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CONCERNING THE INTERMEDIATE
POINT IN THE MEAN VALUE THEOREM

DoREL I. DucA AND OVIDIU T. PoP

(Communicated by J. Pecari¢)

Abstract. 1f the function f:1 — R is differentiable on the interval / C R, then for each x,a € I,
according to the mean value theorem, there exists a number ¢ (x) belonging to the open interval
determined by x and «, and there exists a real number 6 (x) €]0,1[ such that

fF)=fla)=(x—a) Y (c(x))
and
F@=f(a@)=(x—a)fY(a+(x—a)6 (x)).

In this paper we shall study the differentiability of the functions ¢ and 0 in a neighbourhood of
a.

1. Introduction

The mean-value theorem of differential calculus, the theorem of finite variation,
or I. J. Lagrange’s theorem has one of the following forms:

THEOREM 1. (L. J. Lagrange-A. M. Ampere) Let a and b be real numbers with
a<band f:[a,b] —R.If

(i) the function f is continuous on [a,b),

(ii) the function f is differentiable on la,b],
then there exists at least one real number ¢ €)a,b| such that

Fb) = fla) = (b—a)fM(c).

If we note 6 = lc:_a , then Theorem 1 becomes:

THEOREM 2. (L. J. Lagrange-A.M. Ampere) Let a and b be two real numbers
with a < b and f : [a,b] — R be a function. If

(i) the function f is continuous on [a,b],

(ii) the function f is differentiable on la,b|,
then there exists at least one real number 6 €]0,1[ such that

fb) = fla) = (b—a)fV(a+(b-a)o).
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For some classes of functions f : [a,b] — R, continuous on [a,b] and differen-
tiable on |a,b], the position of the points ¢ €]a,b[ and 0 €]0, 1 from the mean value
theorem may be better determined. For example:

a) If 0 < a < b < oo, then for the function f: [a,b] — R, defined by

f(x) =Inx, forall x € [a,b],
we have [15]:

avb+ba a+b 1
<c< and vVa<0 < =
Vb+Va 2 Va<0<3

b)If0<a<b< @ , then for the function f : [a,b] — R, defined by

f(x) = arctg x, forall x € [a, b],
we have:

a-+b
2

(a+b)V2
—, and = <0< .
2 2Qw6+v¥+w)

¢) For the function f: R — R, defined by

f(x) = a3x® + axx* + arx + ap, forall x € R,

(a3,a2,a1,a0 €R, az #0), D. Pompeiu [18] proved that there exists an interval [¢*,b*] C
Ja,b|, such that a* < ¢ < b*. Moreover, the subinterval of the smallest length has

b b— b b— 3
= anr — Zaw7 and b* = a; +Taw, where w = £

a

In this case

1 w 1

<o<-+2
272 2ty

d) L. Tchakaloff [22] proved that, if f: R — R is a polynomial function of the
degree n, i.e.

F(x) =ap" +ap_1 X" '+ ...+ ax + ap, forall x €R,
(an,an-1,-..,a1,a0 €R, a, #0), then
b b-—
a; - 2aw\c<

a+b b—a 1w 1w

d -—=<0<-—=

2+2wan22<<22,

where w is the biggest solution of the Legendre polynom P, of the degree m = [
But this paper has a different purpose.

n+1] )

2

REMARK 3. In the conditions of Theorems 1 and 2, if f(!) is injective on ]a, b],
then the numbers ¢ and 6 are uniquely determined (see [6]).
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Letnow I CR be an interval, a € I and f : I — R be a differentiable function on
I. Then, according to Theorems 1 and 2, for each x € I\ {a}, there exists at least one
real number ¢, belonging to the open interval determined by @ and x and at least one
0, €]0, 1] such that

f@) = fla) = (x—a)fW(cy) (1)
and
fx) = fla) = (x—a)fV(a+ (x—a)6y). (2)

If the function f(!) is injective on I, then for each x € I \ {a}, the numbers ¢, and
0, are uniquely determined, such that (1) and (2) hold. In this case, we can define the
function ¢ : I\ {a} — I\ {a} by

c(x) =cy, forallx € I'\ {a},

that verifies
()= f(@) = (x=a)fV(c(x)), forall x € I\ {a}
and the function 0 : I'\ {a} —]0, 1] by

0(x) = 0y forall x € I'\ {a},

that verifies
f(x) = fla) = (x—a)fV(a+ (x—a)0(x)), forall x € I\ {a}.
The two functions are linked by the relation
c(x)=a+(x—a)0(x), forall xel\{a}.
The following results can be found in [6].

THEOREM 4. Let I C R be an interval and a be an interior point of 1. Let f:
I — R be a function which satisfies the following conditions:

(i) the function f is two times differentiable on I,

(ii) the function f?) is continuous on I,

(ii1) £P(a) 0.

Then the following hold:

10 There exists a real number § > 0 such that Ja—§,a+8[C 1,

() #0, forall x €la—§,a+ 8|

and ) is injective on la—8,a+5|.
20 There exists a unique function c:Ja—§,a+8[\{a} —]a—8,a+38[\{a} that
verifies the relation

F(0) = fla) = (x—a) M (e(x),
forall x €la—6,a+ 6[\{a}.
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30 The function ¢ has limit at the point x = a and

lim ¢(x) = a.
X—a
49 There exists a unique function 0 :Ja— §,a+ 8[\{a} —|0, 1[ that verifies the
relation
F&) = fla) = (x—a)fV(a+ (x—a)0(x),
forall x €la—8,a+ 6[\{a}.
50 The function 0 has limit at the point x = a and

1
lim 0(x) = 5.

X—a

Theorem 4 remains true if the point a € I is an extremity of the interval /.

THEOREM 5. Let I CR be aninterval, a € I the left (respectively right) extremity
of I and f: I — R a function that satisfies the conditions:

(i) f is two times differentiable on I,

(i) £ is continuous on I,

(iil) £ (a) £0.

Then the following statements hold:

10 There exists a real number § > 0 such that |a,a+ 8[C I (respectively ]a —
8,a[CD),

2 (x) #0, for all x €)a,a+ 8| (respectively x €la — 8, af)

and f) is injective on ]a,a+ 8| (respectively Ja— 8, al).
20 There exists a unique function c :Ja,a+ 8|—)a,a+ 8| (respectively ¢ :|a—
0,a[—]a—8,al) such that

F) = fla) = (e—a) f N (c(x)),

forall x €]a,a+ 8| (respectively x €la— 6, al).
30 The function ¢ has a right-hand side limit (respectively a left-hand side limit)
at the point x = a and

limc(x) =a (respectively limc(x) = a).
x>a x<a
49 There exists a unique function 0 :]a,a+ 8[—0, 1[ (respectively 0 :Ja—§,a[—
10, 1[) such that
f) = fla) = (x—a) fN(a+ (x—a)0(x))
Sforall x €]a,a+ 3] (respectively x €]a— 8,al).
50 The function 0 has a right-hand side limit (respectively a left-hand side limit)
at the point x = a and

X—a
x>a x<a

1 1
lim 6 (x) = 5 (respectively &gl}@(x) = E)_
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Other properties of the functions ¢ and 6 can be found in the papers [6], [8], [9],
[13], [15].

In this paper we shall study the differentiability, of the first and higher orders, of
the functions ¢ and 6 in a neighbourhood of the point a.

2. Preliminaries

LEMMA 6. Let J C 1 CR be two intervals and f : 1 — R be a function differen-
tiable on I. Denote by f(l)(J) the set of values for the function fV) on J. If a€ J,

then
x)— fl(a
fi( G e fYW, forallx € J,x #a.
x—a

Proof. Let x € J, x # a. According to Theorem 1, applied to the function f on
the interval with extremities a and x, there exists ¢, in the open interval determined by
a and x such that

fx)—f(a)

X—a

= fW(cy).
But f(M(c,) € fV(J) and therefore Lemma 6 is proved.

THEOREM 7. Let I C R be an interval, a an interior point of I and f:1 — R be
a function that satisfies the conditions:

(i) there exists a neighbourhood V of a so that f is n+ 1 times differentiable on
vnl,

(ii) the function f"*V) : VNI — R is continuous at a.

Then exists
; (ﬂ@f@v“)
il

a

and

(m)
ﬂ@ﬂ@) =L pneng), (3)

lim < =
x—a X—a n+1

Proof. For n € {0,1,2} this resumes to an easy check. Let n be an integer, n
greater or equal to 3. Taking Leibniz’s rule into account, for each x € VNI we have

that
(ﬁ%:§QYM=Pﬂﬂ—ﬂ@le“>
- <g>f(n)(X)xla +:Zi (Z) [f(x) - f(a)] "0 <x1a>(k>
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n—1 n — k. n —1)"n!
C3 () e - e S (1) - st 20

k=1
n—1
) £ () (x — @) —DRe (" x) — ()" (x — a)F
(o)t e () v s o
- (X*a)”+1
1y (1) ) - )]
+ (x—a)’H’l ’

Taking this to the limit and applying I’Hopital’s rule yields

(n)
i (1112
x—a xXxX—a

f(n+1 x a ny 2 kk'( ) (n— k+1)(x)(x_a)n7k

= lim e
n—2 n
kE (—1)*! (k) FU R ) (n— k) (x—a)"*!
=1
i (l’l+1)(xfa)n .
But §
1) (™) £ORED () (x — @)
3 ()
+n§(_1)kkl (I’l) (n_k)f(nfk)(x)(x_a)nilyrl
k=1 k
:’122( 1)k+1(k+1)'< " )f(nk)(X)(x ay k1
k=1 k+1
n—2
% ™Y (= 1) FPR () (x — @)k !
+k:1( ) (k>( ) )
n—2
= kit £n=k) (1) (x — g)*—*—1 n . _
S0t we-ar e () +e-n(;)] o
hence

and now (3) follows immediately.
Theorem 7 remains true if the point a is an extremity of the interval 1.



CONCERNING THE INTERMEDIATE POINT IN THE MEAN VALUE THEOREM 505

THEOREM 8. Let I CR be aninterval, a € I the left (respectively right) extremity
of I and f: I — R be a function that satisfies the conditions:

(i) there exists a neighbourhood V of a such that f is n+ 1 times differentiable
on VNI,

(ii) the function f (1) . v NI — R is continuous at the right (respectively at the
left) at a.
Then

x<a

exists and

_ (n)
(reSpectively LE? <f(x) f(a)) = nj— I () > .

Proof. The proof is similar to the one given for Theorem 7.
Next, we state a consequence of Theorem 7.

COROLLARY 9. Let I CR be an interval, a an interior point of I and f:1 — R
be a function that verifies:

(i) there exists a neighbourhood V of a such that f is n+ 1 times differentiable
on VNI,

(ii) the function f"*V) :V NI — R is continuous at a.

Then the function g : VNI — R defined by

[14) e e (vnT)\ {a}
gx) =
f(l) (@), ifx=a,

is n times differentiable on V N1 and, for each m € N, m < n, we have

(W)W, ifxe (VN {a}
g (x) = v
#Hf(m+l) (Cl), ifx=a.

REMARK 10. Corollary 9 remains true if the point a € I is an extremity of the
interval I.

We shall recall two known results, which can be found in [12], [16] or [23].
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THEOREM 11. Let I,J CR be two intervalsand f : 1 — R, g:J — R two func-
tions such that f(I) CJ. If f is n times differentiable on 1, and g is n times differen-
tiable on J, then the function go f : I — R is also n times differentiable on I and the
following holds for every x € 1

(go N =3, (g0 f) ()% )
m=1

> (@ (2 (@)
o P N2 1 2! A T '

i) +in+..Fip=m

THEOREM 12. Let I,J C R be two intervals and f : I — J a bijective function. If
f is n times differentiable on I and f'(x) # 0, for all x € I, then the function f~! is n
times differentiable on J and, for each y € J
_ —1)Hi2n -2 —ip)!
TR RS YN A ©

ir il Nl
iy +2i3 .. (n—1)in=n—1 12203 ln:
i1 Fig+etin=n—1

(W) (Pw) ()"
(roE)» "\ 1 2! R

3. Main Results

THEOREM 13. Let I C R be an interval, a an interior point of [ and f:I — R
be a function satisfying the conditions:

(i) the function f is n+ 1 times differentiable on I,

(ii) the function f"+Y) is continuous on I,

(i) fO(a) £0.

Then, there exists a real number § > 0, such that Ja— 8,a+ 6[C I and

19 f@(x) #0, forall x €la—8,a+§].

20 The function ¢ :Ja—8,a+ 8|— J, where J = fV) (Ja— 8,a+ 8[), defined by

o (x)=fY(x), forall x €la—8,a+ 8|

is bijective.
30 There exists a uniquely determined function ¢ :Ja—8,a+8[\{a} —]a—§,a+
O[\{a} such that
F) = fla) = (x=a) fV(e()), @)
forall x €la—§,a+6[\{a}.
49 There exists a uniquely determined function 0 :Ja—§,a+ 8§[\{a} —]0, 1[ such
that

F0) = fla) = (x—a)fD(a+ (x— a)0(x)), ®)
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forall x €la—38,a+ 6[\{a}.
59 The function ¢ :Ja— §,a+ 8[—]a— §,a+ 8| defined by

(x)_{c(x), ifx€la—0,a+8\{a} ©

a7 l:f"x = a’

is n times differentiable on |a — 8,a+ 8| and the relations

E(n)(a) _ i ((p—l)(m> (f(l)(a)) « (10)

m=1
n! f@(a) il 9a) i £ (g) in
g i1+2i2+-2+nin:n ipligh- .- ip! 21 31 m
iy +ip+...Fin=m
and 5
S — 1)1+ s A |
m=1 jp+2j3+.tm—1)jm=m—1 J2!J31 -« jm! [f<2>(a)]
J1+ip+-+im=m—1
(2) 1 3) J2 (m+1) Jm
(o) ()" ()
1! 2! m!
n! f(2) (a) i f<3>(a) i f(”H)(a) in
Xi1+2i2§+m‘n:n il!iz!"in! 2! 3! MR m
i +in+...Ain=m
hold.

6° The function 0 :Ja —§,a+ 8[—]0, 1] defined by

0(x), x €la—8,a+ o[\{a}

is n— 1 times differentiable on |a— §,a+ 8] and

0" Va) = %E(”)(a). (12)

Proof. 1° Assume that f(2> (a) > 0. Since a is an interior point of I, then there
exists a real number § > 0 such that Ja—8,a+8[C I and £ (x) >0, for all x €
Jla—90,a+4].

We infer that the function f(!) is increasing on Ja — &,a + 8| and therefore injec-
tive on Ja — §,a+ S[. If £ (a) <0, the proof is similar.
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29 We have proved that (1) is injective on Ja — §,a+ [ and, due to the definition
of J, we have that f(!) is bijective.

30 — 49 1t follows from statement 1° above and Theorem 4.

50 Taking Lemma 6 and 3° into account, (7) yields that ¢ has the following
expression

cx)=0¢! (M) , forall x €]a—8,a+ 6[\{a}. (13)

Now, from (8) and due to 307 we obtain
c(x)=a+(x—a)0(x), forall x €la—5,a+ 8[\{a}. (14)

Taking Theorem 4 it results that limc (x) exists and
X—a

lime (x) = a.
X—a

Then, the function ¢ defined by (9) is continuous at x = a.
Let g:Ja—8,a+ 6[— R be the function defined by

L1 if x €la— 8,a+ [\ {a}

g={ (15)
fDa), ifx=a.
According to (13) and (15), relation (9) becomes
(97" og) (v), ifx€la—8,a+8[\{a}

a, ifx=a.

From (i) and the definition of g we have that the function ¢ is n times differentiable
on Ja—8,a+ O[ and heeding (5), for all x €]a — §,a+ 6[\{a} we have that

((0™)" 0g) (x) x

D) A PRIOANFEIONS
oy i 1L\ 2!

i +ig+.tip=m

n

ol
S
=
=
=
I
3
\s!

. (g(n)(x) ) g
A=)

Taking it to the limit and recalling (4), one obtains (10). Using formula (6) in (10) one
obtains (11). _
6° From (8) and (9) it follows that the function 6 is n— 1 times differentiable on

Ja—d,a+ 8] and
e(x)—2(a)\ "V
g(”l)(x)_( ())C_a( )) 7
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forall x €la—6,a+ 6[\{a} and hence

0" () = lim (ﬂx —Z(a>)("”.

x—a X —

Considering (13) one obtains (12).

REMARK 14. Theorem 13 remains true if the point a € I is an extremity of the
interval [.

THEOREM 15. Let I CR be an interval, a € I the left (respectively right) ex-
tremity of I and f : 1 — R be a function satisfies the following conditions:

(i) fis n+1 trimes differentiable on I,

(i) the function £ s continuous on I,

(i) £ (a) £0.

Then, there exists a real number § > 0, such that |a,a+ 8[C I (respectively
la—98,a[C 1) and

19 @) (x) # 0 for all x €]a,a+ 8| (respectively x €]a—§,a).

20 The function ¢ : [a,a+ 8[— J, where J = fY) ([a,a+S[) (respectively ¢ :
la—8,a] — J, where J = fV) (Ja— 8,a)) defined by

¢ (x) = fU (x), for all x € [a,a+ 8] (respectively x €la— 8, a)
is bijective.
30 There exists a uniquely determined function c :)a,a+ 8[—]a,a+ 8| (respectively

¢:la—90,a[—]a—8,al) such that

F@) = fla) = (x—a) fW(c(x),
forall x €la,a+ 8| (respectivrly x €]la—§,a|).
49 There exists a uniquely determined function 0 :)a,a+ 8[—]0,1[ (respectively

0 :Ja— 8,a[—]0,1[) such that

f) = fla) = (x—a) fD(a+ (x— a)0(x)),
forall x €la,a+ 8| (respectively x €la—9,al).
50 The function T : [a,a+ 8[— [a,a+ 8| (respectively :la—§,a] —]a—§,a))
defined by

c(x), ifx €la,a+ 8] (respectively x €]a— 0,a|

a, ifx=a

is n times differentiable on [a,a+ 8| (respectively |a— 8,a]) and the relations

@@= 3 (o) (@)

m=1
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(PN (@) (@
X,.ﬁziz;mnnilligl.....in!( 2! 3t ) U

iy +ip+..+in=m

and e
n )y (2m—2 — i)
)= 3 CUT_Zln 2o
M=l iy 2yt - jm=mt j2'j3 e m! [P (a)]
J1+igttim=m—1
@\ (@) (@)
“\ 1 STI A 8
i (2@ (1P@) (@)
% ,.ﬁzl.z;m.n:n hl o\ 2 a3t ) U
iy t+ip+...+in=m
hold. - -
6 The function 0 : [a,a+ 8[—]0,1[ (respectively 0 :Ja—§,a] —]0,1[) defined
by
0(x), ifx €la,a+ O (respectively x €la— §,al)
0(x) =1 4 o
57 lfx =a

is n— 1 times differentiable on [a,a+ 6| (respectively la— 8,a]) and

(=D gy = L
0 (@) = c (a).

Proof. The proof is similar to the one given for Theorem 13.
Now, we give three applications in the conditions of Theorem 13.

EXAMPLE 16. If n =1, then from (10) we have that

(see [6]).
EXAMPLE 17. If n =2, then from (10) we have that

5(2) (a) f<3> (a)

12/ (a)’
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hence

(see [9)).

(9]

(10]
[11]

[12]
[13]

(14]
[15]

[16]
[17]

(18]
[19]
[20]
(21]

[22]
(23]

EXAMPLE 18. If n =3, then (10) and (12) yield after computations
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