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Abstract. We state and prove some new weighted Hardy type inequalities with an integral oper-
ator Ak defined by

Ak f (x) :=
1

K(x)

∫
Ω2

k(x,y) f (y)dμ2(y),

where k : Ω1 ×Ω2 → R is a general nonnegative kernel, (Ω1,μ1) and (Ω2,μ2) are measure
spaces and

K(x) :=
∫
Ω2

k(x,y)dμ2(y), x ∈Ω1.

In particular, the obtained results unify and generalize most of the results of this type (including
the classical ones by Hardy, Hilbert and Godunova).

1. Introduction

The classical Hardy inequality reads:

∫ ∞

0

(
1
x

∫ x

0
f (t)dt

)p

dx �
(

p
p−1

)p∫ ∞

0
f p(x)dx, p > 1, (1.1)

where f is nonnegative function such that f ∈ Lp(R+) and R+ = (0,∞) . The almost
dramatic period of research in at least 10 years until G. H. Hardy [5] stated and proved
(1.1) was recently described in details in [8].

Another important inequality is the following:
If p > 1 and f is a nonnegative function such that f ∈ Lp(R+) , then

∫ ∞

0

(∫ ∞

0

f (x)
x+ y

dx

)p

dy �

⎛
⎝ π

sin
(
π
p

)
⎞
⎠

p∫ ∞

0
f p(y)dy. (1.2)

It was early known that these inequalities are in fact equivalent. Moreover, (1.2) is
sometimes called Hilbert’s inequality even if Hilbert himself only considered the case
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p = 2 (Lp spaces were not defined at that time). Sometimes, it is also referred to as
Hardy–Hilbert’s inequality.

We also note that (1.1) can be interpreted as the Hardy operator H : H f (x) :=
1
x

∫ x
0 f (t)dt, maps Lp into Lp with the operator norm p′ = p

p−1 (since, it is known

that
(

p
p−1

)p
is the sharp constant in (1.1)). Similarly, (1.2) may be interpreted as

also the operator A : A f (y) :=
∫ ∞
0

f (x)
x+y dx maps Lp into Lp with the operator norm

(π/sinπ/p)p .

It is now natural to generalize the operators above to the following ones:

Hk : Hk f (x) :=
1

K(x)

∫ x

0
f (t)k(x,t)dt, (1.3)

where

K(x) :=
∫ x

0
k(x,t)dt <∞

and (more generally)

Ak : Ak f (x) :=
1

K(x)

∫ ∞

0
f (t)k(x,t)dt, (1.4)

where now

K(x) :=
∫ ∞

0
k(x,t)dt < ∞.

Here k(x,y) is a general measurable and nonnegative function, a so called kernel.

One important question in the theory of Hardy type inequalities is to find necessary
and sufficient conditions, when such mappings are continuous from one weighted Lp

space to another weighted Lq space (so that the corresponding inequalities hold). See
for example the recent books [10] and [9] and the references given there. However,
without any further restrictions on the kernel the final solution is not known even if we
study the simplest case p = q (see Chapter 2 of the book [10]).

Another recent fundamental observation is the following one:

By putting f (t) = g(t
p−1
p )t

−1
p and making some obvious substitutions we find that (1.1)

is equivalent to that

∫ ∞

0

(
1
x

∫ x

0
g(t)dt

)p dx
x

�
∫ ∞

0
gp(x)

dx
x

. (1.5)

Obviously, the proof of (1.5) consists of a standard application of Jensen’s inequality
and the Fubini theorem. Note that (1.5) holds also for p = 1 (with equality) while (1.1)
has no meaning for p = 1. Of course this proof also shows that the following more
general inequality

∫ ∞

0
Φ
(

1
x

∫ x

0
f (t)dt

)
dx
x

�
∫ ∞

0
Φ( f (x))

dx
x

(1.6)
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holds for each convex function Φ on the interval I with Im f ⊆ I . This observation can
be found in the recent papers [7] by Kaijser et al. but was known even before, see e.g.
Godunova [3].

Guided by these results we will in this paper prove some new results for the Hardy
type operator Ak with a general kernel k . Our results are only sufficient but we study
both the case p = q and also some cases when p �= q . We point out that our results
unify and generalize most results of this type in the literature we know (including the
classical ones by Hardy, Hilbert and Godunova).

This paper is organized as follows: Some previous recent results we compare with
are presented in Section 2, together with some other preliminaries. The main results
are presented, discussed and proved in Section 3 and Section 4 is reserved for some
concluding remarks and examples.

2. Preliminaries

Throughout this paper, all measures are assumed to be positive, all functions are
assumed to be positive and measurable and expressions of the form 0 ·∞, ∞∞ and 0

0 are
taken to be equal to zero. Moreover, by a weight u = u(x) we mean a nonnegative
measurable function on the actual interval or more general set.

The following results was recently proved by Kaijser et al. [6]:

THEOREM 2.1. Let u be a weight function on (0,b) , 0 < b �∞ , and let k(x,y) �
0 on (0,b)× (0,b) . Assume that k(x,y)u(x)

xK(x) is locally integrable on (0,b) for each fixed

y ∈ (0,b) and define v by

v(y) = y
∫ b

y

k(x,y)
K(x)

u(x)
dx
x

< ∞, y ∈ (0,b).

If Φ is a positive and convex function on (a,c), −∞ � a < c � ∞ , then∫ b

0
Φ(Hk f (x))u(x)

dx
x

�
∫ b

0
Φ( f (x))v(x)

dx
x

, (2.1)

for all f with a < f (x) < c, 0 � x � b, where Hk is defined by (1.3).

In the same paper the dual operator Hk , defined by

Hk f (x) :=
1

K(x)

∫ ∞

x
k(x,y) f (y)dy (2.2)

where K(x) =
∫ ∞
x k(x,y)dy < ∞ , was studied and the following result was proved:

THEOREM 2.2. For 0 � b < ∞ , let u be a weight function such that k(x,y)u(x)
xK(x)

is

locally integrable on (b,∞) for every fixed y ∈ (b,∞) . Let the function v be defined by

v(y) = y
∫ y

b

k(x,y)
K(x)

u(x)
dx
x

< ∞, y ∈ (b,∞).
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If Φ is a positive and convex function on (a,c), −∞ � a < c � ∞ , then

∫ ∞

b
Φ(Hk f (x))u(x)

dx
x

�
∫ ∞

b
Φ( f (x))v(x)

dx
x

, (2.3)

for all f with a < f (x) < c, 0 � x � b, where Hk is defined by (2.2).

The most general result so far for the operator Hk (which also involves cases p �= q
mentioned in the introduction) is the following by Kaijser et. al [6, Theorem 4.4]:

THEOREM 2.3. Let 1 < p � q <∞, 0 < b � ∞, s ∈ (1, p) , let Φ be a convex and
strictly monotone function on I = (a,c), −∞ � a < c � ∞ , let Hk be defined by (1.3)
and let u(x) and v(x) be weight functions on [0,b] . Then the inequality

(∫ b

0
[Φ(Hk f (x))]q u(x)

dx
x

) 1
q

� C

(∫ b

0
Φp( f (x))v(x)

dx
x

) 1
p

(2.4)

holds for some finite constant C and all functions f such that Im f ⊆ I if

A(s) := sup
0<t�b

(∫ b

t

(
k(x,t)
K(x)

)q

u(x)V (x)
q(p−s)

p
dx
x

) 1
q

V (t)
s−1
p < ∞

holds, where V (t) :=
∫ t
0 v1−p′(x)xp′−1dx . Moreover, if C is the best constant in (2.4),

then

C � inf
1<s<p

(
p−1
p− s

) 1
p′

A(s).

We also mention the following early multidimensional result in this direction by
Godunova [4] (see also [15, Chapter VIII, p. 233]):

THEOREM 2.4. Let K(t) be defined on Vt = {t = (t1, ...,tn) : 0 < ti < ∞, i =
1, ...,n} with

∫
Vt

K(t)dVt = 1 , and let Vx and Vy be defined similarly. Let Φ(u) be a
nonnegative convex function for u � 0 and f be such that f (y) � 0 for y ∈Vy, f �= 0 ,
and Φ( f (x))/(x1...xn) is integrable on Vx . Then

∫
Vx

1
x1 · · ·xn

Φ
(

1
x1 · · ·xn

∫
Vy

K

(
y1

x1
, ...,

yn

xn

)
f (y1, ...,yn)dVy

)
dVx

�
∫
Vx

Φ( f (x))
x1 · · ·xn

dVx . (2.5)

For our further discussions we also mention the following recent result by Ogun-
tuase et. al [12]:
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THEOREM 2.5. Let b ∈ (0,∞], −∞� a < c � ∞ and let Φ be a positive function
on [a,c] . Suppose that the weight function u defined on (0,b) is nonnegative such that
u(x1,...,xn)

x2
1···x2

n
is locally integrable on (0,b) and the weight function v is defined by

v(t1, ...,tn) = t1 · · · tn
∫ b1

t1
· · ·
∫ bn

tn

u(x1, ...,xn)
x2
1 · · ·x2

n
dx1 · · ·dxn, t ∈ (0,b).

(i) If Φ is convex, then∫ b1

0
· · ·
∫ bn

0
u(x1, ...,xn)Φ

(
1

x1 · · ·xn

∫ x1

0
· · ·
∫ xn

0
f (t1, ...,tn)dt1 · · ·dtn

)
dx1 · · ·dxn

x1 · · ·xn

�
∫ b1

0
· · ·
∫ bn

0
v(x1, ...,xn)Φ( f (x1, ...,xn))

dx1 · · ·dxn

x1 · · ·xn

holds for every function f on (0,b) such that a < f (x1, ...,xn) < c.

(ii) If Φ is concave, then∫ b1

0
· · ·
∫ bn

0
u(x1, ...,xn)Φ

(
1

x1 · · ·xn

∫ x1

0
· · ·
∫ xn

0
f (t1, ...,tn)dt1 · · ·dtn

)
dx1 · · ·dxn

x1 · · ·xn

�
∫ b1

0
· · ·
∫ bn

0
v(x1, ...,xn)Φ( f (x1, ...,xn))

dx1 · · ·dxn

x1 · · ·xn

holds for every function f on (0,b) such that a < f (x1, ...,xn) < c.

REMARK 2.1. Also the obvious dual result was formulated and proved in [12].
For further developments in this directions even with a general kernel see [13] and [14].
See also our final Remark 4.3 in this paper.

3. The main results

In the sequel let (Ω1,Σ1,μ1), (Ω2,Σ2,μ2) be measure spaces and let Ak from (1.4)
be generalized as follows:

Ak f (x) :=
1

K(x)

∫
Ω2

k(x,y) f (y)dμ2(y), (3.1)

where f : Ω2 → R is measurable, k : Ω1 ×Ω2 → R is a measurable and nonnegative
kernel and

K(x) :=
∫
Ω2

k(x,y)dμ2(y) < ∞, x ∈Ω1. (3.2)

Our first result reads:

THEOREM 3.1. Let u be a weight function, k(x,y) � 0 . Assume that k(x,y)
K(x) u(x) is

locally integrable on Ω1 for each fixed y ∈Ω2 . Define v by

v(y) :=
∫
Ω1

k(x,y)
K(x)

u(x)dμ1(x) < ∞.
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If Φ is a convex function on the interval I ⊆ R , then the inequality

∫
Ω1

Φ(Ak f (x))u(x)dμ1(x) �
∫
Ω2

Φ( f (y))v(y)dμ2(y) (3.3)

holds for all measurable functions f :Ω2 →R , such that Im f ⊆ I , where Ak is defined
by (3.1)–(3.2).

Proof. We must first prove that Ak f (x) ∈ I , for all x ∈ Ω1 . The motivation for
this is that Ak f (x) is simply a generalized mean and since f (y) ∈ I for all y ∈Ω2 (by
assumption) also the mean Ak f (x) ∈ I . We also include a more formal proof of this
fact:
Assume that there exists x ∈Ω1 such that Ak f (x) /∈ I . Considering that I is an interval
in R and f (y) ∈ I we have Ak f (x)− f (y) > 0 or Ak f (x)− f (y) < 0 for all y ∈ Ω2 .
Now, define h :Ω2 →R, h(z) = Ak f (x)− f (z) . Then h > 0 or h < 0, that is h is strictly
positive or strictly negative, so is k(x,z)h(z) > 0 for μ2 -a.e. z ∈Ω2 or k(x,z)h(z) < 0
for μ2 -a.e. z ∈Ω2 . Hence, multiplying h(z) by k(x,z) , then integrating it over Ω2 we
get that

L :=
∫
Ω2

Ak f (x)k(x,z)dμ2(z)−
∫
Ω2

k(x,z) f (z)dμ2(z) �= 0 .

On the other hand, by (3.1) we see that L = 0 and this contradiction shows that Ak f (x)∈
I , for all x ∈ Ω1 . Note that if Ak f (x) is an endpoint of I for some x ∈ Ω1 (in case
when I is not an open interval), then h (or −h ) will be a nonnegative function whose
integral over Ω2 , with respect to measure μ2 , is equal to 0. Therefore, h = 0, that is,
f (y) = Ak f (x) holds for μ2 -a.e. y ∈Ω2.
Now, let us prove the inequality (3.3). By using Jensen’s inequality and the Fubini
theorem we find that
∫
Ω1

Φ(Ak f (x))u(x)dμ1(x) =
∫
Ω1

Φ
(

1
K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
)

u(x)dμ1(x)

�
∫
Ω1

1
K(x)

(∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
)

u(x)dμ1(x)

=
∫
Ω2

Φ( f (y))
(∫

Ω1

k(x,y)
K(x)

u(x)dμ1(x)
)

dμ2(y)

=
∫
Ω2

Φ( f (y))v(y)dμ2(y)

and the proof is complete. �

EXAMPLE 3.1. By applying Theorem 3.1 with Ω1 = Ω2 = (0,∞) and k(x,y) =
1, 0 � y � x , k(x,y) = 0, y > x , dμ1(x) = dx , dμ2(y) = dy and u(x) = 1

x (so that
v(y) = 1

y ), then we obtain (1.6) which, in its turn, is equivalent to the original Hardy
inequality (1.1) when Φ(u) = up, p > 1. �
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EXAMPLE 3.2. Let Ω1 =Ω2 = (0,∞) , replace dμ1(x) and dμ2(y) by the Lebesque

measures dx and dy , respectively, let k(x,y) = ( y
x )−1/p

x+y , p > 1 and u(x) = 1
x . Then

K(x) = K = π
sin(π/p) and v(y) = 1

y . Let Φ(u) = up and inequality (3.3) reads:

K−p
∫ ∞

0

(∫ ∞

0

(y
x

)−1/p f (y)
x+ y

d y

)p d x
x

= K−p
∫ ∞

0

(∫ ∞

0

f (y)
x+ y

y−1/pd y

)p

d x

�
∫ ∞

0
f p(y)

d y
y

Replace f (t)t−1/p with f (t) and we get Hilbert’s inequality (1.2). �

EXAMPLE 3.3. Let Ω1 = Ω2 = (0,b), 0 < b � ∞ , replace dμ1(x) and dμ2(y)
by the Lebesque measures dx and dy , respectively, and let k(x,y) = 0 for x < y � b .
Then Ak coincides with the operator Hk defined by (1.3) and if also u(x) is replaced
by u(x)/x and v(x) by v(x)/x , then (3.3) coincides with (2.1) and we see that Theorem
2.1 is a special case of Theorem 3.1. �

EXAMPLE 3.4. By arguing as in Example 3.3 but Ω1 = Ω2 = (b,∞), 0 � b < ∞
and with kernels such that k(x,y) = 0 for b � y < x we find that now (3.3) coincides
with (2.3) so that also Theorem 2.2 is a special case of Theorem 3.1. �

Next we shall point out that also Theorem 2.4 is a special case of Theorem 3.1.

We use notation y
x =

(
y1
xn

, ..., yn
xn

)
and consider the case with the kernel k of the type

k(x,y) = K
( y

x

)
.

COROLLARY 3.1. Let Vx be defined as in Theorem 2.4 and v(x) , u(x) be weights

such that
K( y

x )
K0(x) u(x) is locally integrable on Vx , where

K0(x) := x1 · · ·xn

∫
Vt

K(t)dVt

and

v(y) :=
∫
Vx

K
( y

x

)
K0(x)

u(x)dVx < ∞.

If Φ is a convex function on an interval I ⊆ R , then the inequality∫
Vx

Φ
(

1
K0(x)

∫
Vy

K
(y

x

)
f (y)dVy

)
u(x)dVx �

∫
Vy

Φ( f (y))v(y))dVy (3.4)

holds for all measurable functions f : Vy → R such that Im f ⊆ I .

Proof. First we note∫
Vy

K
(y

x

)
dVy = [y1 = t1x1, ...,yn = tnxn] = K0(x).

Hence, by just applying (3.3) with Ω1 = Vx,Ω2 = Vy in the current situation we find
that (3.4) holds and the proof is complete. �
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EXAMPLE 3.5. Let 1 =
∫
Vt

K(t)dVt . By using Corollary 3.1 with I = R+ , u(x) =
1/(x1 · · ·xn) we find that

v(y) =
∫
Vx

K
( y

x

)
x2
1 · · ·x2

n
dVx =

[
x1 =

y1

t1
, ...,xn =

yn

tn

]

=
∫
Vt

1
y1 · · ·yn

K(t)dVt =
1

y1 · · ·yn
,

which shows that Corollary 3.1 is a genuine generalization of Theorem 2.4. �

We shall continue by stating a somewhat more general theorem, which is of a
type described in Theorem 2.3 but for general measures. More exactly, we state the
following generalization of Theorem 3.1:

THEOREM 3.2. Let 0 < p � q < ∞ and let the assumptions in Theorem 3.1 be
satisfied but now with

v(y) :=

(∫
Ω1

(
k(x,y)
K(x)

) q
p

u(x)dμ1(x)

) p
q

< ∞. (3.5)

If Φ is a positive convex function on the interval I ⊆ R , then the inequality

(∫
Ω1

[Φ(Ak f (x))]
q
p u(x)dμ1(x)

) 1
q

�
(∫

Ω2

Φ( f (y))v(y)dμ2(y)
) 1

p

(3.6)

holds for all measurable functions f : Ω2 → R, such that Im f ⊆ I .

Proof. As in the proof of Theorem 3.1 we first note that Ak f (x) ∈ I , for all x ∈
Ω1 . Moreover, by using Jensen’s inequality and then Minkowski’s general integral
inequality we find that

(∫
Ω1

[Φ(Ak f (x))]
q
p u(x)dμ1(x)

) 1
q

=

(∫
Ω1

[
Φ
(

1
K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
)] q

p

u(x)dμ1(x)

) 1
q

�
(∫

Ω1

[
1

K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
] q

p

u(x)dμ1(x)

) 1
q

�

⎛
⎝∫

Ω2

Φ( f (y))

(∫
Ω1

(
k(x,y)
K(x)

) q
p

u(x)dμ1(x)

) p
q

dμ2(y)

⎞
⎠

1
p

=
(∫

Ω2

Φ( f (y))v(y)dμ2(y))
) 1

p
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and the proof is complete. �
For the case p = q we obtain Theorem 3.1 and as expected by applying Theorem

3.2 we obtain the following further generalization of the Godunova result:

COROLLARY 3.2. Let 0 < p � q <∞ and let the assumptions in Corollary 3.1 be
satisfied with v defined by

v(y) =

⎛
⎝∫

Vx

(
K
( y

x

)
K0(x)

) q
p

u(x)dVx

⎞
⎠

p
q

.

If Φ is a convex function on an interval I ⊆ R , then the inequality

(∫
Vx

[
Φ
(

1
K(x)

∫
Vy

K
(y

x

)
f (y)dVy

)] q
p

u(x)dVx

) 1
q

�
(∫

Vy

Φ( f (y))v(y))dVy

) 1
p

(3.7)
holds for all measurable functions holds for all measurable functions f : Vy → R such
that Im f ⊆ I .

Proof. The proof only consists of obvious modifications in the proof of Corollary
3.1 so we omit the details. �

EXAMPLE 3.6. By using Theorem 3.2 with Ω1 =Ω2 = (0,b), 0 < b �∞, k(x,y)=
0 for x < y < b, u(x) replaced by u(x)/x and v(y) replaced by v(y)/y we obtain the
inequality

(∫ b

0
[Φ(Hk f (x))]

q
p u(x)

dμ1(x)
x

) 1
q

�
(∫ b

0
Φ( f (y))v(y)

dμ2(y)
y

) 1
p

,

where v(y) is defined by (3.5). For Φ replaced by Φp, 1 < p � q < ∞ (Φp is convex
function) this inequality is similar to (2.4). However, these results are not comparable
but we conjecture that Theorem 2.3 can be generalized also to the case with general
measures even to a multidimensional setting. �

We finish this Section by stating the following useful fact:

REMARK 3.1. Let the assumptions of Theorem 3.2 be satisfied. By applying The-
orem 3.2 with Φ(x) = x we get the following inequality:

(∫
Ω1

[Ak f (x)]
q
p u(x)dμ1(x)

) 1
q

�
(∫

Ω2

f (y)v(y)dμ2(y)
) 1

p

. (3.8)

Now replace f (x) with Φ( f (x)) and we get that

(∫
Ω1

[AkΦ( f (x))]
q
p u(x)dμ1(x)

) 1
q

�
(∫

Ω2

Φ( f (y))v(y)dμ2(y)
) 1

p

. (3.9)
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On the other hand, applying Jensen’s inequality to the left side of inequality (3.9) we
obtain that

(∫
Ω1

[AkΦ( f (x))]
q
p u(x)dμ1(x)

) 1
q

=

(∫
Ω1

[
1

K(x)

∫
Ω2

k(x,y)Φ( f (y))dμ2(y)
] q

p

u(x)dμ1(x)

) 1
q

�
(∫

Ω1

[
Φ
(

1
K(x)

∫
Ω2

k(x,y) f (y)dμ2(y)
)] q

p

u(x)dμ1(x)

) 1
q

=
(∫

Ω1

[Φ(Ak f (x))]
q
p u(x)dμ1(x)

) 1
q

,

i.e., by (3.9) that (3.6) holds. We conclude that if the assumptions of Theorem 3.2 hold,
then each of (3.6), (3.8) and (3.9) holds and are equivalent.

4. Concluding remarks and examples

REMARK 4.1. By applying the results in this paper for special cases e.g. for ker-
nels with additional homogeneity properties, Φ(u) = up, p > 1, and making some ob-
vious variable transformations we obtain what in the literature is usually called Hilbert
type or Hardy–Hilbert type inequalities, see e.g. Example 3.2 for the original case.

However, by keeping our convex functions we obtain further generalizations of
Hilbert type inequalities. Here we only give two simple examples.

EXAMPLE 4.1. Let Ω1 = Ω2 = (0,∞) . For k(x,y) = (x + y)−s, s > 1 we have

K(x) = x1−s

s−1 and

v(y) = (s−1)
∫ ∞

0
(x+ y)−sxs−1u(x)dx.

Let u(x) = x1−t−s, t ∈ (1− s,1) .
Then we have

v(y) = (s−1)
∫ ∞

0
(x+ y)−sxs−1x1−t−sdx = (s−1)y1−t−sB(1− t,s+ t−1),

where B(., .) is the usual Beta function.
By applying Theorem 3.1 we get the following inequality:

∫ ∞

0
x1−t−sΦ(AK f (x))dx � (s−1)B(1− t,s+ t−1)

∫ ∞

0
y1−t−sΦ( f (y))dy,

where Φ is a convex function and Ak f (x) is defined by (3.1). �
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EXAMPLE 4.2. Let Ω1 =Ω2 = (0,∞) ,

u(x) = x−2α and k(x,y) =
lny− lnx

y− x

(y
x

)−α
, α ∈ (0,1).

Evidently, it is homogeneous of degree −1, K(x) converges for all α ∈ (0,1) , and we
have

K(x) =
∫ ∞

0

lny− lnx
y− x

(y
x

)−α
dy =

∫ ∞

0

lnu
u−1

u−αdu

=
∫ ∞

−∞
te(1−α)t

et −1
dt = Ψ′(α)+Ψ′(1−α) =

π2

sin2 πα
,

where Ψ(x) = Γ′(x)
Γ(x) , x > 0, is the Digamma function and we used the identity

Ψ(1− x) = Ψ(x)+π cotπx, x ∈ (0,1)

(for details on Ψ see [1]). Then we have

v(y) =
sin2πα
π2

∫ ∞

0

lnx− lny
x− y

(y
x

)α
y−2αdx

=
sin2πα
π2 y−2α

∫ ∞

0

lnu
u−1

u−αdu = y−2α , (x = yu)

Therefore, by applying (3.3) we get the following inequality:∫ ∞

0
Φ
(

sin2πα
π2

∫ ∞

0

lny− lnx
y− x

(y
x

)−α
f (y)dy

)
x−2αdx �

∫ ∞

0
y−2αΦ( f (y))dy,

where Φ is a convex function. �

Moreover, by applying our result with the convex function Φ(x) = ex and making
some suitable variable transformations we obtain what in the literature is called Pólya–
Knopp type inequalities. We give the following example:

EXAMPLE 4.3. Let the assumptions in Theorem 3.1 be satisfied. Then, by apply-
ing (3.3) with Φ(x) = ex , and f replaced by ln f p, p > 0 we obtain that

∫
Ω1

[
exp

(
1

K(x)

∫
Ω2

k(x,y) ln f (y)dμ2(y)
)]p

u(x)dμ1(x)

�
∫
Ω2

f p(y)v(y)dμ2(y) , (4.1)

where k(x,y), K(x), u(x) and v(y) are defined as in Theorem 3.1. In particular, if
p = 1,Ω1 = Ω2 = (0,∞), k(x,y) = 1, 0 < y < x, k(x,y) = 0, y � x. (so that K(x) = x ),
dμ1(x) = dx, dμ2(y) = dy, u(x) = 1/x (so that v(x) = 1/x ) replacing f (x)/x by f (x)
and making a simple calculation we find that (4.1) is equal to∫ ∞

0
exp

(
1
x

∫ x

0
ln f (y)dy

)
dx � e

∫ ∞

0
f (y)dy ,

which is the classical form of Pólya–Knopp’s inequality. �
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REMARK 4.2. It is important to remark that obviously inequality (3.3) in Theo-
rem 3.1 holds in the reversed direction if Φ is concave. Hence, we can also obtain a
number of complements of the examples we have pointed out.

Our last important remark concerns the multidimensional case:

REMARK 4.3. As we have seen our results can be used to obtain also multidimen-
sional Hardy-type inequalities. See e.g. our generalizations in Corollaries 3.1 and 3.2
of Godunova’s multidimensional result in Theorem 2.4. It is also obvious that Theo-
rem 2.5 follows by using our Theorem 3.1 in a similar way as we argued in our Example
3.3. In a forthcoming paper we aim to further develop the ideas in this paper to a mul-
tidimensional setting (see also Example 3.6). Some further results in this direction can
also be found in the recent papers [13] and [14].
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[2] A. ČIŽMEŠIJA, J.E. PEČARIĆ AND L.E. PERSSON, On strengthened Hardy and Pólya–Knopp’s
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