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Abstract. In this paper, we obtain the inequalities for the iterated convolution and their applica-
tions to physical problems. We also get the inequality∥∥∥∥∥∥∥

∑
m
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⎛
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m
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‖Fm,j‖Lp(Rn,|ρm,j|)

and its applications in Lp(Rn, |ρ|) space.

1. Introduction

In a series of papers, ([2], [9], [10], [11]) some new type norm inequalities in
convolutions in some several weighted L2 spaces using the theory of reproducing
kernels are derived. In particular, S. Saitoh ([9]) gave iterated inequalities in the
convolution in L2 space.

Let f ∈ Lp(R), g ∈ Lq(R), and p−1 + q−1 > 1 . Then, Young’s inequality (see
[12]) says that the Fourier convolution

f ∗ g :=
∫ ∞

−∞
f (y)g(x − y) dy

belongs to Lr(R), where r−1 = p−1 + q−1 − 1 , and moreover,

‖f ∗ g‖r � ‖f ‖p‖g‖q.

Surprisingly enough, S. Saitoh ([8]) gave convolution norm inequalities in the form

‖f ∗ g‖p � ‖f ‖p‖g‖p,

by considering the Lp - norms in more naturally determined weighted spaces.
This type inequality will be very convenient for various applications for the “same”

Lp norms.
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In our recent publications ([6], [7]), we have given several new type of convolution
inequalities in weighted Lp(Rn, |ρ|)(p > 1) spaces in the following form∥∥∥((F1ρ1) ∗ (F2ρ2))(ρ1 ∗ ρ2)

1
p−1
∥∥∥

Lp(Rn)
� ‖F1‖Lp(Rn,|ρ1|) ‖F2‖Lp(Rn,|ρ2|). (1.1)

For our specific purpose, we will establish some fundamental iterated convolution
inequalities in Lp(Rn, |ρ|) space and give several their applications to physical problems.

2. Fundamental iterated convolution inequalities

Throughout this paper, for brevity of presentation we shall use the following
notations.

By R
n we denote the n− dimensional Euclidean space, n ∈ N . This is the set of

all n− tuples of real numbers, x = (x1, ..., xn), xj ∈ R, j = 1, 2, ..., n with the linear
operations

x + y = (x1 + y1, ..., xn + yn), x, y ∈ R
n, (2.2)

λx = (λx1, ..., λxn), λ ∈ R, x ∈ R
n, (2.3)

the scalar product
xy = x1y1 + · · · + xnyn, x, y ∈ R

n (2.4)

and the norm
|x| = (xx)

1
2 = (x2

1 + · · · + x2
n)

1
2 , x ∈ R

n. (2.5)

Now let z,ααα ∈ R
n . Then we set

zααα =
n∏

j=1

z
αj
j . (2.6)

For brevity we write∫
Rn

f (x)dx =
∫

R

· · ·
∫

R

f (x1, ..., xn)dx1 · · · dxn. (2.7)

Let f (x) ∗ g(x) is called the convolution (see [1]) of f (x) and g(x) and is defined by
the integral

(f ∗ g)(x) :=
∫

Rn
f (z)g(x − z)dz. (2.8)

We shall denote by
∏q

j=1 ∗Fj the iterated convolution of Fj , that is

(
r∏

j=1

∗Fj)(x) := (F1 ∗ F2 ∗ · · · ∗ Fr) (x). (2.9)

Then, we obtain the following fundamental results:
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THEOREM 1. For some non-vanishing functions ρj(x)(j = 1, 2, ..., r) belonging to
L1(Rn, dx) and for p > 1 we have the Lp weighted inequality for iterated convolution

∥∥∥∥∥∥∥
⎛
⎝ r∏

j=1

∗(Fjρj)

⎞
⎠
⎛
⎝ r∏

j=1

∗ρj

⎞
⎠

1
p−1
∥∥∥∥∥∥∥

Lp(Rn)

�
r∏

j=1

‖Fj‖Lp(Rn,|ρj|) (2.10)

for functions Fj ∈ Lp(Rn, |ρj|). Equality holds for Fj if and only if Fj are represented
in the form

Fj(x) = Cje
αααx; Cj : constants, (2.11)

where ααα ∈ R
n is a constant such that Fj ∈ Lp(Rn, |ρj(x)|dx)(j = 1, 2, ..., r).

This Theorem will be proved by application of the following lemma:

LEMMA 1. If ρj(x) (j = 1, 2, ..., r) are some non-vanishing functions belonging
to L1(Rn, dx) and for p > 1 then

∣∣∣∣∣∣
( r∏

j=1

∗(Fjρj)
)
(x)

∣∣∣∣∣∣
p

�

⎧⎨
⎩(

r∏
j=1

∗|ρj|
)
(x)

⎫⎬
⎭

p−1 ( r∏
j=1

∗(|Fj|p|ρj|)
)
(x), ∀x ∈ R

n.

(2.12)
Here, equality holds if and only if

Fj(x) = Cje
αααx; Cj : constants. (2.13)

Proof. We use induction on r . When r = 2 , the inequality (2.12) is reduced to
the Hölder’s inequality. Equality holds if and only if for a function k(x) in x

F1(y)F2(x − y) = k(x) a.e. on R
n

or, so is (2.13) for r = 2 .
Now suppose (2.12) and (2.13) hold for some integer r � 2 . We claim that they

also hold for r + 1 .
For all x ∈ R

n , put

f (y) =

⎧⎨
⎩(

r∏
j=1

∗|ρj|
)
(y)|ρr+1(x − y)|

⎫⎬
⎭

p−1
p

, ∀y ∈ R
n

and

g(y) =

⎧⎨
⎩(

r∏
j=1

∗(|Fj|p|ρj|)
)
(y)|ρr+1(x − y)|

⎫⎬
⎭

1
p

|Fr+1(x − y)|, ∀y ∈ R
n.
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By induction hypothesis, we arrive at∣∣∣∣∣∣
( r+1∏

j=1

∗(Fjρj)
)
(x)

∣∣∣∣∣∣ �
([ r∏

j=1

∗|Fjρj|
] ∗ |Fr+1ρr+1|

)
(x)

=
∫

Rn

( r∏
j=1

∗|Fjρj|
)
(y)|Fr+1(x − y)||ρr+1(x − y)|dy

�
∫

Rn
f (y)g(y)dy.

Application of the Hölder’s inequality for f (y) and g(y) gives

(∫
Rn

f (y)g(y)dy
)p

�
{∫

Rn
f

p
p−1 (y)dy

}p−1 ∫
Rn

gp(y)dy

=

⎧⎨
⎩(

r+1∏
j=1

∗|ρj|
)
(x)

⎫⎬
⎭

p−1 ( r+1∏
j=1

∗(|Fj|p|ρj|)
)
(x).

Hence, we have∣∣∣∣∣∣
( r+1∏

j=1

∗(Fjρj)
)
(x)

∣∣∣∣∣∣
p

�

⎧⎨
⎩(

r+1∏
j=1

∗|ρj|
)
(x)

⎫⎬
⎭

p−1 ( r+1∏
j=1

∗(|Fj|p|ρj|)
)
(x). (2.14)

Equality holds in (2.14) if and only if

∣∣∣∣∣∣
( r∏

j=1

∗(Fjρj)
)
(y)

∣∣∣∣∣∣
p

=

⎧⎨
⎩(

r∏
j=1

∗|ρj|
)
(y)

⎫⎬
⎭

p−1 ( r∏
j=1

∗(|Fj|p|ρj|)
)
(y) (2.15)

and

[f (y)]
p

p−1

∫
Rn

[g(y)]pdy = [g(y)]p
∫

Rn
[f (y)]

p
p−1 dy. (2.16)

By induction hypothesis, (2.15) and (2.16), we obtain

Fj(y) = Cje
αααy, Cj : constants (j = 1, 2, ..., r) (2.17)

and
eαααyFr+1(x − y) = h(x), a.e. on R

n (2.18)

for a function h(x) in x . From this functional equation, we have

Fr+1(y) = Cr+1e
αααy, Cr+1 : constant

and so the assertion follows. �
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Proof of Theorem 1. In view of the lemma above, there is∥∥∥∥∥∥∥
⎛
⎝ r∏

j=1

∗(Fjρj)

⎞
⎠
⎛
⎝ r∏

j=1

∗ρj

⎞
⎠

1
p−1
∥∥∥∥∥∥∥

Lp(Rn)

�

⎧⎨
⎩
∫

Rn

( r∏
j=1

∗(|Fj|p|ρj|)
)
(x)dx

⎫⎬
⎭

1
p

.

Using the Fubini’s theorem we have immediately (2.10). Equality holds if and only if
equality holds in Lemma 1, so we have (2.11). �

In Theorem 1, in many cases the convolution will be given in the form

ρr ≡ 1, and Fr(x − z) = G(x − z)

for some Green’s function G(x − z) . Then we have the inequality∥∥∥∥∥∥
⎛
⎝ r∏

j=1

∗(Fjρj)

⎞
⎠ ∗ G

∥∥∥∥∥∥
Lp(Rn)

� ‖G‖Lp(Rn)

r∏
j=1

‖ρj‖1− 1
p

L1(Rn)

r∏
j=1

‖Fj‖Lp(Rn,|ρj|). (2.19)

By considering the inequality (2.19) in the L2 -weighted space, we also obtain
several inequalities for the Fourier transform. We shall denote by F{f } the Fourier
transform of a function f , that is

F{f }(x) =
1

(
√

2π)n

∫
Rn

e−ixyf (y)dy. (2.20)

Application of Parseval’s equality and convolution theorem for the Fourier transform
gives∥∥∥∥∥∥

⎛
⎝ r∏

j=1

∗(Fjρj)

⎞
⎠ ∗ G

∥∥∥∥∥∥
L2(Rn)

=
(√

2π
)rn ∥∥∥∥∥∥F{G}

r∏
j=1

(
F{Fjρj}

)∥∥∥∥∥∥
L2(Rn)

. (2.21)

Combining (2.19) and (2.21) yields∥∥∥∥∥∥F{G}
r∏

j=1

(
F{Fjρj}

)∥∥∥∥∥∥
L2(Rn)

�
‖G‖L2(Rn)(√

2π
)rn r∏

j=1

‖ρj‖
1
2
L1(Rn)

r∏
j=1

‖Fj‖L2(Rn,|ρj|). (2.22)

In (2.22), for r = 1 , we can obtain L2 -weighted integral estimates for the solutions
of partial differential equations whose representations are given by

u = F−1 {F{Fρ}F{G}} ,

namely,

‖u‖2
L2(Rn) � 1

(2π)n
‖G‖2

L2(Rn)‖ρ‖L1(Rn)‖F‖2
L2(Rn,|ρ|)

=
1

(2π)n
‖F{G}‖2

L2(Rn)‖ρ‖L1(Rn)‖F‖2
L2(Rn,|ρ|).

(2.23)
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For example, we consider the equation

uxxxx − uyy + k2u = F(x, y)ρ(x, y), (x, y) ∈ R
2, k ∈ R+. (2.24)

Using the Fourier transform, we state that

F{u}(x, y) =
F{Fρ}(x, y)
x4 + y2 + k2

. (2.25)

Then, we have

‖u‖2
L2(R2) � 3

8
√

2(
√

k)5π
B

(
1
2
,
5
4

)
‖ρ‖L1(R2)‖F‖2

L2(R2,|ρ|) (2.26)

for ρ ∈ L1(R2, dxdy) and for F ∈ L2(R2, |ρ(x, y)|dxdy) .
We next use our results above to derive an important extension of Saitoh’s inequality

in [11].

COROLLARY 1. For any functions Fj ∈ Lp
(
R, (a2

j ξ 2 +b2
j )−1dξ

)
(j = 1, ..., r) , and

for the iterated convolution
r∏

j=1
∗ , we have the inequality

∫ ∞

−∞

∣∣∣∣∣∣
⎛
⎝ r∏

j=1

∗ Fj(ξ)
a2

j ξ 2 + b2
j

⎞
⎠ (ξ)

∣∣∣∣∣∣
p
⎧⎪⎨
⎪⎩
⎛
⎝ r∑

j=1

bj

∏
i�=j

ai

⎞
⎠

2

+ ξ 2

⎛
⎝ r∏

j=1

aj

⎞
⎠

2
⎫⎪⎬
⎪⎭

p−1

dξ

�

⎧⎨
⎩πr−1

r∑
j=1

∏
i�=j

ai

bi

⎫⎬
⎭

p−1
r∏

j=1

∫ ∞

−∞

|Fj(ξ)|p
a2

j ξ 2 + b2
j

dξ .

(2.27)
Equality holds for Fj if and only if Fj are represented in the form

Fj(x) = Cje
αx; Cj : constants, (2.28)

where α ∈ R is a constant such that Fj ∈ Lp
(
R, (a2

j ξ 2 + b2
j )−1dξ

)
(j = 1, ..., r) .

In particular, for r = 2, p = 2 , we have (see more [11])[
1
2

(
a1

b1
+

a2

b2

)]−1 1
2π

∫ ∞

−∞

∣∣∣∣
(

F1(ξ)
a2

1ξ 2 + b2
1

∗ F2(ξ)
a2

2ξ 2 + b2
2

)
(ξ)
∣∣∣∣
2

·{(a1a2)2ξ 2 + (a1b2 + a2b1)2
}

dξ

�
∫ ∞

−∞

|F1(ξ)|2
a2

1ξ 2 + b2
1

dξ
∫ ∞

−∞

|F2(ξ)|2
a2

2ξ 2 + b2
2

dξ .

(2.29)

Proof. In Theorem 1, take

ρj(ξ) =
1

a2
j ξ 2 + b2

j

, j = 1, ..., r, ξ ∈ R,
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we have

F{ρj}(ξ) =
√

π
2

1
ajbj

exp

{
−bj

aj
|ξ |
}

.

Hence, by using the convolution theorem, we obtain

( r∏
j=1

∗ρj

)
(ξ) = (

√
2π)r−1F−1

⎧⎨
⎩

r∏
j=1

F{ρj}
⎫⎬
⎭ (ξ)

= (
√

2π)r−1

(√
π
2

)r
⎛
⎝ r∏

j=1

1
ajbj

⎞
⎠F−1

⎧⎨
⎩exp

⎛
⎝−|ξ |

r∑
j=1

bj

aj

⎞
⎠
⎫⎬
⎭ (ξ)

= πr−1

⎛
⎝ r∏

j=1

1
ajbj

⎞
⎠
⎛
⎝ r∑

j=1

bj

aj

⎞
⎠
⎛
⎜⎝ξ 2 +

⎛
⎝ r∑

j=1

bj

aj

⎞
⎠

2
⎞
⎟⎠

−1

= πr−1

⎛
⎝ r∑

j=1

∏
i�=j

ai

bi

⎞
⎠
⎛
⎜⎝ξ 2 +

⎛
⎝ r∑

j=1

bj

∏
i�=j

ai

⎞
⎠

2
⎞
⎟⎠

−1

.

We then have the desired inequalities. �
We next generalize inequality (1.1) to a sum of iterated convolution:

THEOREM 2. For some non-vanishing functions ρm,j(x)(j = 1, 2, ..., r) belonging
to L1(Rn, dx) and for p > 1 we have the Lp weighted inequality for the sum of iterated
convolution ∥∥∥∥∥∥∥

∑
m

⎛
⎝ r∏

j=1

∗(Fm,jρm,j)

⎞
⎠
⎛
⎝ r∏

j=1

∗|ρm,j|
⎞
⎠

1
p−1
∥∥∥∥∥∥∥

Lp(Rn)

�
∑

m

r∏
j=1

‖Fm,j‖Lp(Rn,|ρm,j|) (2.30)

for Fm,j(x) ∈ Lp(Rn, |ρm,j(x)|dx)(j = 1, 2, ..., r) and we assume that the right hand
side of (2.30) is finite. Equality holds if and only if

Fm,j(x) = Cm,je
αααx and

( r∏
j=1

∗|ρm,j|
)
(x) = Cmϕ(x), Cm,j, Cm : constants, (2.31)

where ϕ(x) some integrable function and ααα ∈ R
n is a constant such that Fm,j ∈

Lp(Rn, |ρm,j|dx) and the right hand side of (2.30) is finite.

We emphasize that the inequality (1.1) is a special case of inequality (2.30) when
m = 1 and r = 2 .

In Theorem 2, in many cases the convolution will be given in the form

ρm,r ≡ 1, and Fm,r(x − z) = Gm(x − z)
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for some Green’s functions Gm(x − z) . Then we have the inequality∥∥∥∥∥∥
∑

m

⎛
⎝{ r∏

j=1

∗(Fm,jρm,j)
} ∗ Gm

⎞
⎠
∥∥∥∥∥∥

Lp(Rn)

�
∑

m

⎧⎨
⎩‖Gm‖Lp(Rn)

r∏
j=1

‖ρm,j‖1− 1
p

L1(Rn)

r∏
j=1

‖Fm,j‖Lp(Rn,|ρm,j|)

⎫⎬
⎭ . (2.32)

For r = 2 , from (2.32), we have[∫
Rn

∣∣∣∣∣
∑

m

((Fmρm) ∗ Gm) (x)

∣∣∣∣∣
p

dx

] 1
p

�
∑

m

{
‖Gm‖Lp(Rn) ‖ρm‖

p−1
p

L1(Rn) ‖Fm‖Lp(Rn,|ρm|)

}
. (2.33)

In general, in (2.33) we have a generalization[∫ d

c

∣∣∣∣∣
∑

m

((Fmρm) ∗ Gm) (x)

∣∣∣∣∣
p

dx

] 1
p

�
∑

m

{(∫
Rn

|ρm (z)| dz
)p−1 ∫

Rn
|Fm(z)|p|ρm(z)dz

∫ d−z

c−z
|Gm(x)|pdx

} 1
p

. (2.34)

Proof of Theorem 2.. Take

f m(x) =
( r∏

j=1

∗(Fm,jρm,j)
)
(x)

⎧⎨
⎩(

r∏
j=1

∗|ρm,j|
)
(x)

⎫⎬
⎭

1
p−1

, x ∈ R
n.

Application of the inequality of Hardy, Littlewood and Pólya ([5], pp. 148–150) for
f m(x) gives ∥∥∥∥∥∥∥

∑
m

⎛
⎝ r∏

j=1

∗(Fm,jρm,j)

⎞
⎠
⎛
⎝ r∏

j=1

∗|ρm,j|
⎞
⎠

1
p−1
∥∥∥∥∥∥∥

Lp(Rn)

�
∑

m

⎧⎪⎪⎨
⎪⎪⎩
∥∥∥∥∥∥∥
⎛
⎝ r∏

j=1

∗(Fm,jρm,j)

⎞
⎠
⎛
⎝ r∏

j=1

∗ρm,j

⎞
⎠

1
p−1
∥∥∥∥∥∥∥

Lp(Rn)

⎫⎪⎪⎬
⎪⎪⎭ . (2.35)

Moreover, by using the inequality (2.10), we state that∥∥∥∥∥∥∥
⎛
⎝ r∏

j=1

∗(Fm,jρm,j)

⎞
⎠
⎛
⎝ r∏

j=1

∗ρm,j

⎞
⎠

1
p−1
∥∥∥∥∥∥∥

Lp(Rn)

�
r∏

j=1

‖Fm,j‖Lp(Rn,|ρm,j|). (2.36)
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Combining (2.35) and (2.36) yields (2.30).
Equality holds if and only if equality holds in (2.35) and equality in (2.36). So,

we have (2.30). �
We next introduce several applications of the above convolution inequalities to

physical problems. We obtain some estimates in the Lp(p > 1) -weighted space and
especially in the case of p = 2 (see [1], [3]).

3. Applications

3.1. The Bernoulli-Euler Beam Equation

Weconsider the vertical deflection u(x) of an infinite beamon an elastic foundation
under the action of a prescribed vertical load W(x) . The deflection u(x) satisfies the
ordinary differential equation

EI
d4u
dx4

+ κu = W(x), −∞ < x < ∞, (3.37)

where EI is the flexural rigidity and κ is the foundation modulus of the beam. We find
the solution assuming that W(x) has a compact support and u , u′ , u′′ , u′′′ all tend to
zero as |x| → ∞ . Put

a4 =
κ
EI

, F(x)ρ(x) =
W(x)
EI

.

By using the Fourier transform, we (see [3], pp. 63-64) obtain

F{u}(x) =
F{Fρ}(x)
x4 + a4

. (3.38)

Then, we have the inequality

‖u‖2
L2(R) � 3

8
√

2a7
‖ρ‖L1(R)‖F‖2

L2(R,|ρ|), (3.39)

where ρ is an L1(R, dx) function and for functions F ∈ L2(R, |ρ(x)|dx) .
In the Bernoulli-Euler equation on an elastic foundation

EI
∂4u
∂x4

+ κu + m
∂2u
∂t2

= F(x)ρ(x)δ(t), −∞ < x < ∞, t > 0, (3.40)

with the initial data
u(x, 0) = 0 and ut(x, 0) = 0, (3.41)

we (see [3], pp. 245) have

F{u(., t)}(x, t) =
F{Fρ}(x)

m

( sinαt
α

)
, α = (a2x4 + ω2)

1
2 , (3.42)

where

a2 =
EI
m

and ω2 =
κ
m

.
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From the inequality (2.23), we obtain

‖u(., t)‖2
L2(R) � 1

4mκ

√
2ω
a
‖ρ‖L1(R)‖F‖2

L2(R,|ρ|) (3.43)

for ρ ∈ L1(R, dx) and for F ∈ L2(R, |ρ(x)|dx) .

3.2. Diffusion of Vorticity from a Vortex Sheet

We consider the two-dimensional vorticity equation in the x, y plane given by

ζt = νΔζ (3.44)

with the initial condition
ζ(x, y, 0) = F(x, y)ρ(x, y), (3.45)

where ζ = vx − uy .
Application of the Fourier transform gives (see [3], pp. 117–118)

F{ζ(., ., t)}(x, y, t) = F{Fρ}(x, y) exp{−ν(x2 + y2)t}. (3.46)

Then, we have the inequality∫
R2

|ζ(x, y, t)|2dxdy � 1
4πνt

∫
R2

|ρ(x, y)|dxdy
∫

R2

|F(x, y)|2|ρ(x, y)|dxdy, (3.47)

where ρ is an L1(R2, dxdy) function and for F ∈ L2(R2, |ρ(x, y)|dxdy) .

3.3. Helmholtz Equation

We next consider the Dirichlet problem for the Helmholtz equation in a half space
of R

n+1 (see [1], pp. 75-76), i.e. the determination of the bounded solution of

Δn+1u(x′) + ku(x′) = 0, x′ ∈ R+ × R
n, k ∈ R+ (3.48)

under the boundary value condition

u(0, x) = F(x)ρ(x), Fρ ∈ L1(Rn). (3.49)

Here, x′ = (t, x1, ..., xn) = (t, x) . Setting U(t, x) = F{u(t, .)}(t, x) , we obtain

U(t, x) = F{Fρ}(x) exp
{− t(k2 + |x|2)1/2

}
. (3.50)

So, we have the inequality∫
Rn

|u(t, x)|2dx �
(√

n + 1
t2π

)n

exp

{
− 2tk√

n + 1

}

.

∫
Rn

|ρ(x)|dx
∫

Rn
|F(x)|2|ρ(x)|dx,

(3.51)

where ρ ∈ L1(Rn, dx) , F ∈ L2(Rn, |ρ(x)|dx) .
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3.4. Axisymmetric Heat Conduction Equation

We consider the bounded solution of the axisymmetric heat conduction equation

ut = κ
(

urr +
1
r
ur

)
, 0 � r < a, t > 0, (3.52)

with the initial and boundary data

u(r, 0) = 0 for 0 < r < a, (3.53)

u(r, t) = F(t)ρ(t) at r = a for t > 0, (3.54)

where κ and a are constants.
Application of Laplace transform gives (see [3], pp. 217-219)

u(r, t) =
2κ
a

∞∑
n=1

αnJ0(rαn)
J1(aαn)

∫ t

0
F(τ)ρ(τ) exp

(− κ(t − τ)α2
n

)
dτ, (3.55)

where the summation is taken over the positive roots αn of J0(aα) = 0.
Then, we obtain the inequality

‖u(r, .)‖Lp(R+) � ‖ρ‖
p−1

p
L1(R+)‖F‖Lp(R+,|ρ|)

(
2κ
a

)(
1
pκ

) 1
p ∞∑

n=1

∣∣∣∣ J0(rαn)
J1(aαn)

∣∣∣∣α1− 2
p

n (3.56)

for ρ ∈ L1(R+, dt) and for F ∈ Lp(R+, |ρ(t)|dt) .
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