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COMPARISON OF LOCATION ESTIMATORS

USING BANKS’ CRITERION
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(Communicated by N. Elezović)

Abstract. In this paper, we analyze further Banks’ (1997) closeness criterion for estimators,
which is an alternative to Pitman’s (1937) closeness criterion. We mainly concentrate our analy-
sis on location estimation, and justify a conjecture by Banks (1997) that for heavy tail distribu-
tions the sample median is better than the sample mean when estimating a location parameter.
The conlusion is reversed for distributions with lighter tails. To achieve this, we use asymptotics
and exact probability calculations.

1. Introduction

The purpose of this paper is to analyze further Banks’ (1997) closeness criterion
for estimators, which is an alternative to Pitman’s (1937) closeness criterion. Even
though Banks’ criterion can be used to compare estimators that estimate any kind of a
parameter, we will mainly concentrate our analysis on location estimation. We begin
our discussion with some definitions.

All random variables and vectors are assumed to be defined on a common mea-
surable space (Ω,F ) , unless otherwise specified. The data is described by a random
vector X :Ω→ R

p , where p is a positive integer. The set of all possible values of X is
denoted by X , and we assume X is a Borel-measurable set, i.e., Range(X) = X ∈
B(p) . We denote by Θ the parameter space and by A the estimation space, and we are
interested in estimating a function κ(θ ) of the parameter θ ∈ Θ , where κ : Θ→ A .
We assume the estimation space A is a normed vector space equipped with the norm
‖ · ‖ : A → [0,∞) .

Assume C is a σ -field on A such that {a} ∈ C for all a ∈ A . An estimator δ
is any measurable function from X into A , and is a rule that specifies what estimate
we have based on what we observed. If we observe x, then the estimate according to
the estimator δ is δ (x) .
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Consider the family of probabilitymeasures (Pθ : θ ∈Θ) , each defined on (Ω,F ) .
When we have two possible estimators δ1 and δ2 for the parameter of interest κ(θ ) ,
one can use Pitman’s (1937) criterion of “closeness”. According to this criterion, if

Pθ [‖δ1(X)−κ(θ )‖ < ‖δ2(X)−κ(θ )‖] > 1
2

∀θ ∈Θ, (1)

then we choose δ1 over δ2 , and say that δ1 is a closer estimate than δ2 (with re-
spect to the family of probability distributions (Pθ : θ ∈ Θ)). This definition is more
general than the one given by Pitman (1937), since he only considered X and Θ
that are subsets of the real line. As Nayak (1990) notes, if for some θ0 ∈ Θ we have
Pθ0 [‖δ1(X)−κ(θ0)‖ = ‖δ2(X)−κ(θ0)‖] > 0, we should modify Pitman’s criterion as
follows: we choose δ1 over δ2 if the inequality

Pθ [‖δ1(X)−κ(θ )‖ < ‖δ2(X)−κ(θ )‖] � Pθ [‖δ2(X)−κ(θ )‖< ‖δ1(X)−κ(θ )‖]

holds for all θ ∈ Θ with a strict inequality for at least one θ ∈ Θ. This modification is
necessary, because now the sum of the two sides of the above inequality is not equal to
one.

The concept of Pitman’s (1937) criterion for choosing an estimator is modified
by Banks (1997). According to Banks, for fixed ε > 0 (whose value depends on the
problem and the analyst), we say that we prefer δ1 over δ2 if

Pθ [ ‖δ1(X)−κ(θ )‖< ε ] > Pθ [ ‖δ2(X)−κ(θ )‖ < ε ]

for all θ ∈Θ. In other words, δ1 ◦X = δ1(X) has greater probability of being within ε
of κ(θ ) than δ2 ◦X = δ2(X) .

In either case, whether we use Pitman’s criterion of “closeness” or Banks’ criterion
of “closeness,” we try to find an estimator that is nearer to the true value than other
statistics.

It is well known that Pitman’s closeness criterion is intransitive (cf. Keating et
al. [9, pp. 66-74]). In other words, there are three estimators δ1,δ2, and δ3 such that
δ1 is better than δ2 , δ2 is better than δ3, and δ3 is better than δ1 according to Pitman’s
criterion; i.e., for all θ ∈Θ ,

Pθ [‖δi(X)−κ(θ )‖< ‖δ j(X)−κ(θ )‖] > 1/2 for (i, j) ∈ {(1,2),(2,3),(3,1)}.

Keating et al. [9, p. 128, Th. 4.6.1]) give sufficient conditions under which Pitman’s
criterion for a family of estimators is transitive.

According to Banks’ criterion, for given (small) ε > 0, if we have possible esti-
mators δ1,δ2 and δ3 of a parameter of interest κ(θ ), and we prefer δ1 over δ2, and
δ2 over δ3, then for all θ ∈ Θ,

Pθ [‖δ1(X)−κ(θ )‖< ε] > Pθ [‖δ2(X)−κ(θ )‖ < ε] > Pθ [‖δ3(X)−κ(θ )‖ < ε].

It follows that we prefer δ1 over δ3, i.e., Banks’ criterion is transitive.
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As Banks (1997) observes, there is a connection between risk functions in decision
theory and his criterion. For an estimator δ , one possible loss function is the absolute
error loss function, given by

L1(θ ,δ (x)) = ‖κ(θ )− δ (x)‖ ∀θ ∈ Θ ∀x ∈ X . (2)

Another possible loss function is the squared error loss function, given by

L2(θ ,δ (x)) = ‖κ(θ )− δ (x)‖2 ∀θ ∈ Θ ∀x ∈ X . (3)

Even though the above losses are widely used in practice, as Banks (1997) notes, there
are situations where the use of either one does not make sense. For example, say X is
the breaking strength of a roller bearing in a helicopter shaft, κ(θ ) = θ = Eθ (X) = μ
is the expected value of X with respect to Pθ , and δ1 and δ2 are two estimators of
θ , each of which is a disastrously bad answer for θ . Then it makes little sense in
finding which one is less bad with respect to either loss L1 or loss L2 . In such a case, it
makes more sense to find which estimator is close to the correct answer with the highest
probability. Therefore, Banks (1997) proposes using the following loss function:

L3(θ ,δ (x)) =
{

0 if ‖κ(θ )− δ (x)‖< ε,
1 otherwise,

∀θ ∈ Θ ∀x ∈ X . (4)

The risk of an estimator δ with respect to the above loss is

R(θ ,δ ) = Eθ [L3(θ ,δ (X))] = Pθ (‖κ(θ )− δ (X)‖ � ε) = 1−Pθ(‖κ(θ )− δ (X)‖ < ε).

If we have two estimators δ1 and δ2 , then for all θ ∈ Θ :

R(θ ,δ1) < R(θ ,δ2) ⇔ Pθ (‖κ(θ )− δ1(X)‖ < ε) > Pθ (‖κ(θ )− δ2(X)‖ < ε).

In other words, using loss (4), Banks’ estimator between δ1 and δ2 is the one with the
smaller risk (provided one risk is uniformly smaller than the other for all θ ∈ Θ).

It should be noted that Peddada [13], Rao et al. [16], Khattree [10], and Khattree
and Peddada [11] generalize Pitman’s (1937) criterion from the univariate situation
to the multivariate case by using loss functions. Corresponding to the loss function
L(·, ·) :Θ×A → R , according to the generalized Pitman criterion, we prefer estimator
δ1 over estimator δ2 if

Pθ [L(θ ,δ1(X)) < L(θ ,δ2(X))] > 1/2 ∀θ ∈ Θ.

If in the above definition we use loss functions L1 and L2 given by equations (2) and
(3), respectively, then in both cases we get definition (1).

For most of the paper, we assume that the data are independently and identically
distributed coming from some univariate probability distribution (with a location pa-
rameter). The theoretical mean of the distribution does not necessarily have to exist.
The organisation of the paper is as follows. In Section 2, we use asymptotics to com-
pare the sample mean and the sample median of the data using Bank’s criterion for
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various families of probability distributions for which the theoretical mean equals the
theoretical median. In Section 3, we use exact probability calculations to compare the
sample mean and the sample median using Banks’ criterion when the data come from
either a normal or a Cauchy distribution, and the sample size is a positive odd integer.
Finally, Section 4 contains some concluding remarks.

In this paper we use the following two results (see Lemma 1.1 and Theorem 1.2
below) from Elezović, Giordano and Pečarić (2000). Recall that

ψ(z) =
d
[
lnΓ(z)

]
dz

=
Γ′(z)
Γ(z)

, z > 0,

is the well-known digamma function. For s,t � 0 define ψ̃s,t : (−min(s,t),∞) → R by

ψ̃s,t(x) =
{ ψ(x+t)−ψ(x+s)

t−s if t 	= s,
ψ ′(x+ s) if t = s,

for x > −min(s, t) . In Elezović et al. (2000), the lemma below is stated for s,t > 0
and the domain of x is not stated. A careful examination of the proof shows that the
lemma is valid for x > −min(r2,0) , and is true even when s = 0 or t = 0.

LEMMA 1.1. Let s,t � 0 and β0 be defined by

β0 = −1
2

+

√
st +

1
4
.

Then, for x > −min(r2,0) ,

1
x+ r1

� ψ̃s,t(x) � 1
x+ r2

, (5)

where

r1 := max

{
s+ t−1

2
,β0

}
, r2 := min

{
s+ t−1

2
,β0

}
.

Each equality in (5) holds if and only if |t− s| = 1 .

For s, t > 0 with r = min(s,t) define the function zs,t : (−r,+∞) → R by

zs,t(x) =

⎧⎨⎩
(
Γ(x+t)
Γ(x+s)

) 1
t−s − x for t 	= s,

eψ(x+t) − x for t = s,

for x > −r. Note that zs+α ,t+α(x−α) = zs,t(x)+α for x > α− r >−r . The following
inequalities are known as Gautschi’s inequalities, and the best bounds were obtained by
Elezović et al. (2000).
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THEOREM 1.2. Let s,t > 0 . For all x > x0 > −min(s, t) the inequalities

s+ t−1
2

< zs,t(x) < zs,t(x0)

hold whenever |t − s| < 1 , and with reversed signs whenever |t − s| > 1 . The bounds
are the best possible. (When |t − s| = 1 , we have zs,t(x) = (s + t − 1)/2 for all x >
−min(s, t) .)

In p. 245 of Elezović et al. (2000), Lemma 1.1 above is used in the proof of
a theorem that leads to Theorem 1.2. It is used to prove that limx→∞ z′s,t(x) � 0 for
the case |t − s| < 1. This follows from the fact that for |t − s| < 1 the function z′s,t is
(strictly) increasing on (0,∞) , and the inequality

z′s,t(x) <

(
Γ(x+ t)
Γ(x+ s)

)1/(t−s)

· 1
x+ r2

−1,

which is valid for x > −min(r2,0) (even though this is not stated explicitly in p. 245
of the paper). Lemma 1.1 is also needed to prove similar results for the case |t− s|> 1.
For related results, see also Qi, Guo and Chen (2006).

2. Comparison of the sample mean and the sample median using asymptotics

In this section we use asymptotics to compare the sample mean and sample median
using Banks’ criterion. For the rest of the section, assume

Θ⊆ R× (0,∞) = {(μ ,σ2) : −∞< μ < ∞,0 < σ2 < ∞},
and A = R = {μ : −∞ < μ < ∞} . We are interested in estimating

κ(θ ) = κ(μ ,σ2) = μ .

Let (Pθ : θ ∈ Θ) be a family of probability measures defined on the measurable
space (Ω,F ) , and let (Fθ : θ ∈Θ) be a collection of univariate cumulative distribution
functions (c.d.f.) such that for each θ = (μ ,σ2) ∈ Θ :

(a) μ is the finite mean of Fθ (i.e.,
∫ |x|dFθ (x) < ∞ and μ =

∫
xdFθ (x));

(b) σ2 is the finite variance of Fθ (i.e., 0 < σ2 =
∫
(x− μ)2 dFθ (x) < ∞).

We denote by m = m(θ ) any median of Fθ .
All random variables are defined on (Ω,F ), and as usual, “i.i.d.” means “inde-

pendently identically distributed” (with respect to the family (Pθ : θ ∈ Θ)). Denote by
Φ(·) the cumulative distribution function of N(0,1) , the standard normal distribution.
The main result of the section is about distributions Fθ for which all the medians equal
μ . Define N

∗ = {1,2,3, . . .}.

THEOREM 2.1. For each θ = (μ ,σ2) ∈ Θ and each positive integer n, assume
Xn1,Xn2, . . . ,Xnn are i.i.d. random variables with a c.d.f. Fθ that satisfies properties
(a) and (b) above, i.e., for i = 1,2, . . . ,n, Pθ (Xni � x) = Fθ (x) for all x ∈ R . For
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each θ ∈ Θ , assume Fθ has a unique median m = m(θ ) and is differentiable in a
neighborhood of m, say (m−η ,m+η) for some η = η(θ ) > 0 , with derivative fθ :
(m−η ,m+η) →R satisfying 0 < fθ (m) <∞. Let Xn be the sample mean, and X̃n be
a sample median of the observations. Let ε = (εn : n ∈ N

∗) be a sequence of positive
constants such that limn→∞

√
nεn = c for some constant c > 0 . Define

Sθ (ε ) = lim
n→∞

Pθ (|Xn− μ |< εn)− lim
n→∞

Pθ (|X̃n− μ | < εn),

if both limits exist. If μ = m(θ ) , then Sθ (ε ) exists, and Sθ (ε ) > 0 if and only if
σ2 < 1/(4 f 2

θ (m)).

Proof. By the Central Limit Theorem, as n → ∞,
√

n(Xn − μ)/σ converges in
distribution (under Pθ ) to N(0,1) . Let Z be a random variable with a N(0,1) distribu-
tion. Since the absolute value is a continuous function,

√
n|(Xn − μ)/σ | converges in

distribution (under Pθ ) to |Z| . By Lemma 2.11 in [18, p. 12],

lim
n→∞

(
sup
z∈R

∣∣Pθ (√n|Xn− μ |/σ < z)−Pθ(|Z| < z)
∣∣) = 0.

Using the above equation, it is not difficult to show that

lim
n→∞

|Pθ (|Xn − μ |< εn)− (2Φ(εn
√

n/σ)−1)|= 0.

Since also limn→∞(2Φ(εn
√

n/σ)−1) = 2Φ(c/σ)−1, we have

lim
n→∞

Pθ (|Xn − μ |< εn) = 2Φ(c/σ)−1.

By Theorem 7.25 in Schervish [17, p. 405], as n → ∞, 2 fθ (m)
√

n
(
X̃n−m

)
con-

verges in distribution (under Pθ ) to N (0,1) . Using this fact, Lemma 2.11 in [18,
p. 12]), and the assumptions μ = m and limn→∞

√
nεn = c > 0, one can show that

lim
n→∞

Pθ (|X̃n− μ |< εn) = 2Φ(2 fθ (m)c)−1.

It follows Sθ (ε ) exists and equals 2[Φ(c/σ)−Φ(2 fθ (m)c)]. Since Φ is strictly in-
creasing, it is easy to prove the conclusion of the theorem. �

The previous theorem says that, if μ = m and we have a large random sample, the
sample mean is a better estimator than the sample median for estimating the theoretical
mean if and only if σ2 < 1/(4 f 2

θ (m)) . This condition does not depend on ε . It is
equivalent to σ2/n < 1/(4n f 2

θ (m)) , which says that the variance of the sample mean is
less than the asymptotic variance of the sample median.

When the data come from N(μ ,σ2) , a normal distribution with mean μ and vari-
ance σ2 (with 0 < σ2 < ∞), or when they come from U(a,b) , a uniform distribution
with parameters a and b (where a < b ), the assumptions of Theorem 2.1 hold. In both
cases the theoretical mean equals the theoretical median, and σ2 < 1/(4 f 2

θ (m)) .
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Indeed for the N(μ ,σ2) case, fθ (x) = 1√
2πσ e

− (x−μ)2

2σ2 for −∞ < x < ∞ , and so

fθ (m) = 1√
2πσ . It follows f 2

θ (m) =
(

1√
2πσ

)2
< 1

4σ2 , i.e., σ2 < 1/(4 f 2
θ (m)). For the

U(a,b) case, fθ (x) = 1
b−a for a < x < b, and m = μ = a+b

2 . It is then easy to show

f 2
θ (m) = ( 1

b−a)2 < 1
4σ2 , where σ2 = (b−a)2

12 .
If Fθ is the c.d.f. of a beta(α,β ) distribution with α,β > 0, then μ = α

α+β and

σ2 = αβ
(α+β )2(α+β+1) . If α = β , we let

Θ =
{

(μ ,σ2) =
(

1
2
,

1
4(2α+1)

)
: α > 0

}
,

and we have the following result.

THEOREM 2.2. Suppose fθ is the probability density function of beta(α,β ) dis-
tribution with α = β > 0 . Then m = μ = 1/2 and σ2 < 1/(4 f 2(m)).

Proof.We have

fθ (x) =
Γ(α +β )
Γ(α)Γ(β )

xα−1(1− x)β−1, 0 < x < 1,

and therefore

fθ (m) =
Γ(2α)

(Γ(α))2

(1
2

)2(α−1)
.

We need to show that f 2
θ (m) < 1

4σ2 , which is equivalent to:

Γ2(2α)
(Γ(α))4

(1
2

)4(α−1)
< 2α +1. (6)

Taking logarithms on both sides, the previous inequality is equivalent to:

S(α) = 2lnΓ(2α)−4lnΓ(α)+4(1−α) ln2− ln(2α+1) < 0.

Then
dS
dα

= 4ψ(2α)−4ψ(α)−4ln2− 2
2α +1

for α > 0 .

Since ψ(2α) = 1
2ψ(α)+ 1

2ψ
(
α+ 1

2

)
+ ln2 (see [1, p. 259, formula 6.3.8]), we have:

dS
dα

= 2
[
ψ

(
α +

1
2

)
−ψ(α)− 1

2α +1

]
.

Let T (α) = ψ
(
α + 1

2

)
−ψ(α)− 1

2α+1 . Then:

T (α +1)−T (α) = ψ
(
α +

3
2

)
−ψ

(
α +

1
2

)
−

[
ψ(α +1)−ψ(α)

]
− 1

2α +3
+

1
2α +1

.
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Since ψ(α +1) = ψ(α)+ 1
α (see [1, p. 258, formula 6.3.5]), we have:

T (α +1)−T(α) = − 3
(2α+1)α(2α+3)

< 0 for α > 0.

Hence, for fixed α > 0 we have: T (α) > T (α +1) > T (α +2) > .. . > T (α +n) for
all positive integers n .

We need to show that limα→∞T (α) = 0. Since the function ψ(α) is increasing
for α > 0, ψ(α) � ψ(α + 1

2 ) � ψ(α +1). Therefore for α > 0 :

− 1
2α+1

� T (α) = ψ
(
α +

1
2

)
−ψ(α)− 1

2α+1
� ψ

(
α +1

)
−ψ(α)− 1

2α+1
.

Since ψ
(
α +1

)
−ψ(α)− 1

2α+1 = 1
α − 1

2α+1 , we can rewrite the above as:

− 1
2α+1

� T (α) � 1
α
− 1

2α+1
.

It follows that limα→∞T (α) = 0. Therefore for a fixed α > 0, limn→∞T (α+n) =
0, and so T (α) > T (α + 1) � limn→∞T (α + n) = 0. Hence, dS

dα = 2T (α) > 0 for
α > 0. Therefore, S(α) is strictly increasing on (0,∞). By Lemma A.1 in the appendix,

limα→∞S(α) = ln
(

2
π

)
< ln(1) = 0, and so S(α) < 0. This means that f 2

θ (m) < 1
4σ2 ,

and the proof of the theorem is complete. �

It is well-known that the mean of a t -distribution with α > 0 degrees of freedom
exists and is finite if and only if α > 1. In addition, for the same probability distribution,
the variance exists and is finite if and only if α > 2. We have the next theorem.

THEOREM 2.3. Consider the t distribution J (α,μ ,τ2) with α > 2 degrees of
freedom, location parameter m = μ , and scale parameter τ2 , where −∞< μ <∞ and
0 < τ2 < ∞. Then there is a unique α0 > 2 such that σ2 < 1/(4 f 2

θ (m)) if and only if
α0 < α < ∞.

Proof. We have (see [3, p. 561])

fθ (x) =
Γ[(α +1)/2]

τ(απ)1/2Γ(α/2)

(
1+

(x− μ)2

ατ2

)−(α+1)/2
for −∞< x < ∞,

with mean μ and variance σ2 = ατ2

α−2 . We have

fθ (m) =
Γ[(α +1)/2]

τ(απ)1/2Γ(α/2)
.

The inequality σ2 < 1/(4 f 2
θ (m)) is equivalent to:

Γ2[(α +1)/2]
Γ2(α/2)

<
(α−2)π

4
.
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Taking logarithms on both sides, we see that the previous inequality is equivalent to:

M(α) := 2lnΓ
(α +1

2

)
−2lnΓ

(α
2

)
− ln(α−2)− ln

(π
4

)
< 0.

Taking the derivative of M with respect to α, we have:

dM
dα

= ψ
(α +1

2

)
−ψ

(α
2

)
− 1
α−2

for α > 2.

Applying Lemma 1.1 with x = α/2, t = 1/2 and s = 0, we get

ψ
(
α+1

2

)
−ψ

(α
2

)
<

1

α− 1
2

<
1

α−2

because β0 = 0, r1 = max(−1/4,0) = 0, r2 = min(−1/4,0) = −1/4, and

x =
α
2

> −min(r2,0) =
1
4

(since α > 2). Hence, dM
dα = T (α) < 0 for α > 2. Therefore, M is strictly de-

creasing on (2,∞). Note that limα→2+ M(α) = +∞. By Lemma A.2 in the appendix,
limα→∞M(α) = ln(2)− ln(π) < 0. Since M is strictly decreasing and continuous in
(2,∞), and M(2+) = ∞ > 0 > M(∞), by the Intermediate Value Theorem, there is a
unique α0 > 2 such that M(α) > 0 if and only if 2 < α < α0, and M(α) < 0 if and
only if α0 < α <∞. Since M(α) < 0 if and only if σ2 < 1/(4 f 2

θ (m)), the proof of the
theorem is complete. �

Using the bisection method and a Matlab program provided by P. Seshaiyer, we
estimated α0 ≈ 4.67879. (This can also be checked in Maple using the fsolve com-
mand.)

COROLLARY 2.4. Let α0 be the number defined in Theorem 2.3. Then

2+
3

π−2
< α0 < 2+

2+ 4
π

π−2
.

These estimates give 4.62790 < α0 < 4.86726.

Proof. By Theorem 1.2 with t = α0/2, s = (α0 − 1)/2, x = 1/2 and x0 = 1−
(α0/2) we obtain

α0−1
2 + α0

2 −1

2
<

⎡⎣Γ
(
α0+1

2

)
Γ

(α0
2

)
⎤⎦2

− 1
2

<

[
Γ(1)
Γ

( 1
2

)]2

−
(
1− α0

2

)
. (7)

It follows from the proof of Theorem 2.3 that⎡⎣Γ
(
α0+1

2

)
Γ

(α0
2

)
⎤⎦2

=
π(α0−2)

4
. (8)

Using (7) and (8), we can easily prove the corollary. �
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3. Comparison of the sample mean and the sample median using exact
probability calculations

In the previous section we proved some asymptotic results that allow us to use
Banks’ criterion to compare the sample mean and the sample median as estimators of
a location parameter when the sample size is large. In this section we do the same for
finite samples using exact probability calculations when the sample size n is an odd
positive integer. We comment about even sample sizes at the end of the section because
their treatment is much more difficult.

As before, let (Pθ : θ ∈Θ) be a family of probability measures defined on (Ω,F ) .
For each θ ∈Θ and each positive integer n , assume Xn1,Xn2, . . . ,Xnn are i.i.d. random
variables with c.d.f. Fθ and a unique theoretical median m = m(θ ) (i.e., Pθ (Xni �
x) = Fθ (x) and Fθ (m) = 1/2). If Xn(1),Xn(2), . . . ,Xn(n) are the ordered statistics for the

random sample Xn1,Xn2, . . . ,Xnn , then for odd integer n , the sample median X̃n is the
middle ordered statistic X((n+1)/2) . In such a case, if Fθ possesses a probability density
function (p.d.f.) fθ with respect to (w.r.t.) the Lebesgue measure, then it is well-known
that the p.d.f. of the sample median X̃n (w.r.t. the Lebesgue measure) is

gn,θ (y) =
Γ(2βn)
Γ(βn)2 [Fθ (y)(1−Fθ (y))]βn−1 fθ (y), −∞< y < ∞, (9)

where βn = (n + 1)/2; e.g. see Billingsley [4, p. 200, Ex. 14.7]. It follows that for
ε > 0:

Pθ (|X̃n −m|< ε) =
∫ Fθ (m+ε)

Fθ (m−ε)
Γ(2βn)
Γ(βn)2 (u(1−u))βn−1 du.

If Fθ is locally symmetric around the point m = m(θ ) , i.e., there is η = η(θ ) ∈
(0,∞] such that Fθ (m−y)+Fθ (m+y) = 1 for all y ∈ (−η ,η) , then for all ε ∈ (0,η) ,

Pθ (|X̃n−m|< ε) = 2
∫ Fθ (m+ε)

0

Γ(2βn)
Γ(βn)2 (u(1−u))βn−1 du−1. (10)

Finding a similar expression for the sample mean is in general more difficult. The
most notable exceptions to this occur when Fθ is the c.d.f. of a normal, a Cauchy, or a
gamma distribution. We will deal only with the first two cases.

THEOREM 3.1. Let Θ= {(μ ,σ2) :−∞< μ <∞,0 < σ2 <∞} , and for each θ =
(μ ,σ2) ∈ Θ , let Fθ be the c.d.f. of a N(μ ,σ2) distribution. For each θ ∈ Θ and each
positive odd integer n � 3 , assume Xn1,Xn2, . . . ,Xnn are i.i.d. random variables with
c.d.f. Fθ . Let Xn be the sample mean, and X̃n be the sample median of the observations.
For all θ ∈ Θ and all ε > 0 ,

Pθ (|Xn − μ |< ε) > Pθ (|X̃n− μ |< ε). (11)

Proof. Using equation (10) and properties of the normal distribution, it is easy to
see that inequality (11) will follow from the following stronger inequality:

w(α,β ) := Φ(α
√

2β −1)−
∫ Φ(α)

0

Γ(2β )
Γ(β )2 (u(1−u))β−1du > 0, (12)
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where α > 0 and β > 1. We have

∂w
∂α

(α,β ) =
√

2β −1Φ′(α
√

2β −1)−Φ′(α)
Γ(2β )
Γ(β )2 [Φ(α)(1−Φ(α))]β−1,

and Φ′(α) = 1√
2π e−α2/2.

We first show that for each β > 1, the equation ∂w
∂α (α0,β ) = 0 holds for at most

one α0 ∈ (0,∞) . The equation is equivalent to

g(α0) =
[√

2β −1
Γ(β )2

Γ(2β )

]1/(β−1)

, (13)

where g(α) = eα
2Φ(α)(1−Φ(α)). Note that g(0) = 1/4, and

∂ (lng)(α)
∂α

= Φ′(α)
[

2α
Φ′(α)

− 1
1−Φ(α)

+
1

Φ(α)

]
.

By Lemma A.3 in the appendix, ∂ (lng)(α)
∂α > 0, so the function g(α) is strictly increas-

ing for α > 0. Therefore, equation (13) has at most one solution α0 ∈ (0,∞) (for fixed
β > 1).

By Lemma A.4 in the appendix, for each β > 1,

∂w
∂α

(0,β ) =
1√
2π

[√
2β −1− Γ(2β )

Γ(β )2

(
1
4

)β−1
]

> 0.

Also, for each β > 1, limα→∞
∂w
∂α (α,β ) = 0. Since for each β > 1, limα→0+ w(α,β )

= 0 = limα→+∞w(α,β ), and since for each β > 1, both w(α,β ) and ∂w
∂α (α,β ) are

continuous functions of α ∈ (0,∞) , we conclude that ∂w
∂α (α0,β ) = 0 for exactly one

α0 ∈ (0,∞) , w(α,β ) has a maximum at α = α0 and minimum at α = 0 and α = ∞ .
Therefore, for each β > 1, w(α,β ) > 0 for 0 < α < ∞ , and the proof of the theorem
is complete. �

The next theorem deals with the Cauchy distribution, which is a special case of
the t distribution with 1 degree of freedom (see the statement and the proof of Theo-
rem 2.3).

THEOREM 3.2. Let Θ = {(m,τ2) : −∞ < m < ∞,0 < τ2 < ∞} , and for each
θ = (m,τ2) ∈ Θ , let Fθ be the c.d.f. of a t -distribution J (1,m,τ2) with 1 degree
of freedom, location parameter m, and scale parameter τ2 . For each θ ∈ Θ and each
positive odd integer n � 3 , assume Xn1,Xn2, . . . ,Xnn are i.i.d. random variables with
c.d.f. Fθ . Let Xn be the sample mean, and X̃n be the sample median of the observa-
tions. Then for each θ ∈ Θ and each ε > 0 ,

Pθ (|Xn −m|< ε) < Pθ (|X̃n−m|< ε). (14)
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Proof. Let ΦC be the c.d.f. of a Cauchy distribution with location parameter 0 and
scale parameter 1. Then Fθ (a) =ΦC((a−m)/τ). Also, using characteristic functions,
one can show that Xn has a J (1,m,τ2) distribution under Pθ (see also [4, Problem
20.20, p. 278]). Using these facts and equation (10), it is easy to see that inequality (14)
will follow from the next stronger inequality:

g(α,β ) := ΦC(α)−
∫ ΦC(α)

0

Γ(2β )
Γ(β )2 (u(1−u))β−1du < 0, (15)

where α > 0 and β > 1. Since for each β > 1, g(α,β ) and ∂g(α ,β )
∂α are continuous

functions of α ∈ (0,∞) , to show the inequality, it is enough to show that: (a) ∂g(α ,β )
∂α = 0

has at most one solution in α ∈ (0,∞) for each β > 1; (b) ∂g(0,β )
∂α < 0 for each β > 1;

and (c) g(0,β ) = 0 = limα→∞ g(α,β ) for each β > 1. We have:

∂g(α,β )
∂α

=Φ′
C(α)

{
1− Γ(2β )

Γ(β )2 [ΦC(α)(1−ΦC(α))]β−1
}

,

with

ΦC(α) =
1
2

+
arctan(α)

π
and Φ′

C(α) =
1

π(1+α2)
.

(We assume − π
2 < arctan(α) < π

2 for real α .)

(a) If α > 0 and β > 1, the equation ∂g(α ,β )
∂α = 0 is equivalent to

ΦC(α)(1−ΦC(α)) =
[
Γ(β )2

Γ(2β )

]1/(β−1)

. (16)

Note that, if k is a constant, the equation x2 − x+ k = 0 has at most two distinct real
solutions, of which at most one is greater than or equal to 1/2. Since 1/2 �ΦC(α) � 1
for α > 0, we conclude that for fixed β > 1, equation (16) has at most one solution in
α > 0.

(b) Since
∂g(0,β )
∂α

=
1
π

[
1− Γ(2β )

Γ(β )2

(
1
4

)β−1
]

,

it follows from Lemma A.4 in the appendix that ∂g(0,β )
∂α < 0 for each β > 1.

(c) Since ΦC(0) = 1/2 and limα→∞ΦC(α) = 1, and since∫ 1/2

0

Γ(2β )
Γ(β )2 (u(1−u))β−1du =

1
2

∫ 1

0

Γ(2β )
Γ(β )2 (u(1−u))β−1du =

1
2
,

we conclude that g(0,β ) = 0 = limα→∞ g(α,β ) for each β > 1.
This completes the proof of the theorem. �

Unfortunately, for even sample sizes n , formula (9) is not useful anymore. A
sample median X̃n is any convex combination of the middle two ordered statistics:
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X̃n(α) =αXn(n/2) +(1−α)Xn((n/2)+1) , where 0 �α � 1. In most elementary Statistics
books, various authors use α = 1/2, i.e.,

X̃n = X̃n(1/2) =
Xn(n/2) +Xn((n/2)+1)

2
.

The next theorem gives a formula for Pθ (|X̃n(α)−m| < ε) when n is even. For
i = 1,2, . . . ,n , we denote by Xn(i) the ith ordered statistics of the random sample
Xn1, . . . ,Xnn .

THEOREM 3.3. Let n be an even positive integer and 0 � α � 1. For each θ ∈
Θ , assume Xn1,Xn2, . . . ,Xnn are i.i.d. random variables with c.d.f. Fθ and a unique
theoretical median m = m(θ ) . Let Xn(1),Xn(2), . . . ,Xn(n) be the ordered statistics and

define X̃n(α) = αXn(n/2) + (1−α)Xn((n/2)+1) . If Fθ possesses a p.d.f. fθ w.r.t. the
Lebesgue measure, then for each θ ∈ Θ and ε > 0 ,

Pθ (|X̃n(α)−m| < ε) =
2Γ(n)

Γ
(

n
2

)2 (a−b+ c), (17)

where

a =
∫ m−ε

−∞
Fθ (y)

n
2−1 fθ (y)

[
1−Fθ

(
m− ε−αy

1−α

)]n/2

dy,

b =
∫ m+ε

−∞
Fθ (y)

n
2−1 fθ (y)

[
1−Fθ

(
m+ ε−αy

1−α

)]n/2

dy,

c =
∫ m+ε

m−ε
Fθ (y)

n
2−1 fθ (y) [1−Fθ (y)]n/2 dy.

Proof. See Appendix A.4. �

In the case of a location-scale family of p.d.f.’s, Theorem 3.3 can be simplified.
The proof of the corollary is easy and hence is omitted.

COROLLARY 3.4. Let Θ = {(m,τ2) : −∞ < m < ∞, 0 < τ2 < ∞} and let Φ̃ be
an absolutely continuous c.d.f. with respect to the Lebesgue measure with a p.d.f. φ̃ .
Assume that Φ̃ has a unique theoretical median equal to 0 . For each θ = (m,τ2) ∈Θ
define Fθ to be a c.d.f. such that

Fθ (x) = Φ̃
(

x−m
τ

)
for each x ∈ (−∞,∞) (where τ = +

√
τ2 ).

Let n be an even positive integer and 0 � α � 1. For each θ ∈ Θ , assume
Xn1,Xn2, . . . ,Xnn are i.i.d. random variables with c.d.f. Fθ . Then for each θ ∈ Θ and
ε > 0 ,

Pθ (|X̃n(α)−m| < ε) =
2Γ(n)

Γ
(

n
2

)2 (a−b+ c), (18)
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where

a =
∫ −ε/τ

−∞
Φ̃(z)

n
2−1φ̃(z)

[
1− Φ̃

(
− ε
τ(1−α)

− αz
1−α

)]n/2

dz,

b =
∫ ε/τ

−∞
Φ̃(z)

n
2−1φ̃ (z)

[
1− Φ̃

(
ε

τ(1−α)
− αz

1−α

)]n/2

dz,

c =
∫ ε/τ

−ε/τ
Φ̃(z)

n
2−1φ̃(z)

[
1− Φ̃(z)

]n/2
dz.

If Φ̃ = Φ , the c.d.f. of a standard normal distribution, or Φ̃ = ΦC , the c.d.f. of
a standard Cauchy distribution, then we can apply Corollary 3.4 to get an expression
for Pθ (|X̃n(α)−m| < ε) when n is even. Even though we suspect that (11) and (14)
are still true even for an even sample size, we have not been able to prove our claim
because of the complicated nature of the p.d.f. of the sample median when n is even.
In Karunaratne (2004), Monte Carlo simulations show that for small n and small ε ,
Pθ (|Xn −m| < ε) and Pθ (|X̃n −m| < ε) are very close to each other in the case of
sampling from a normal distribution. This means that it is difficult to use numerical
evidence to see which one is larger when n and ε are small and the data come from a
symmetric distribution.

4. Conclusion

In this paper we carried out different comparisons to find out whether the sample
mean or the sample median is a better estimator for the location parameter of a uni-
variate distribution using Banks’ criterion. In other words, we examined under what
conditions the probability that the sample mean is within ε of the location parameter is
greater than the probability that the sample median is within ε of the location parame-
ter. Our results justify a conjecture by D. Banks (1997) that for heavy tail distributions
the sample median is better than the sample mean when estimating a location parameter.
The conlusion is reversed for distributions with lighter tails.

A. Some auxiliary results and a proof of a theorem

A.1. An auxiliary result for Theorem 2.2

Here we prove a result that is needed for the proof of Theorem 2.2. If g(α) > 0

for large enough α , we write f (α) ∼ g(α) whenever limα→∞
f (α)
g(α) = 1.

LEMMA A.1. Let S(α) = 2lnΓ(2α)−4lnΓ(α)+4(1−α) ln2− ln(2α +1) for
α > 0. Then limα→∞S(α) = ln(2)− ln(π).

Proof. Stirling’s formula states that for real x > 0, we have

Γ(x) ∼
√

2π e−(x−1) (x−1)x−1+ 1
2
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as x → ∞. Therefore as α → ∞ :

eS(α) ∼ e−2 (2α−1)4α−1 24(1−α)

2π (α−1)4α−2 (2α+1)
=

2
π
·

e−2
(
1− 1

2α

)4α (
1− 1

2α

)−1

(
1+ 1

2α

) (
1− 1

α

)4α (
1− 1

α

)−2 .

Since
(
1 + 1

α

)α → e as α → ∞, we have eS(α) ∼ 2
π , and the proof of the lemma is

complete. �

A.2. An auxiliary result for Theorem 2.3

LEMMA A.2. Let M(α) = 2lnΓ
(
α+1

2

)
−2lnΓ

(
α
2

)
− ln(α−2)− ln(π4 ) for α >

2. Then limα→∞M(α) = ln(2)− ln(π).

Proof. Using Stirling’s formula, we obtain for α > 2 :

eM(α) =
Γ2

(
α+1

2

)
Γ2

(
α
2

)
(α−2)

(
π
4

)
∼ 4(2π) e−2( α+1

2 −1) (α+1
2 −1)2( α+1

2 − 1
2 )

(2π) e−2( α2 −1) (α2 −1)2( α2 − 1
2 ) (α−2)π

∼ 2 e−1 (α−1)α

(α−2)α π
.

(The symbol ∼ is defined in Appendix A.1). We need to show eM(α) ∼ 2
π as α → ∞.

This follows from the fact that
(
1+ 1

α

)α → e as α → ∞. �

A.3. Auxiliary results for Theorems 3.1 and 3.2

LEMMA A.3. For a > 0 ,

2a
Φ′(a)

− 1
1−Φ(a)

+
1

Φ(a)
> 0, (19)

where Φ is the c.d.f. of a standard normal distribution.

Proof. It is not difficult to show that (19) is equivalent to

q(a) := Φ(a)−
⎡⎣1

2
− Φ′(a)

2a
+

√
1
4

+
(
Φ′(a)
2a

)2
⎤⎦ < 0.

We have:

q′(a) =
a2 +1+(a2−1)

√
1+2πa2 exp(a2)

2a2
√

2π exp(a2/2)
√

1+2πa2 exp(a2)
.
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If a � 1, then obviously q′(a) > 0. Assume 0 < a < 1.
Let

r(x) =
(

1+ x
1− x

)2

− (1+2πxex).

Using Calculus, it can be shown that r(x) = 0 for exactly one x ∈ (0,1) , namely x =
x0 ≈ .3201; r(x) < 0 for 0 < x < x0 ; and r(x) > 0 for x0 < x < 1. Also for 0 < a < 1,
q′(a) > 0 if and only if r(a2) > 0, and q′(a) < 0 if and only if r(a2) < 0. Thus q(a)
strictly decreases for 0 < a <

√
x0 , has a (local) minimum at a =

√
x0 ≈ .5658, and

strictly increases for a >
√

x0 . Since also lima→0+ q(a) = 0 = lima→∞ q(a), it follows
that q(a) < 0 for 0 < a <∞. The proof of the lemma is complete. �

In the next lemma, the right inequality is similar to inequality (6) in the proof of
Theorem 2.2, but unfortunately neither one implies the other. (Inequality (6) is defined
for α > 0, while the following lemma is for β > 1.)

LEMMA A.4. For all β > 1 ,

1 <
Γ(2β )
Γ(β )2

(
1
4

)β−1

<
√

2β −1.

Proof. (a) To prove the right inequality, we need to show that for β > 1,

S(β ) = lnΓ(2β )−2lnΓ(β )+2(1−β ) ln2− 1
2

ln(2β −1) < 0.

As in the proof of Theorem 2.2, we can show that

dS
dβ

= T (β ) = ψ
(
β +

1
2

)
−ψ(β )− 1

2β −1
.

We can then easily prove that for β > 1:

T (β +1)−T(β ) =
1

β (2β +1)(2β −1)
> 0.

Thus T (β ) < T (β +1) < .. . < T (β +ν) for all positive integers ν . In a way similar
to the proof of Theorem 2.2 we can show that limβ→∞T (β ) = 0, and so limν→∞T (β +

ν) = 0 for each β > 1. Therefore dS(β )
dβ = T (β ) < 0 for all β > 1. Thus S(·) is strictly

decreasing in (1,∞) , and so S(β ) < S(1+) = 0.
(b) To prove the left inequality, we need to show that

K(β ) = lnΓ(2β )−2lnΓ(β )+2(1−β ) ln2 > 0.

As in the proof of Theorem 2.2, we can then show that:

dK
dβ

= ψ
(
β +

1
2

)
−ψ(β ) > 0.

This means that K(·) is strictly increasing for β > 1, so K(β ) > K(1+) = 0, and the
lemma has been proven. �
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A.4. Proof of Theorem 3.3

In this section we prove Theorem 3.3. The joint p.d.f. of the ordered statistics
Xn(n/2) and Xn((n/2)+1) is

g(y1,y2) =
Γ(n+1)

Γ
(

n
2

)2 [Fθ (y1)]
n
2−1 [1−Fθ(y2)]

n
2−1 fθ (y1) fθ (y2), y1 < y2,

and zero otherwise (see Hogg and Craig (1995), Section 4.6). It follows that the p.d.f.
of X̃n(α) = αXn(n/2) + (1−α)Xn((n/2)+1) is

g̃(w) =
∫ w

−∞
h(w,y)dy, −∞< w < ∞,

where

h(w,y) =
Γ(n+1)

Γ
(

n
2

)2 (1−α)
[Fθ (y)]

n
2−1

[
1−Fθ

(
w

1−α
− αy

1−α

)] n
2−1

× fθ (y) fθ

(
w

1−α
− αy

1−α

)
.

It follows that, for ε > 0 and θ ∈ Θ ,

Pθ (|X̃n(α)−m|< ε) =
∫ m+ε

m−ε

∫ w

−∞
h(w,y)dydw.

Changing the order of integration, we get for ε > 0 and θ ∈Θ :

Pθ (|X̃n(α)−m| < ε) =
∫ m−ε

−∞

∫ m+ε

m−ε
h(w,y)dwdy+

∫ m+ε

m−ε

∫ m+ε

y
h(w,y)dwdy.

Evaluating the inner integrals by using

d
[
1−Fθ

(
w

1−α − αy
1−α

)]
dw

= − 1
1−α

fθ

(
w

1−α
− αy

1−α

)
,

we can easily prove equation (17). �
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