ − λ are assumed to be nondecreasing and M > 0 , the

function μ = 1
M (σ + λ ) is nondecreasing too. Hence J (f , x, λ ) and J (f , x,μ) are

well defined. First we consider the case M � 1. Then we have

σ(β) − σ(α) = M(μ(β) − μ(α)) − (λ (β) − λ (α)) = M − 1 � 0

and σ(β) − σ(α) � 0, since σ is assumed to be nondecreasing. We conclude that
it must be M = 1, σ(t) = μ (t) − λ (t) , t ∈ [α, β ] and σ(β) = σ(α) . This is
possible only when σ is a constant function that is μ (t) = λ (t) + c, t ∈ [α, β ] , for
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some constant c . By the same argument as in the previous case a) we conclude that
J (f , x, λ ) = J (f , x,μ) and (4.6).holds with equality sign.

It remains to consider the case M > 1 . In this case we have σ(β) − σ(α) =
M − 1 > 0 and σ is nondecreasing by our assumption so that (JI) can be applied to
σ . Hence we first apply (JI) and then we apply (JR) to obtain

M

[
f

(∫ β

α
x(t)dμ(t)

)
−
∫ β

α
f (x(t))dμ(t)

]
+
∫ β

α
f (x(t))dλ (t)

= Mf

(∫ β

α
x(t)dμ(t)

)
−
∫ β

α
f (x(t))dσ(t)

� Mf

(∫ β

α
x(t)dμ(t)

)
− (σ(β) − σ(α)) · f

(∫ β
α

x(t)dσ(t)

σ(β)−σ(α)

)

= Mf

(∫ β

α
x(t)dμ(t)

)
+ (1 − M)f

(
M
∫ β
α

x(t)dμ(t)−
∫ β
α

x(t)dλ (t)

M−1

)

� f

(
M
∫ β

α
x(t)dμ(t) − M

∫ β

α
x(t)dμ(t) +

∫ β

α
x(t)dλ (t)

)

= f

(∫ β

α
x(t)dλ (t)

)
,

that is

M

[
f

(∫ β

α
x(t)dμ(t)

)
−
∫ β

α
f (x(t))dμ(t)

]
+
∫ β

α
f (x(t))dλ (t) � f

(∫ β

α
x(t)dλ (t)

)

and this is equivalent to (4.6). �

COROLLARY 3. Let λ andμ be two functions fromΛ[α,β ] ,−∞ < α < β < ∞ .
Let x : [α, β ] → (a, b) ,−∞ � a < b � ∞ be a continuous function and let f :
(a, b) → R be a convex function.
a) Assume that μ is strictly increasing and define

m̃ = m̃(λ ,μ) := inf
α<t<β

{
inf
{

λ (t)−λ (s)
μ(t)−μ(s) : α � s � β , s �= t

}}
.

If m � 0 , then
J (f , x, λ ) � m̃J (f , x,μ). (4.7)

b) Assume that λ is nondecreasing and that μ is strictly increasing and define

M̃ = M̃(λ ,μ) := sup
α<t<β

{
sup
{

λ (t)−λ (s)
μ(t)−μ(s) : α � s � β , s �= t

}}
.

If M < ∞ , then
M̃J (f , x,μ) � J (f , x, λ ). (4.8)
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Proof. a) Since μ is strictly increasing it is injective and m̃ is well defined quantity
in [−∞,∞). If m̃ � 0 , then ρ = λ − m̃μ is well defined function on [α, β ], By the
definition of m̃ , if t, s ∈ [α, β ] are such that s < t , then (λ (t)−λ (s))/(μ(t)−μ(s)) �
m̃ . Since μ(t) − μ(s) > 0, this is equivalent to

ρ(t) − ρ(s) = λ (t) − λ (s) − m̃(μ(t) − μ(s)) � 0,

which shows that ρ is nondecreasing. Therefore we can apply Theorem 4 a) with
m = m̃ to get (4.7).

b) Since λ is nondecreasing and μ is strictly increasing and therefore injective,
M̃ is well defined quantity in (0,∞]. If additionally M̃ < ∞ , then we first observe
that σ = M̃μ − λ is well defined function on [α, β ], Next by the definition of M̃ ,
if t, s ∈ [α, β ] are such that s < t , then (λ (t) − λ (s))/(μ(t) − μ(s)) � M̃ . Since
μ(t) − μ(s) > 0, this is equivalent to

σ(t) − σ(s) = M̃(μ(t) − μ(s)) − (λ (t) − λ (s)) � 0,

which shows that σ is nondecreasing. Therefore we can apply Theorem 4 b) with
M = M̃ to get (4.8). �

REMARK 2. If m̃ = 0 , then the inequality (4.7) is trivially fulfilled. Similarly, if
M̃ = ∞ , then the inequality (4.8) is trivially fulfilled. Two simple examples which
illustrate such cases are as follows:

For [α, β ] = [0, 1] let λ (t) = t , μ(t) =
√

t , t ∈ [0, 1] . Then we have m̃ = 0 ,
M̃ = 2 .

For [α, β ] = [0, 1] let λ (t) =
√

t , μ(t) = t , t ∈ [0, 1] . Then we have m̃ = 1
2 ,

M̃ = ∞ .

As in the discrete case we can consider the uniform distribution i.e. the function
υ ∈ Λ[α,β ] defined by

υ(t) := 1
β−α t, t ∈ [α, β ]

and corresponding nonweighted integral Jensen functional

J (f , x) := J (f , x,υ) = 1
β−α

∫ β

α
f (x(t))dt − f

(
1

β−α

∫ β

α
x(t)dt

)
.

Then we can state the following special case of Corollary 3:

COROLLARY 4. Let λ andμ be two functions fromΛ[α,β ] ,−∞ < α < β < ∞ .
Let x : [α, β ] → (a, b) ,−∞ � a < b � ∞ be a continuous function and let f :
(a, b) → R be a convex function.
a) Define

m̃0 := m̃(λ ,υ) = (β − α) · inf
α<t<β

{
inf
{

λ (t)−λ (s)
t−s : α � s � β , s �= t

}}
.

If m̃0 � 0 , then
J (f , x, λ ) � m̃0J (f , x).
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b) Assume that λ is nondecreasing and define

M̃0 := M̃(λ ,υ) = (β − α) · sup
α<t<β

{
sup
{

λ (t)−λ (s)
t−s : α � s � β , s �= t

}}
.

If M̃0 < ∞ , then
M̃0J (f , x,μ) � J (f , x, λ ).

Proof. a) We apply Corollary 3 a) with arbitrary λ ∈ Λ[α,β ] and μ = υ . In this
case we have J (f , x,μ) = J (f , x) and m̃ = m̃0 .

b) We apply Corollary 3 b) with arbitrary nondecreasing λ ∈ Λ[α,β ] and μ = υ .
In this case we have J (f , x,μ) = J (f , x) and M̃ = M̃0 . �

Next we give the results related to (JSI).

THEOREM 5. Let λ and μ be two functions fromΛ[α,β ] ,−∞ < α < β < ∞ ,
either both continuous or both of bounded variation.. Let x : [α, β ] → (a, b) ,−∞ �
a < b � ∞ be a monotonic function (either nondecreasing or nonincreasing) and
let f : (a, b) → R be a convex function.
a) If m � 0 is a constant such that for all α < t < β

λ (t) − λ (α) − m(μ(t) − μ(α)) � 0, λ (β) − λ (t) − m(μ(β) − μ(t)) � 0, (4.9)

then
J (f , x, λ ) � mJ (f , x,μ). (4.10)

b) If M > 0 is a constant such that for all α < t < β

M(μ(t)−μ(α))−(λ (t)−λ (α)) � 0, M(μ(β)−μ(t))−(λ (β)−λ (t)) � 0, (4.11)

then
MJ (f , x,μ) � J (f , x, λ ). (4.12)

Proof. First note that under given assumptions on x , f , λ and μ , J (f , x, λ )
and J (f , x,μ) are well defined and nonnegative.

a) Suppose that m � 1 . Since λ ,μ ∈ Λ[α,β ], we have λ (α) = λ (β) − 1 ,
μ (α) = μ(β) − 1 , μ (t) − μ (α) � 0 and μ (β) − μ (t) � 0 , so that from (4.9) we
get for all α < t < β

λ (t) − λ (α) − (μ (t) − μ (α)) � λ (t) − λ (α) − m(μ(t) − μ(α)) � 0,

μ (t) − μ (α) − (λ (t) − λ (α)) = λ (β) − λ (t) − (μ(β) − μ(t))
� λ (β) − λ (t) − m(μ(β) − μ(t)) � 0.

This implies that λ (t)−λ (α) = μ (t)− μ (α) for all α < t < β . This, together with
λ (β) − λ (α) = μ(β) − μ(α) = 1 implies that

λ (t) = μ (t) + λ (α) − μ (α) for all α � t � β . (4.13)
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But then the integral with respect to λ coincides with the integral with respect to μ
so that J (f , x, λ ) = J (f , x,μ) . Moreover the condition (4.9) is possible only with
m = 1 so that (4.10) obviously holds with equality sign.

It remains to consider the case 0 � m < 1 . To prove the inequality (4.10) we
consider the function ρ : [α, β ] → R defined by

ρ(t) := λ (t) − mμ (t) , t ∈ [α, β ].

If λ and μ are both continuous (both of bounded variation), then ρ is continuous (of
bounded variation) too. Further, using (4.9) we get that for all α < t < β

ρ(t) − ρ(α) = λ (t) − λ (α) − m(μ(t) − μ(α)) � 0,

ρ(β) − ρ(t) = λ (β) − λ (t) − m(μ(β) − μ(t)) � 0.

Also, since λ ,μ ∈ Λ[α,β ]

ρ(β) − ρ(α) = λ (β) − λ (α) − m(μ(β) − μ(α)) = 1 − m > 0.

We conclude that the normalized function 1
1−mρ belongs to the class Λ[α,β ] . Now, we

follow our proof of Theorem 4 a), but instead of using (JI) in the first step we use (JSI)
and then we use (J). So we get

m

[
f

(∫ β

α
x(t)dμ(t)

)
−
∫ β

α
f (x(t))dμ(t)

]
+
∫ β

α
f (x(t))dλ (t) � f

(∫ β

α
x(t)dλ (t)

)

and this is equivalent to the inequality (4.10).
b) First suppose that M � 1. In this case we use the fact that λ (α) = λ (β) − 1 ,

μ (α) = μ(β) − 1 , λ (t) − λ (α) � 0 and λ (β) − λ (t) � 0, so that from (4.11) we
get for all α < t < β

μ (t) − μ (α) − (λ (t) − λ (α)) � M(μ (t) − μ (α)) − (λ (t) − λ (α)) � 0,

λ (t) − λ (α) − (μ (t) − μ (α)) = μ(β) − μ(t) − (λ (β) − λ (t))
� M(μ(β) − μ(t)) − (λ (β) − λ (t)) � 0

which implies that (4.13) holds again and by the same argument as in the previous case
we conclude that J (f , x, λ ) = J (f , x,μ) . Moreover the condition (4.11) is possible
only with M = 1 , so that (4.12) holds with equality sign.

It remains to consider the case when M > 1. To prove the inequality (4.12) we
consider the function σ : [α, β ] → R defined by

σ(t) := Mμ (t) − λ (t) , t ∈ [α, β ].

If λ and μ are both continuous (both of bounded variation), then σ is continuous (of
bounded variation) too. Further, using (4.11) we get that for all α < t < β

σ(t) − σ(α) = M(μ(t) − μ(α)) − (λ (t) − λ (α)) � 0,

σ(β) − σ(t) = M(μ(β) − μ(t)) − (λ (β) − λ (t)) � 0.
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Also, since λ ,μ ∈ Λ[α,β ]

σ(β) − σ(α) = M(μ(β) − μ(α)) − (λ (β) − λ (α)) = M − 1 > 0.

We conclude that the normalized function 1
M−1σ belongs to the class Λ[α,β ] . Now we

follow our proof of Theorem 4 b) but instead of using (JI) in the first step we use (JSI)
and then we use (JR). So we get

M

[
f

(∫ β

α
x(t)dμ(t)

)
−
∫ β

α
f (x(t))dμ(t)

]
+
∫ β

α
f (x(t))dλ (t) � f

(∫ β

α
x(t)dλ (t)

)

and this is equivalent to the inequality (4.12). �

COROLLARY 5. Let λ andμ be two functions fromΛ[α,β ] ,−∞ < α < β < ∞ ,
either both continuous or both of bounded variation. Let x : [α, β ] → (a, b) ,−∞ �
a < b � ∞ be a monotonic function (either nondecreasing or nonincreasing) and
let f : (a, b) → R be a convex function. Assume that

μ (α) < μ (t) < μ (β) for all α < t < β .

If m̃ and M̃ are defined by

m̃ = m̃(λ ,μ) := inf
{

λ (t)−λ (α)
μ(t)−μ(α) ,

λ (β)−λ (t)
μ(β)−μ(t) : α < t < β

}
, (4.14)

M̃ = M̃(λ ,μ) := sup
{

λ (t)−λ (α)
μ(t)−μ(α) ,

λ (β)−λ (t)
μ(β)−μ(t) : α < t < β

}
, (4.15)

then
M̃J (f , x,μ) � J (f , x, λ ) � m̃J (f , x,μ). (4.16)

Proof. Since μ (α) < μ (t) < μ (β) for all α < t < β , m̃ and M̃ are well
defined quantities and obviously m̃ ∈ [0,∞) and M̃ ∈ (0,∞] . Therefore the right
inequality in (4.16) follows from Theorem 5 a) with m = m̃ . If M̃ = ∞ , then the left
inequality in (4.16) holds trivially, while for M̃ < ∞ it follows from Theorem 5 b)
with M = M̃ . �

As in the previous case we can consider the uniformdistribution υ and correspond-
ing nonweighted integral Jensen functional J (f , x) and state the following special case
of Corollary 5:

COROLLARY 6. Let λ be a function from Λ[α,β ] , −∞ < α < β < ∞ . Let x :
[α, β ] → (a, b) ,−∞ � a < b � ∞ be a monotonic function (either nondecreasing or
nonincreasing) and let f : (a, b) → R be a convex function. If m̃0 and M̃0 are defined
by

m̃0 := m̃(λ ,υ) := (β − α) · inf
{

λ (t)−λ (α)
t−α , λ (β)−λ (t)

β−t : α < t < β
}

,

M̃0 := M̃(λ ,υ) := (β − α) · sup
{

λ (t)−λ (α)
t−α , λ (β)−λ (t)

β−t : α < t < β
}

,

then
M̃0J (f , x) � J (f , x, λ ) � m̃0J (f , x).
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Proof. We apply Corollary 5 with arbitrary λ ∈ Λ[α,β ] and μ = υ . In this case
we have J (f , x,μ) = J (f , x) , m̃ = m̃0 and M̃ = M̃0 . �

To complete this section we give the results related to (JSBI):

THEOREM 6. Let λ and μ be two functions from Λ̃[α,β ] , −∞ < α < β < ∞ ,
either both continuous or both of bounded variation. Let α = γ0 < γ1 < . . . < γk = β ,
k � 2 be a points in [α, β ] . Assume that x : [α, β ] → (a, b) , −∞ � a < b � ∞
is a continuous function which is monotonic (either nondecreasing or nonincreasing)
on each of the intervals [γi−1, γi] , i = 1, . . . , k and that f : (a, b) → R is a convex
function.
a) If m � 0 is a constant such that for all α < t < β

λ (t) − λ (γi−1) − m(μ(t) − μ(γi−1)) � 0, λ (γi) − λ (t) − m(μ(γi) − μ(t)) � 0,

for t ∈ [γi−1, γi] , i = 1, . . . , k
(4.17)

and

μ (α) � μ (t1) � μ (γ1) � μ (t2) � . . . � μ (γk−1) � μ (tk) � μ (β) ,

for all ti ∈ [γi−1, γi] , i = 1, . . . , k,
(4.18)

then
J (f , x, λ ) � mJ (f , x,μ). (4.19)

b) If M > 0 is a constant such that for all α < t < β

M(μ(t) − μ(γi−1)) − (λ (t) − λ (γi−1)) � 0, M(μ(γi) − μ(t)) − (λ (γi) − λ (t)) � 0,

for t ∈ [γi−1, γi] , i = 1, . . . , k
(4.20)

and

λ (α) � λ (t1) � λ (γ1) � λ (t2) � . . . � λ (γk−1) � λ (tk) � λ (β) ,

for all ti ∈ [γi−1, γi] , i = 1, . . . , k,
(4.21)

then
MJ (f , x,μ) � J (f , x, λ ). (4.22)

Proof. a) We consider the function ρ : [α, β ] → R defined by

ρ(t) := λ (t) − mμ (t) , t ∈ [α, β ].

If λ and μ are both continuous (both of bounded variation), then ρ is continuous (of
bounded variation) too. Further, it is obvious that the condition (4.17) is equivalent to
the following condition

ρ (α) � ρ (t1) � ρ (γ1) � ρ (t2) � . . . � ρ (γk−1) � ρ (tk) � ρ (β) ,

for all ti ∈ [γi−1, γi] , i = 1, . . . , k.
(4.23)

Moreover, since m � 0 and λ = ρ + mμ , from (4.23) and (4.18) it easily follows
that λ satisfies the condition (4.21). Therefore both functions λ and μ satisfy Boas’
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monotonicity condition with the same prescribed points γi, i = 0, 1, . . . , k so that
J (f , x, λ ) and J (f , x,μ) are well defined and nonnegative (by Theorem E) under
proposed assumptions on x and f . Further, for any fixed t, α < t < β there is
exactly one j ∈ {1, . . . , k} such that t ∈ [γj−1, γj] . Using (4.17) we get

λ (t)−λ (α) − m(μ(t) − μ(α))
= λ (t) − λ (γj−1) − m(μ(t) − μ(γj−1)) + λ (γj−1) − λ (γj−2)
− m(μ(γj−1) − μ(γj−2)) + . . . + λ (γ1) − λ (α) − m(μ(γ1) − μ(α)) � 0

and

λ (β)−λ (t) − m(μ(β) − μ(t))
= λ (β) − λ (γk−1) − m(μ(β) − μ(γk−1)) + λ (γk−1) − λ (γk−2)
− m(μ(γk−1) − μ(γk−2)) + . . . + λ (γj) − λ (t) − m(μ(γj) − μ(t)) � 0.

We conclude that the condition (4.17) implies the condition (4.9) of Theorem 5 a).
Therefore, the argument for the case when m � 1 is quite the same as the one given in
the proof of Theorem 5 a). So in this case we conclude that m = 1 and (4.19) trivially
holds with equality sign.

It remains to discuss the case when m < 1.Since λ (β)−λ (α) = μ(β)−μ(α) =
1 , we get ρ(β) − ρ(α) = 1 − m > 0 and ρ satisfies the condition (4.23) so that
Theorem E can be applied for integral with respect to ρ and for x and f satisfying
proposed assumptions. The rest of the argument is quite the same as the one given in
the proof of Theorem 4 a) with only difference that in the first step we apply (JSBI)
instead of (JI). Hence, (4.19) indeed holds.

b) We consider the function σ : [α, β ] → R defined by

σ(t) := Mμ (t) − λ (t) , t ∈ [α, β ].

If λ and μ are both continuous (both of bounded variation), then σ is continuous (of
bounded variation) too. Further, it is obvious that the condition (4.20) is equivalent to
the following condition

σ (α) � σ (t1) � σ (γ1) � σ (t2) � . . . � σ (γk−1) � σ (tk) � σ (β) ,

for all ti ∈ [γi−1, γi] , i = 1, . . . , k.
(4.24)

Moreover, since M > 0 and μ = 1
M (σ + λ ) , from (4.24) and (4.21) it easily follows

that μ satisfies the condition (4.18). By the same argument as in the above proof for
case a) we conclude that J (f , x, λ ) and J (f , x,μ) are well defined and nonnegative
(by Theorem E) under proposed assumptions on x and f . Further, similarly as we
proved that the condition (4.17) implies the condition (4.9), we can prove that the
condition (4.20) implies the condition (4.11) of Theorem 5 b). Therefore, the argument
for the case when M � 1 is quite the same as the one given in the proof of Theorem
5 b). So in this case we conclude that M = 1 and (4.22) trivially holds with equality
sign.

It remains to discuss the case when M > 1 . Since λ (β)−λ (α) = μ(β)−μ(α) =
1 , we get σ(β) − σ(α) = M − 1 > 0 and σ satisfies the condition (4.24) so that
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Theorem E can be applied for integral with respect to σ and for x and f satisfying
proposed assumptions. The rest of the argument is quite the same as the one given in
the proof of Theorem 4 b) with only difference that in the first step we apply (JSBI)
instead of (JI). Hence, (4.22) indeed holds. �

REMARK 3. We can omit the requirement that the condition (4.18) holds from
the statement of Theorem 6. a) and similarly we can omit the requirement that the
condition (4.21) holds from the statement of Theorem 6. b), but then in both cases we

must require that the integrals
∫ β
α x(t)dλ (t) and

∫ β
α x(t)dμ(t) are in the domain of f .

COROLLARY 7. Let λ and μ be two functions from Λ̃[α,β ] , −∞ < α < β < ∞ ,
either both continuous or both of bounded variation. Let α = γ0 < γ1 < . . . < γk = β ,
k � 2 be a points in [α, β ] . Assume that x : [α, β ] → (a, b) , −∞ � a < b � ∞
is a continuous function which is monotonic (either nondecreasing or nonincreasing)
on each of the intervals [γi−1, γi] , i = 1, . . . , k and that f : (a, b) → R is a convex
function. Assume that λ satisfies the condition (4.21), while μ satisfies the stronger
condition than (4.18) that is

μ (α) < μ (t1) < μ (γ1) < μ (t2) < . . . < μ (γk−1) < μ (tk) < μ (β) ,

for all γi−1 < ti < γi, i = 1, . . . , k.

If m̃ and M̃ are defined by

m̃ = m̃(λ ,μ) := min
i=1,...,k

{
inf
{

λ (t)−λ (γi−1)
μ(t)−μ(γi−1)

, λ (γi)−λ (t)
μ(γi)−μ(t) : γi−1 < t < γi

}}
and

M̃ = M̃(λ ,μ) := max
i=1,...,k

{
sup
{

λ (t)−λ (γi−1)
μ(t)−μ(γi−1)

, λ (γi)−λ (t)
μ(γi)−μ(t) : γi−1 < t < γi

}}
,

then
M̃J (f , x,μ) � J (f , x, λ ) � m̃J (f , x,μ). (4.25)

Proof. Under given assumptions, m̃ and M̃ are well defined quantities and
obviously m̃ ∈ [0,∞) and M̃ ∈ (0,∞] . Therefore the right inequality in (4.25)
follows from Theorem 6. a) with m = m̃ . If M̃ = ∞ , then the left inequality in (4.16)
holds trivially, while for M̃ < ∞ it follows from Theorem 6. b) with M = M̃ . �

Again, we can consider the uniformdistribution υ and correspondingnonweighted
integral Jensen functional J (f , x) and state the following special case of Corollary 7:

COROLLARY 8. Let λ be a function from Λ̃[α,β ] , −∞ < α < β < ∞ . Let
α = γ0 < γ1 < . . . < γk = β , k � 2 be a points in [α, β ] . Assume that
x : [α, β ] → (a, b) , −∞ � a < b � ∞ is a continuous function which is monotonic
(either nondecreasingor nonincreasing) on each of the intervals [γi−1, γi] , i = 1, . . . , k
and that f : (a, b) → R is a convex function. Assume that λ satisfies the condition
(4.21) and define

m̃0 = m̃(λ ,υ) := min
i=1,...,k

{
(γi − γi−1) inf

{
λ (t)−λ (γi−1)

t−γi−1
, λ (γi)−λ (t)

γi−t : γi−1 < t < γi
}}

,

M̃0 = M̃(λ ,υ) := max
i=1,...,k

{
(γi − γi−1) sup

{
λ (t)−λ (γi−1)

t−γi−1
, λ (γi)−λ (t)

γi−t : γi−1 < t < γi
}}

.
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Then
M̃0J (f , x) � J (f , x, λ ) � m̃0J (f , x).

Proof. We apply Corollary 7 with μ = υ . �
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