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A NOTE ON SINGULAR INTEGRALS ASSOCIATED

WITH A VARIABLE SURFACE OF REVOLUTION

DASHAN FAN AND SHUICHI SATO

(Communicated by J. Pečarić)

Abstract. We prove Lp boundedness of certain singular integral operators associated with a
variable surface of revolution assuming a boundedness of related lower dimensional maximal
operators. The singular integrals are defined by rough kernels satisfying certain size and cancel-
lation conditions.

1. Introduction

Let Ω∈ L1(Sn−1) , where Sn−1 is the unit sphere in R
n (n � 2) with the Lebesgue

surface measure dσ . We assume that∫
Sn−1

Ω(θ )dσ(θ ) = 0. (1.1)

Define a singular integral

S f (x) = p.v.
∫

Rn
Ω(y′)|y|−n f (x− y)dy

for f ∈ S (Rn) (the Schwartz space), where y′ = y/|y| for y ∈ R
n \ {0} . Let f̂ (ξ ) =∫

Rn f (x)e−2π i〈x,ξ 〉 dx be the Fourier transform of f , where 〈·, ·〉 denotes the inner prod-
uct in R

n . Then it is known that (S f ) ˆ (ξ ) = m(ξ ′) f̂ (ξ ) , where

m(ξ ′) = −
∫

Sn−1
Ω(θ )

[
i
π
2

sgn(〈ξ ′,θ 〉)+ log |〈ξ ′,θ 〉|
]

dσ(θ ).

By using this expression of the Fourier transform of S f , we can show that S extends to
a bounded operator on L2(Rn) if

sup
ξ ′∈Sn−1

∫
Sn−1

|Ω(θ )| log
(|〈ξ ′,θ 〉|−1) dσ(θ ) < ∞. (1.2)

By Young’s inequality, (1.2) follows from the condition Ω ∈ L logL(Sn−1) , where
L logL(Sn−1) is the Zygmund class of all those functions Ω on Sn−1 which satisfy∫

Sn−1
|Ω(θ )| log(2+ |Ω(θ )|)dσ(θ ) < ∞.
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Furthermore, if Ω ∈ L logL(Sn−1) , by the method of rotations of Calderón-Zygmund
(see [1]) we can show that S extends to a bounded operator on Lp(Rn) for all p∈ (1,∞)
(see also [18] for the best possibility of the class L logL(Sn−1) ).

In the article [10], Grafakos-Stefanov considered the following condition:

sup
ξ∈Sn−1

∫
Sn−1

|Ω(θ )|(log
(|〈θ ,ξ 〉|−1))β dσ(θ ) < ∞ for β > 1, (1.3)

which is stronger than (1.2), and proved the Lp boundedness of S defined by Ω satis-
fying (1.3) for a certain range of p depending on β . It has been improved by Fan-Guo-
Pan [4] as follows:

THEOREM A. Suppose that Ω satisfies (1.3) for β > 1 . Then S is bounded on
Lp(Rn) for p ∈ (2β/(2β −1),2β ) .

For s � 1, let Δs denote the collection of measurable functions h(t) on R+ = {t ∈
R : t � 0} satisfying

‖h‖Δs = sup
u>0

(
u−1

∫ u

0
|h(t)|s dt

)1/s

< ∞.

For b ∈ Δ1 and Ω ∈ L1(Sn−1) satisfying (1.1), we define a singular integral of R. Fef-
ferman type (see [9]):

Sb f (x) = p.v.

∫
Rn

b(|y|)Ω(y′)|y|−n f (x− y)dy.

In this note, we study singular integrals associated with a variable surface of revolution.
We shall prove the Lp boundedness of the singular integrals under certain conditions
and as an application we shall extend Theorem A to the case of Sb on R

2 .
We write f (x,z) , x ∈ R

n , z ∈ R
m for functions on R

n+m , n � 2, m � 1. Define a
singular integral with a rough kernel by

T f (x,z) = p.v.

∫
Rn

b(|y|)Ω(y′)|y|−n f (x− y,z− γ(|y|,z))dy, (1.4)

initially for f ∈ S (Rn+m) , where b ∈ Δ1 and

γ(t,z) = (γ1(t,z),γ2(t,z), . . . ,γm(t,z))

is a suitable continuous mapping from R+ ×R
m to R

m such that the singular integral
(1.4) exists for all (x,z) .

To study the mapping property of T , we consider two lower dimensional maximal
functions associated with the function γ :

μγ(g)(z) = sup
u>0

u−1
∫ u

0
|g(z− γ(t,z))|dt, (1.5)

Mγ(h)(s,z) = sup
u>0

u−1
∫ u

0
|h(s− t,z− γ(t,z))|dt. (1.6)
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It is known that the Lr boundedness of Mγ implies that of μγ (see [13]).
Let H1(Sn−1) denote the Hardy space on Sn−1 . The space L logL(Sn−1) is a

proper subspace of H1(Sn−1) . The following result has been shown by [7]:

THEOREM B. Suppose that Ω ∈ H1(Sn−1) satisfies (1.1) , b is bounded and Mγ
is bounded on Lr(Rm+1) for all r > 1 . Then T is bounded on Lp(Rn+m) for all
p ∈ (1,2] .

See [13], [8], [6], [12], [14] for the case where γ(t,z) is independent of the z vari-
able. We consider the singular integral T in (1.4) defined by Ω satisfying a condition
similar to (1.3) and prove Lp boundedness of it for a certain range of p contained in
(1,∞) . Let ϕ be a positive, continuous function on (0,∞) such that

(1) ϕ is increasing,

(2) ϕ(s)/s is decreasing,

(3) ϕ(st) � c(ϕ(s)+ϕ(t)) ,

(4) ϕ(2s) � cϕ(s) .

A prime example of ϕ(t) is the function (log(a+ t))β , where β > 0, a � 2 and a may
depend on β . Define a function ψ by

ψ(t) = sup
s>0

min(1,st)
ϕ(s)

=
1

ϕ(1/t)
, (1.7)

where the last equality follows from (1) and (2) of the properties of ϕ . We consider the
following two conditions on Ω :

sup
ξ∈Sn−1

∫
Sn−1

|Ω(θ )|ϕ (|〈θ ,ξ 〉|−1) dσ(θ ) < ∞, (1.8)

sup
ξ∈Sn−1

∫∫
Sn−1×Sn−1

|Ω(θ )Ω(ω)|ϕ (|〈θ −ω ,ξ 〉|−1) dσ(θ )dσ(ω) < ∞. (1.9)

For Ω ∈ L1(Sn−1) , the condition (1.3) is equivalent to (1.8) with ϕ(t) = (log(a+ t))β

(a � 2). In Section 2, we shall see that the condition (1.8) implies (1.9) when n = 2.
In this note, we shall prove the following:

THEOREM 1. Let 0 < α < 1
2 , 2

1−2α < s. Suppose that b ∈ Δs , ∑ j�1ϕ(2 j)−α

< ∞ , Ω satisfies (1.9) and Mγ is bounded on Lr(Rm+1) for all r > 1 . Then T is
bounded on Lp(Rn+m) for s/(s(1−α)−1) < p � 2 .

We shall see that the proof of the L2 boundedness of Theorem 1 only uses the Lr

boundedness of μγ . Thus we have the following:

COROLLARY 1. Let the numbers α , s and the functions ϕ , b , Ω be as in Theo-
rem 1 . If μγ is bounded on Lr(Rm) for all r > 1 , then T is bounded on L2(Rn+m) .
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For examples of functions γ(t,z) for which the maximal operator μγ is bounded
on Lr(Rm) , see [2]. When the function γ is independent of z , we have the following
result:

THEOREM 2. Let s ∈ (1,2] , 0 < α < 1/s′ , where s′ = s/(s−1) . Let γ be inde-
pendent of the z variable. Suppose that ∑ j�1ϕ(2 j)−α < ∞ , b ∈ Δs , Ω satisfies (1.9)
and Mγ is bounded on Lr(Rm+1) for all r > 1 . Then T is bounded on Lp(Rn+m) for
2s/((3−2α)s−2) < p < 2s/((2α−1)s+2) .

When γ(t) = P(t) , where P(t) is a polynomial mapping from R+ to R
m , the bound-

edness of Mγ can be found in [16, pp. 476-478]. Taking f (x,z) = g(x)h(z) and γ = 0
in Theorem 2, we have the following:

COROLLARY 2. Let the numbers α , s and the functions ϕ , b , Ω be as in Theo-
rem 2 . Then Sb is bounded on Lp(Rn) for the same range of p as in Theorem 2 .

By Lemma 1 in Section 2, the condition (1.9) follows from (1.8) when n = 2. There-
fore, by taking ϕ(t) = (log(a+ t))β in Theorems 1 and 2, we have the following two
results.

THEOREM 3. Let n = 2 . Let 2 < β , 2β/(β − 2) < s. Suppose that b ∈ Δs , Ω
satisfies (1.3) and Mγ is bounded on Lr(Rm+1) for all r > 1 . Then T is bounded on
Lp(Rn+m) for sβ/(s(β −1)−β ) < p � 2 .

THEOREM 4. Let n = 2 . Suppose that s ∈ (1,2] , s′ < β , b ∈ Δs . Let γ be
independent of the z variable. Suppose that Ω satisfies (1.3) and Mγ is bounded on
Lr(Rm+1) for all r > 1 . Then T is bounded on Lp(Rn+m) for 2sβ/((3β−2)s−2β ) <
p < 2sβ/((2−β )s+2β ) .

Also, Theorem 4 implies the following:

COROLLARY 3. Let n = 2 . Let the numbers β , s and the functions b, Ω be as
in Theorem 4 . Then Sb is bounded on Lp(Rn) for the same range of p as in Theorem
4 .

In [10], it was shown that there exists a function Ω which satisfies the condition
(1.3) for all β > 0 but does not belong to H1(Sn−1) and there exists an f ∈ H1(Sn−1)
which does not satisfy (1.3) for any β > 1.

If we combine the proof of Theorem 1 with that of Theorem B in [7], we have the
following:

THEOREM 5. Suppose that Ω ∈ H1(Sn−1) satisfies (1.1) , b ∈ Δs for some s > 2
and Mγ is bounded on Lr(Rm+1) for all r > 1 . Then T is bounded on Lp(Rn+m) for
s′ < p � 2 .
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In this note, C is used to denote non-negative constants which may be different in
different occurrences. In section 2 we shall give several results which will be used to
prove Theorems 1–4. We shall prove Theorems 1 and 2 in Section 3. Finally, in Section
4, we shall give a related result for the Marcinkiewicz integrals.

2. Results for the proofs of Theorems 1–4

The following lemma is for the case n = 2, which is the reason we confine our-
selves to the case n = 2 in Theorems 3, 4 and Corollary 3.

LEMMA 1. Let n = 2 . Let ϕ be as in Section 1 and let Ψ ∈ L1(Sn−1) , Ψ � 0 .
Suppose that

sup
ξ∈Sn−1

∫
Sn−1

Ψ(θ )ϕ
(|〈θ ,ξ 〉|−1) dσ(θ ) < ∞.

Then

sup
ξ∈Sn−1

∫∫
Sn−1×Sn−1

Ψ(θ )Ψ(ω)ϕ
(|〈θ −ω ,ξ 〉|−1) dσ(θ )dσ(ω) < ∞.

Proof. Put Ψ̃(t) =Ψ(cost,sin t) . Then the condition assumed for Ψ is equivalent
to

sup
u∈R

∫ 2π

0
Ψ̃(t)ϕ

(|cost cosu+ sint sinu|−1) dt (2.1)

= sup
u∈R

∫ 2π

0
Ψ̃(t)ϕ

(|cos(t−u)|−1) dt

= sup
u∈R

∫ 2π

0
Ψ̃(t)ϕ

(|sin(t−u)|−1) dt < ∞.

Also, the conclusion of the lemma is equivalent to

sup
u∈R

∫ 2π

0

∫ 2π

0
Ψ̃(t)Ψ̃(s)ϕ

(|cos(t−u)− cos(s−u)|−1) dt ds

= sup
u∈R

∫ 2π

0

∫ 2π

0
Ψ̃(t)Ψ̃(s)ϕ

(|2sin((t + s−2u)/2)sin((t − s)/2)|−1) dt ds < ∞.

Thus by (3) of the properties of ϕ , it suffices to show that

sup
u∈R

∫ 2π

0
Ψ̃(t)ϕ

(|sin(t/2−u)|−1) dt < ∞.
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This can be shown by applying (1), (4) of the properties of ϕ and (2.1) as follows:

sup
u∈R

∫ 2π

0
Ψ̃(t)ϕ

(|sin(t/2−u)|−1) dt

� C sup
u∈R

∫ 2π

0
Ψ̃(t)ϕ

(|2sin((t −u)/2)cos((t−u)/2)|−1) dt

= C sup
u∈R

∫ 2π

0
Ψ̃(t)ϕ

(|sin(t−u)|−1) dt < ∞.

This completes the proof.
For k ∈ Z , let Ik = [2k,2k+1) , where Z denotes the set of all integers. Then

T ( f )(x,z) =
∞

∑
k=−∞

Tk f (x,z),

where
Tk f (x,z) =

∫
Rn
χIk (|y|)b(|y|)|y|−nΩ(y′) f (x− y,z− γ(|y|,z))dy.

Let F be the Fourier transform acting on the x variable. Then it is easy to see that

F (Tk f )(ξ ,z) =
∫
χIk(|y|)b(|y|)|y|−nΩ(y′)F ( f )(ξ ,z− γ(|y|,z))e−2π i〈y,ξ 〉 dy.

By applying the boundedness of the maximal operator μγ as in [7], we have Lemmas
2 and 3 below for the estimates of F (Tk f ) .

LEMMA 2. Let b ∈ Δs for some s > 2 . Suppose that μγ is bounded on Lr(Rm)
for all r > 1 . Then

‖F (Tk f )(ξ , ·)‖L2(Rm) � C|2kξ |‖F ( f )(ξ , ·)‖L2(Rm),

where C is a constant independent of k ∈ Z and ξ ∈ R
n .

Proof. Note that

F (Tk f )(ξ ,z) =
∫

Ik
b(t)F f (ξ ,z− γ(t,z))

∫
Sn−1

Ω(θ )e−2π it〈ξ ,θ〉 dσ(θ )dt/t. (2.2)

We define Fξ (z) = F f (ξ ,z) . Then by (1.1) and Hölder’s inequality we have

|F (Tk f )(ξ ,z)| �
∫

Ik

∣∣∣∣b(t)Fξ (z− γ(t,z))
∫

Sn−1
Ω(θ )

(
e−2π it〈ξ ,θ〉 −1

)
dσ(θ )

∣∣∣∣ dt/t

� C‖Ω‖1

∫
Ik

∣∣b(t)Fξ (z− γ(t,z))
∣∣ |ξ |dt

� C‖Ω‖1‖b‖Δs

∣∣∣2kξ
∣∣∣(μγ(|Fξ |s′)(z))1/s′

.
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By the L2/s′ boundedness of μγ , we have

(∫
Rm

|F (Tk f )(ξ ,z)|2 dz

)1/2

� C‖Ω‖1‖b‖Δs

∣∣∣2kξ
∣∣∣
∥∥∥∥(μγ (|Fξ |s′))1/s′

∥∥∥∥
L2(Rm)

� C‖Ω‖1‖b‖Δs

∣∣∣2kξ
∣∣∣‖Fξ‖L2(Rm),

which completes the proof of Lemma 2.

LEMMA 3. Let b ∈ Δs for some s > 2 and let Ω satisfy (1.9) . Suppose that μγ
is bounded on Lr(Rm) for all r > 1 . Let 1 < q < 2s/(s+2) . Then

‖F (Tk f )(ξ , ·)‖L2(Rm) � Cϕ
(
|2kξ |

)−1/q′ ‖F ( f )(ξ , ·)‖L2(Rm),

where C is a constant independent of k ∈ Z and ξ ∈ R
n .

Proof. For q satisfying 1 < q < 2s/(s+2) , by using Hölder’s inequality in (2.2),
we have

|F (Tk f )(ξ ,z)| �
(∫

Ik

∣∣b(t)Fξ (z− γ(t,z))
∣∣q dt/t

)1/q

Lq′,k

� C‖b‖Δs

(
μγ(|Fξ |sq/(s−q))(z)

)(s−q)/(sq)
Lq′,k,

where Fξ is as in the proof of Lemma 2 and

Lr,k =
(∫

Ik

∣∣∣∣
∫

Sn−1
Ω(θ )e−2π it〈ξ ,θ〉 dσ(θ )

∣∣∣∣
r

dt/t

)1/r

.

Note that
Lq′,k � ‖Ω‖(q′−2)/q′

1 L
2/q′
2,k .

A direct computation shows

L 2
2,k =

∫∫
Sn−1×Sn−1

Ω(θ )Ω(ω)

[∫ 2k+1

2k
exp(−2π it〈θ−ω ,ξ 〉) dt/t

]
dσ(θ )dσ(ω)

� C
∫∫

Sn−1×Sn−1
|Ω(θ )Ω(ω)|min

(
1, |2k〈θ −ω ,ξ 〉|−1

)
dσ(θ )dσ(ω)

=: I.

By (1.7) we have

I � C
∫∫

Sn−1×Sn−1
|Ω(θ )Ω(ω)|ϕ (|〈θ −ω ,ξ ′〉|−1)ψ(2−k|ξ |−1)dσ(θ )dσ(ω)

� Cϕ(2k|ξ |)−1
∫∫

Sn−1×Sn−1
|Ω(θ )Ω(ω)|ϕ (|〈θ −ω ,ξ ′〉|−1) dσ(θ )dσ(ω).
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Since Ω satisfies (1.9), we have

L 2
2,k � Cϕ(2k|ξ |)−1. (2.3)

Therefore we have

|F (Tk f )(ξ ,z)| � C‖b‖Δsϕ(2k|ξ |)−1/q′
(
μγ(|Fξ |sq/(s−q))(z)

)(s−q)/(sq)
,

which proves Lemma 3, since∥∥∥(μγ (|Fξ |sq/(s−q)))(s−q)/(sq)
∥∥∥

L2(Rm)
� C‖Fξ‖L2(Rm).

When the function γ is independent of the z variable, we have the following two
lemmas.

LEMMA 4. Suppose that the function γ is independent of the z variable : γ(t,z) =
γ(t) . Then

|(Tk f )ˆ(ξ ,ω)| � C‖b‖Δ1‖Ω‖1|2kξ || f̂ (ξ ,ω)|,
where C is a constant independent of k ∈ Z , ξ ∈ R

n and ω ∈ R
m .

Proof. It is easy to see that

(Tk f )ˆ(ξ ,ω) = f̂ (ξ ,ω)Ak(ξ ,ω),

where
Ak(ξ ,ω) =

∫
χIk (|y|)b(|y|)Ω(y′)|y|−ne−2π i(〈y,ξ 〉+〈γ(|y|),ω〉) dy.

By (1.1) we have

Ak(ξ ,ω) =
∫
χIk(|y|)b(|y|)Ω(y′)|y|−ne−2π i〈γ(|y|),ω〉

(
e−2π i〈y,ξ 〉 −1

)
dy,

from which the conclusion immediately follows.

LEMMA 5. Suppose that the function γ is independent of the z variable. Let
b ∈ Δs for some s ∈ (1,2] and let Ω satisfy (1.9) . Then

|(Tk f )ˆ(ξ ,ω)| � Cϕ
(
|2kξ |

)−1/s′ | f̂ (ξ ,ω)|,

where C is a constant independent of k ∈ Z , ξ ∈ R
n and ω ∈ R

m .

Proof. Let Ak(ξ ,ω) be as in the proof of Lemma 4 and Lr,k as in the proof of
Lemma 3. By Hölder’s inequality we have

|Ak(ξ ,ω)| � C‖b‖ΔsLs′,k � C‖b‖ΔsL
2/s′
2,k ,

which combined with the estimate (2.3) completes the proof of Lemma 5.
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3. Proofs of Theorems 1 and 2

Let Φ∈C∞
0 (Rn) be a radial function supported in {ξ : 1/2< |ξ |� 2} . We assume

that
∞

∑
j=−∞

Φ(2 jξ )2 = 1 for all ξ �= 0.

Let Tk be as in Section 2. Decompose

T f =∑
j

(
∑
k

S j+k(Tk(S j+k f ))

)
=∑

j

Uj f ,

where the operator S j is defined by

F (S j f )(ξ ,z) = F ( f )(ξ ,z)Φ(2 jξ )

and
Uj f =∑

k

S j+k(Tk(S j+k f )).

By the Littlewood-Paley theory we have the following:

LEMMA 6. Let p ∈ (1,∞) . Then

‖∑
k

Sk fk‖Lp(Rn+m) � C

∥∥∥∥∥∥
(
∑
k

| fk|2
)1/2

∥∥∥∥∥∥
Lp(Rn+m)

, (3.1)

where fk ∈ S (Rn+m) and fk = 0 for all but a finite number of values of k; also∥∥∥∥∥∥
(
∑
k

|Sk f |2
)1/2

∥∥∥∥∥∥
Lp(Rn+m)

� C‖ f‖Lp(Rn+m), (3.2)

where f ∈ S (Rn+m) .

Now, we prove Theorem 1. Let Dj = {ξ ∈ R
n : 2− j−1 � |ξ | � 2− j+1} . Then, by

(3.1) with p = 2 and the Plancherel theorem we have

‖Uj f‖2
L2(Rn+m) � C∑

k

∫
Rn+m

∣∣Tk(S j+k f )(y,z)
∣∣2 dydz (3.3)

= C∑
k

∫
Rm

(∫
Rn

∣∣∣Φ(2 j+kξ )
∣∣∣2 |F (Tk f )(ξ ,z)|2 dξ

)
dz

� C∑
k

∫
Dj+k

(∫
Rm

|F (Tk f )(ξ ,z)|2 dz

)
dξ .
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Let j � 0. Since the Lr boundedness of Mγ implies the Lr boundedness of μγ
(see [13]), by Lemma 2 and (3.3) we see that

‖Uj f‖2
L2(Rn+m) � C∑

k

∫
Rm

(∫
Dj+k

|F ( f )(ξ ,z)|2 |2kξ |2 dξ
)

dz

� C2−2 j
∫

Rm

(
∑
k

∫
Dj+k

|F ( f )(ξ ,z)|2 dξ

)
dz

� C2−2 j
∫

Rn+m
|F ( f )(ξ ,z)|2 dξ dz.

Thus we have
‖Uj f‖L2(Rn+m) � C2− j‖ f‖L2(Rn+m) for j � 0. (3.4)

Next, let j < 0. Then, using Lemma 3 and (3.3), we have

‖Uj f‖L2(Rn+m) � Cϕ(2| j|)−1/q′‖ f‖L2(Rn+m) for 1 < q < 2s/(s+2). (3.5)

Let s′ < r � 2. We shall prove

‖Uj f‖Lr(Rm+n) � C‖ f‖Lr(Rm+n). (3.6)

By interpolating between the estimates (3.4), (3.6) and between (3.5), (3.6), we com-
plete the proof of Theorem 1, since ‖T ( f )‖p � ∑ j ‖Uj f‖p .

By Lemma 6, to prove (3.6) it suffices to show that∥∥∥∥∥∥
(

∞

∑
k=−∞

|Tk fk|2
)1/2

∥∥∥∥∥∥
Lr(Rm+n)

� C

∥∥∥∥∥∥
(

∞

∑
k=−∞

| fk|2
)1/2

∥∥∥∥∥∥
Lr(Rm+n)

for r ∈ (s′,2] . (3.7)

LEMMA 7. For h ∈ Δu , u > 1 , Ω ∈ L1(Sn−1) , let

Qh( f )(x,z) = sup
k∈Z

∫
2k�|y|<2k+1

|h(|y|)Ω(y′)||y|−n| f (x− y,z− γ(|y|,z))|dy.

Suppose that Mγ is bounded on Lr(Rm+1) for all r > 1 . Then Qh is bounded on
Lp(Rn+m) for p > u′ .

Proof. The proof is similar to that of [8, Lemma 2.4]. By Hölder’s inequality we
have

Qh( f )(x,z) � C‖h‖Δu

∫
Sn−1

|Ω(θ )|
(
Mθ ,γ (| f |u′)(x,z)

)1/u′
dσ(θ ),

where

Mθ ,γ (F)(x,z) = sup
k∈Z

2−k
∫ 2k+1

2k
|F(x− tθ ,z− γ(t,z))|dt.

In [7], it was proved that the boundedness of Mγ implies∥∥Mθ ,γ (g)
∥∥

Lp(Rn+m) � C‖g‖Lp(Rn+m) for all p > 1 ,
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with C independent of θ ∈ Sn−1 . Therefore, if p > u′ ,

‖Qh( f )‖Lp(Rn+m) � C‖h‖Δu

∥∥∥∥
∫

Sn−1
|Ω(θ )|

(
Mθ ,γ (| f |u′)(x,z)

)1/u′
dσ(θ )

∥∥∥∥
Lp(Rn+m)

� C‖h‖Δu

∫
Sn−1

|Ω(θ )|
∥∥∥Mθ ,γ (| f |u′)

∥∥∥1/u′

Lp/u′ (Rn+m)
dσ(θ )

� C‖h‖Δu‖Ω‖1‖ f‖Lp(Rn+m).

This completes the proof.
Now, we can prove (3.7) by applying the method of [7]. We have the following

estimates: ∥∥∥∥sup
k∈Z

|Tk fk|
∥∥∥∥

Lr(Rn+m)
� C

∥∥∥∥sup
k∈Z

| fk|
∥∥∥∥

Lr(Rn+m)
for all r > s′ , (3.8)

∥∥∥∥∥∥
(
∑
k∈Z

|Tk fk|r
)1/r

∥∥∥∥∥∥
Lr(Rn+m)

� C

∥∥∥∥∥∥
(
∑
k∈Z

| fk|r
)1/r

∥∥∥∥∥∥
Lr(Rn+m)

for all r > s′ (3.9)

since supk∈Z |Tk fk|� Qb (supk∈Z | fk|) , |Tk fk|� Qb(| fk|) and Qb is bounded on Lr(Rn+m)
for r > s′ by Lemma 7, where Qb is defined as in Lemma 7 by using the functions b , Ω
and γ of Theorem 1. Thus, (3.7) follows by interpolating between the estimates (3.8)
and (3.9). This completes the proof of (3.7) and hence the proof of Theorem 1.

Now, we turn to the proof of Theorem 2. Let Vj be defined in the same way as Uj

in the proof of Theorem 1 by using the functions b , Ω and γ satisfying the conditions
assumed in Theorem 2. Then, arguing as in the proof of Theorem 1 and using Lemmas
4 and 5, we can get estimates similar to (3.4) and (3.5); that is,

‖Vj f‖L2(Rn+m) � C2− j‖ f‖L2(Rn+m) for j � 0, (3.10)

‖Vj f‖L2(Rn+m) � Cϕ(2| j|)−1/s′‖ f‖L2(Rn+m) for j < 0. (3.11)

Also we have

‖Vj f‖Lr(Rm+n) � C‖ f‖Lr(Rm+n) for |1/r−1/2|< 1/s′ . (3.12)

This follows from Lemma 6 and the estimate∥∥∥∥∥∥
(
∑
k

|Tk fk|2
)1/2

∥∥∥∥∥∥
Lr(Rn+m)

� C

∥∥∥∥∥∥
(
∑
k

| fk|2
)1/2

∥∥∥∥∥∥
Lr(Rn+m)

for |1/r− 1/2| < 1/s′ , where Tk is as in the proof of Theorem 1, with everything
adapted for the present case. The proof of this estimate is essentially the same as that
of (3.14) of [8] (see also [5, Theorem 7.5]). Applying interpolation to the estimates
(3.10)–(3.12) and noting ‖T ( f )‖p � ∑ j ‖Vj f‖p , we complete the proof of Theorem 2.
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4. Marcinkiewicz integral analog

We can also consider the Marcinkiewicz integral

μΩ( f )(x) =

(∫ ∞

0

∣∣∣∣
∫
|y|�t

Ω(y′)|y|−n+1b(|y|) f (x− y)dy

∣∣∣∣
2

t−3 dt

)1/2

.

The following theorem related to the above operator is from Theorem 1 in [11].

THEOREM C. ([11]) Let {K j
t }−∞< j�0 be a sequence of functions on R

n × (0,∞)
such that ‖K j

t ‖1 � C2 j , supp(K j
t ) ⊂ {t2 j−1 � |x| � t2 j+1} for all t > 0 and −∞ <

j � 0 , and such that the operator

μ( f )(x) =

⎛
⎝∫ ∞

0

∣∣∣∣∣
0

∑
j=−∞

K j
t ∗ f (x)

∣∣∣∣∣
2

t−1 dt

⎞
⎠

1/2

is bounded on L2(Rn) . Suppose that

(a) for each non-positive integer j , the maximal operator supt>0

∣∣∣∣∣∣K j
t

∣∣∣∗ f (x)
∣∣∣ is

bounded on Lp(Rn) with bound C(n, p)2 j for all 1 < p < ∞;

(b) there exists some positive constant β > 1/2 such that for any non-positive integer
j and t > 0 ∣∣∣K̂ j

t (ξ )
∣∣∣� C2 j (log(2+ |t2 jξ |))−β .

Then the operator μ is bounded on Lp(Rn) for 4β/(4β −1) < p < 4β .

Now we write

μΩ( f )(x) =

⎛
⎝∫ ∞

0

∣∣∣∣∣
0

∑
j=−∞

K j
Ω,t ∗ f (x)

∣∣∣∣∣
2

t−1 dt

⎞
⎠

1/2

with

K j
Ω,t(x) = t−1|x|−n+1b(|x|)Ω(x′)χ{t2 j−1<|x|�t2 j}(x).

For simplicity in the discussion, we only study the case b ∈ Δ2 .

THEOREM 6. Let n = 2 , b ∈ Δ2 . If a function Ω is homogeneous of degree 0 on
R

n and satisfies (1.1) and (1.3) with β > 1 , then μΩ is bounded on Lp(Rn) for all
2 � p < 2β . If we further assume that b is bounded, then μΩ is bounded on Lp(Rn)
for all 2β/(2β −1) < p < 2β .
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Proof. First, it is easy to see that

‖K j
Ω,t‖1 � C2 j‖b‖Δ1‖Ω‖1 � C2 j‖b‖Δ2‖Ω‖1.

Second, using the argument in Lemmas 3 and 5, we find that∣∣∣K̂ j
Ω,t(ξ )

∣∣∣� C2 j/2‖b‖Δ2L2, j,t ,

where

(L2, j,t)2 =
∫∫

Sn−1×Sn−1

Ω(θ )Ω(ω)

[
t−1

∫ t2 j

t2 j−1
exp(−2π ir〈θ −ω ,ξ 〉) dr

]
dσ(θ )dσ(ω).

Thus using t2 j to replace 2k in (2.3), we obtain that∣∣∣K̂ j
Ω,t(ξ )

∣∣∣� C2 j (log(2+ |t2 jξ |))−β/2
.

The L2 boundedness of μΩ is obvious from this estimate and (1.1). We omit the detail.
Therefore, by combining the results and checking the proof of Theorem C, we can
get the first part of the conclusion of Theorem 6 (the boundedness of the maximal

operator supt>0

∣∣∣∣∣∣K j
t

∣∣∣∗ f (x)
∣∣∣ is not needed for this case). It is easy to see that the

maximal operator supt>0

∣∣∣∣∣∣K j
t

∣∣∣∗ f (x)
∣∣∣ is bounded on Lp(Rn) with bound C(n, p)2 j for

all 1 < p < ∞ if b is bounded. Thus the second part of the conclusion of Theorem 6
follows from Theorem C.

We refer to [17] for related results on the Marcinkiewicz integrals (see also [15]).

RE F ER EN C ES
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