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Abstract. If the function f : I → R is differentiable on the interval I ⊆ R , then for each x,a ∈ I,
according to the mean value theorem, there exists a number c(x) belonging to the open interval
determined by x and a , and there exists a real number θ (x) ∈]0,1[ such that

f (x)− f (a) = (x−a) f (1) (c(x))

and
f (x)− f (a) = (x−a) f (1) (a+(x−a)θ (x)) .

In this paper we shall study the differentiability of the functions c and θ in a neighbourhood of
a.

1. Introduction

The mean-value theorem of differential calculus, the theorem of finite variation,
or I. J. Lagrange’s theorem has one of the following forms:

THEOREM 1. (I. J. Lagrange-A. M. Ampere) Let a and b be real numbers with
a < b and f : [a,b] → R . If

(i) the function f is continuous on [a,b],
(ii) the function f is differentiable on ]a,b[,

then there exists at least one real number c ∈]a,b[ such that

f (b)− f (a) = (b−a) f (1)(c).

If we note θ =
c−a

b−a
, then Theorem 1 becomes:

THEOREM 2. (I. J. Lagrange-A.M. Ampere) Let a and b be two real numbers
with a < b and f : [a,b]→ R be a function. If

(i) the function f is continuous on [a,b] ,
(ii) the function f is differentiable on ]a,b[ ,

then there exists at least one real number θ ∈]0,1[ such that

f (b)− f (a) = (b−a) f (1)(a+(b−a)θ ).
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For some classes of functions f : [a,b] → R , continuous on [a,b] and differen-
tiable on ]a,b[, the position of the points c ∈]a,b[ and θ ∈]0,1[ from the mean value
theorem may be better determined. For example:

a) If 0 < a < b < +∞, then for the function f : [a,b]→ R , defined by

f (x) = lnx, for all x ∈ [a,b],

we have [15]:
a 3
√

b+b 3
√

a
3
√

b+ 3
√

a
< c <

a+b
2

and 3
√

a < θ <
1
2

b) If 0 � a < b �
√

3
3 , then for the function f : [a,b]→ R , defined by

f (x) = arctg x, for all x ∈ [a,b],

we have:

a+b
2

< c <

√
a2 +b2

2
, and

1
2

< θ <
(a+b)

√
2

2
(
a
√

2+
√

a2 +b2
) .

c) For the function f : R → R , defined by

f (x) = a3x
3 +a2x

2 +a1x+a0, for all x ∈ R,

(a3,a2,a1,a0 ∈R , a3 �= 0), D. Pompeiu [18] proved that there exists an interval [a∗,b∗]⊆
]a,b[, such that a∗ � c � b∗. Moreover, the subinterval of the smallest length has

a∗ =
a+b

2
− b−a

2
w, and b∗ =

a+b
2

+
b−a

2
w, where w =

√
3

3
.

In this case
1
2
− w

2
< θ <

1
2

+
w
2

.

d) I. Tchakaloff [22] proved that, if f : R → R is a polynomial function of the
degree n, i.e.

f (x) = anx
n +an−1x

n−1 + ...+a1x+a0, for all x ∈ R,

(an,an−1, ...,a1,a0 ∈ R , an �= 0), then

a+b
2

− b−a
2

w � c � a+b
2

+
b−a

2
w and

1
2
− w

2
< θ <

1
2
− w

2
,

where w is the biggest solution of the Legendre polynom Pm of the degree m =
[

n+1
2

]
.

But this paper has a different purpose.

REMARK 3. In the conditions of Theorems 1 and 2, if f (1) is injective on ]a,b[ ,
then the numbers c and θ are uniquely determined (see [6]).
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Let now I ⊆ R be an interval, a ∈ I and f : I → R be a differentiable function on
I. Then, according to Theorems 1 and 2, for each x ∈ I \ {a} , there exists at least one
real number cx belonging to the open interval determined by a and x and at least one
θx ∈]0,1[ such that

f (x)− f (a) = (x−a) f (1)(cx) (1)

and
f (x)− f (a) = (x−a) f (1)(a+(x−a)θx). (2)

If the function f (1) is injective on I , then for each x ∈ I \ {a} , the numbers cx and
θx are uniquely determined, such that (1) and (2) hold. In this case, we can define the
function c : I \ {a}→ I \ {a} by

c(x) = cx, for all x ∈ I \ {a},

that verifies
f (x)− f (a) = (x−a) f (1)(c(x)), for all x ∈ I \ {a}

and the function θ : I \ {a}→]0,1[ by

θ (x) = θx for all x ∈ I \ {a},

that verifies

f (x)− f (a) = (x−a) f (1)(a+(x−a)θ (x)), for all x ∈ I \ {a}.

The two functions are linked by the relation

c(x) = a+(x−a)θ (x), for all x ∈ I \ {a}.

The following results can be found in [6].

THEOREM 4. Let I ⊆ R be an interval and a be an interior point of I. Let f :
I → R be a function which satisfies the following conditions:

(i) the function f is two times differentiable on I ,
(ii) the function f (2) is continuous on I ,
(iii) f (2)(a) �= 0 .
Then the following hold:
10 There exists a real number δ > 0 such that ]a− δ ,a+ δ [⊆ I ,

f (2)(x) �= 0, for all x ∈]a− δ ,a+ δ [

and f (1) is injective on ]a− δ ,a+ δ [ .
20 There exists a unique function c :]a− δ ,a+ δ [\{a}→]a− δ ,a+ δ [\{a} that

verifies the relation
f (x)− f (a) = (x−a) f (1)(c(x)),

for all x ∈]a− δ ,a+ δ [\{a}.
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30 The function c has limit at the point x = a and

lim
x→a

c(x) = a.

40 There exists a unique function θ :]a− δ ,a + δ [\{a}→]0,1[ that verifies the
relation

f (x)− f (a) = (x−a) f (1)(a+(x−a)θ (x)),

for all x ∈]a− δ ,a+ δ [\{a}.
50 The function θ has limit at the point x = a and

lim
x→a

θ (x) =
1

2
.

Theorem 4 remains true if the point a ∈ I is an extremity of the interval I.

THEOREM 5. Let I ⊆R be an interval, a∈ I the left (respectively right) extremity
of I and f : I → R a function that satisfies the conditions:

(i) f is two times differentiable on I ,
(ii) f (2) is continuous on I ,
(iii) f (2)(a) �= 0 .
Then the following statements hold:
10 There exists a real number δ > 0 such that ]a,a+ δ [⊆ I (respectively ]a−

δ ,a[⊆ I ),

f (2)(x) �= 0, for all x ∈]a,a+ δ [ (respectively x ∈]a− δ ,a[)

and f (1) is injective on ]a,a+ δ [(respectively ]a− δ ,a[).
20 There exists a unique function c :]a,a + δ [→]a,a + δ [ (respectively c :]a−

δ ,a[→]a− δ ,a[) such that

f (x)− f (a) = (x−a) f (1)(c(x)),

for all x ∈]a,a+ δ [ (respectively x ∈]a− δ ,a[).
30 The function c has a right-hand side limit (respectively a left-hand side limit)

at the point x = a and

lim
x→a
x>a

c(x) = a (respectively lim
x→a
x<a

c(x) = a ).

40 There exists a unique function θ :]a,a+δ [→]0,1[ (respectively θ :]a−δ ,a[→
]0,1[) such that

f (x)− f (a) = (x−a) f (1)(a+(x−a)θ (x))

for all x ∈]a,a+ δ [ (respectively x ∈]a− δ ,a[).
50 The function θ has a right-hand side limit (respectively a left-hand side limit)

at the point x = a and

lim
x→a
x>a

θ (x) =
1

2
(respectively lim

x→a
x<a

θ (x) =
1

2
).
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Other properties of the functions c and θ can be found in the papers [6], [8], [9],
[13], [15].

In this paper we shall study the differentiability, of the first and higher orders, of
the functions c and θ in a neighbourhood of the point a.

2. Preliminaries

LEMMA 6. Let J ⊆ I ⊆ R be two intervals and f : I → R be a function differen-
tiable on I . Denote by f (1)(J) the set of values for the function f (1) on J . If a ∈ J ,
then

f (x)− f (a)
x−a

∈ f (1)(J), for all x ∈ J,x �= a.

Proof. Let x ∈ J , x �= a . According to Theorem 1, applied to the function f on
the interval with extremities a and x , there exists cx in the open interval determined by
a and x such that

f (x)− f (a)
x−a

= f (1)(cx).

But f (1)(cx) ∈ f (1)(J) and therefore Lemma 6 is proved.

THEOREM 7. Let I ⊆ R be an interval, a an interior point of I and f : I → R be
a function that satisfies the conditions:

(i) there exists a neighbourhood V of a so that f is n+1 times differentiable on
V ∩ I ,

(ii) the function f (n+1) : V ∩ I → R is continuous at a.
Then exists

lim
x→a

(
f (x)− f (a)

x−a

)(n)

and

lim
x→a

(
f (x)− f (a)

x−a

)(n)

=
1

n+1
f (n+1)(a). (3)

Proof. For n ∈ {0,1,2} this resumes to an easy check. Let n be an integer, n
greater or equal to 3. Taking Leibniz’s rule into account, for each x ∈ V ∩ I we have
that (

f (x)− f (a)
x−a

)(n)

=
[
( f (x)− f (a))

1
x−a

](n)

=
(

n
0

)
f (n)(x)

1
x−a

+
n−1

∑
k=1

(
n
k

)
[ f (x)− f (a)](n−k)

(
1

x−a

)(k)

+
(

n
n

)
[ f (x)− f (a)]

(
1

x−a

)(n)

=
(

n
0

)
f (n)(x)

1
x−a
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+
n−1

∑
k=1

(
n
k

)
[ f (x)− f (a)](n−k) (−1)kk!

(x−a)k+1 +
(

n
n

)
[ f (x)− f (a)]

(−1)nn!
(x−a)n+1

=

(
n
0

)
f (n)(x)(x−a)n +

n−1

∑
k=1

(−1)kk!

(
n
k

)
[ f (x)− f (a)](n−k) (x−a)n−k

(x−a)n+1

+
(−1)nn!

(
n
n

)
[ f (x)− f (a)]

(x−a)n+1 .

Taking this to the limit and applying l’Hôpital’s rule yields

lim
x→a

(
f (x)− f (a)

x−a

)(n)

= lim
x→a

f (n+1)(x)(x−a)n +
n−1

∑
k=2

(−1)kk!

(
n
k

)
f (n−k+1)(x)(x−a)n−k

(n+1)(x−a)n

+

n−2

∑
k=1

(−1)kk!

(
n
k

)
f (n−k)(x)(n− k)(x−a)n−k−1

(n+1)(x−a)n .

But
n−1

∑
k=2

(−1)kk!

(
n
k

)
f (n−k+1)(x)(x−a)n−k

+
n−2

∑
k=1

(−1)kk!

(
n
k

)
(n− k) f (n−k)(x)(x−a)n−k+1

=
n−2

∑
k=1

(−1)k+1(k+1)!
(

n
k+1

)
f (n−k)(x)(x−a)n−k−1

+
n−2

∑
k=1

(−1)kk!

(
n
k

)
(n− k) f (n−k)(x)(x−a)n−k−1

=
n−2

∑
k=1

(−1)kk! f (n−k)(x)(x−a)n−k−1
[
−(k+1)

(
n

k+1

)
+(n− k)

(
n
k

)]
= 0,

hence

lim
x→a

(
f (x)− f (a)

x−a

)(n)

= lim
x→a

f (n+1)(x)
n+1

and now (3) follows immediately.
Theorem 7 remains true if the point a is an extremity of the interval I.
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THEOREM 8. Let I ⊆R be an interval, a∈ I the left (respectively right) extremity
of I and f : I → R be a function that satisfies the conditions:

(i) there exists a neighbourhood V of a such that f is n+1 times differentiable
on V ∩ I ,

(ii) the function f (n+1) : V ∩ I → R is continuous at the right (respectively at the
left) at a.

Then

lim
x→a
x>a

(
f (x)− f (a)

x−a

)(n)
(

respectively lim
x→a
x<a

(
f (x)− f (a)

x−a

)(n)
)

exists and

lim
x→a
x>a

(
f (x)− f (a)

x−a

)(n)

=
1

n+1
f (n+1)(a)

(
respectively lim

x→a
x>a

(
f (x)− f (a)

x−a

)(n)

=
1

n+1
f (n+1)(a)

)
.

Proof. The proof is similar to the one given for Theorem 7.
Next, we state a consequence of Theorem 7.

COROLLARY 9. Let I ⊆ R be an interval, a an interior point of I and f : I → R

be a function that verifies:
(i) there exists a neighbourhood V of a such that f is n+1 times differentiable

on V ∩ I ,
(ii) the function f (n+1) : V ∩ I → R is continuous at a.
Then the function g : V ∩ I → R defined by

g(x) =

⎧⎨
⎩

f (x)− f (a)
x−a , if x ∈ (V ∩ I)\ {a}

f (1) (a) , if x = a,

is n times differentiable on V ∩ I and, for each m ∈ N , m � n, we have

g(m) (x) =

⎧⎪⎨
⎪⎩
(

f (x)− f (a)
x−a

)(m)
, if x ∈ (V ∩ I)\ {a}

1
m+1 f (m+1) (a) , if x = a.

(4)

REMARK 10. Corollary 9 remains true if the point a ∈ I is an extremity of the
interval I.

We shall recall two known results, which can be found in [12], [16] or [23].
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THEOREM 11. Let I,J ⊆ R be two intervals and f : I → R , g : J → R two func-
tions such that f (I) ⊆ J . If f is n times differentiable on I , and g is n times differen-
tiable on J , then the function g◦ f : I → R is also n times differentiable on I and the
following holds for every x ∈ I

(g ◦ f )(n)(x) =
n

∑
m=1

(
g(m) ◦ f

)
(x)× (5)

× ∑
i1+2i2+...+nin=n
i1+i2+...+in=m

n!
i1!i2! · . . . · in!

(
f (1)(x)

1!

)i1(
f (2)(x)

2!

)i2

· . . . ·
(

f (n)(x)
n!

)in

.

THEOREM 12. Let I,J ⊆R be two intervals and f : I → J a bijective function. If
f is n times differentiable on I and f ′(x) �= 0, for all x ∈ I , then the function f−1 is n
times differentiable on J and, for each y ∈ J

( f−1)(n)(y) = ∑
i2+2i3+...+(n−1)in=n−1

i1+i2+...+in=n−1

(−1)n−1+i1(2n−2− i1)!
i2!i3! · . . . · in! × (6)

× 1(
f (1)(x)

)2n−1

(
f (1)(x)

1!

)i1(
f (2)(x)

2!

)i2

· . . . ·
(

f (n)(x)
n!

)in

where x = f−1(y) .

3. Main Results

THEOREM 13. Let I ⊆ R be an interval, a an interior point of I and f : I → R

be a function satisfying the conditions:
(i) the function f is n+1 times differentiable on I ,
(ii) the function f (n+1) is continuous on I ,
(iii) f (2)(a) �= 0 .
Then, there exists a real number δ > 0 , such that ]a− δ ,a+ δ [⊆ I and
10 f (2)(x) �= 0, for all x ∈]a− δ ,a+ δ [ .
20 The function ϕ :]a− δ ,a+ δ [→ J , where J = f (1) (]a− δ ,a+ δ [), defined by

ϕ (x) = f (1) (x) , for all x ∈]a− δ ,a+ δ [

is bijective.
30 There exists a uniquely determined function c :]a−δ ,a+δ [\{a}→]a−δ ,a+

δ [\{a} such that
f (x)− f (a) = (x−a) f (1)(c(x)), (7)

for all x ∈]a− δ ,a+ δ [\{a}.
40 There exists a uniquely determined function θ :]a−δ ,a+δ [\{a}→]0,1[ such

that
f (x)− f (a) = (x−a) f (1)(a+(x−a)θ (x)), (8)
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for all x ∈]a− δ ,a+ δ [\{a}.
50 The function c :]a− δ ,a+ δ [→]a− δ ,a+ δ [ defined by

c(x) =

{
c(x), if x ∈]a− δ ,a+ δ [\{a}
a, if x = a,

(9)

is n times differentiable on ]a− δ ,a+ δ [ and the relations

c(n)(a) =
n

∑
m=1

(
ϕ−1)(m)

(
f (1)(a)

)
× (10)

× ∑
i1+2i2+...+nin=n
i1+i2+...+in=m

n!
i1!i2! · . . . · in!

(
f (2)(a)

2!

)i1(
f (3)(a)

3!

)i2

· . . . ·
(

f (n+1)(a)
(n+1)!

)in

and

c(n)(a) =
n

∑
m=1

∑
j2+2 j3+...+(m−1) jm=m−1

j1+ j2+...+ jm=m−1

(−1)m−1+ j1(2m−2− j1)!

j2! j3! · . . . · jm!
[
f (2)(a)

]2m−1 × (11)

×
(

f (2)(a)
1!

) j1(
f (3)(a)

2!

) j2

· . . . ·
(

f (m+1)(a)
m!

) jm

×

× ∑
i1+2i2+...+nin=n
i1+i2+...+in=m

n!
i1!i2! · . . . · in!

(
f (2)(a)

2!

)i1(
f (3)(a)

3!

)i2

· . . . ·
(

f (n+1)(a)
(n+1)!

)in

hold.
60 The function θ :]a− δ ,a+ δ [→]0,1[ defined by

θ (x) =

⎧⎪⎨
⎪⎩
θ (x), x ∈]a− δ ,a+ δ [\{a}
1

2
, x = a

is n−1 times differentiable on ]a− δ ,a+ δ [ and

θ (n−1)(a) =
1
n

c(n)(a). (12)

Proof. 10 Assume that f (2) (a) > 0. Since a is an interior point of I, then there
exists a real number δ > 0 such that ]a− δ ,a + δ [⊆ I and f (2) (x) > 0, for all x ∈
]a− δ ,a+ δ [.

We infer that the function f (1) is increasing on ]a− δ ,a+ δ [ and therefore injec-
tive on ]a− δ ,a+ δ [. If f (2) (a) < 0, the proof is similar.
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20 We have proved that f (1) is injective on ]a−δ ,a+δ [ and, due to the definition
of J, we have that f (1) is bijective.

30−40 It follows from statement 10 above and Theorem 4.
50 Taking Lemma 6 and 30 into account, (7) yields that c has the following

expression

c(x) = ϕ−1
(

f (x)− f (a)
x−a

)
, for all x ∈]a− δ ,a+ δ [\{a}. (13)

Now, from (8) and due to 30, we obtain

c(x) = a+(x−a)θ (x) , for all x ∈]a− δ ,a+ δ [\{a}. (14)

Taking Theorem 4 it results that lim
x→a

c(x) exists and

lim
x→a

c(x) = a.

Then, the function c defined by (9) is continuous at x = a.
Let g :]a− δ ,a+ δ [→R be the function defined by

g(x) =

⎧⎨
⎩

f (x)− f (a)
x−a , if x ∈]a− δ ,a+ δ [\{a}

f (1) (a) , if x = a.

(15)

According to (13) and (15), relation (9) becomes

c(x) =

⎧⎨
⎩
(
ϕ−1 ◦ g

)
(x) , if x ∈]a− δ ,a+ δ [\{a}

a, if x = a.

From (i) and the definition of g we have that the function c is n times differentiable
on ]a− δ ,a+ δ [ and heeding (5), for all x ∈]a− δ ,a+ δ [\{a} we have that

c(n) (x) =
n

∑
m=1

((
ϕ−1)(m) ◦ g

)
(x)×

× ∑
i1+2i2+...+nin=n
i1+i2+...+in=m

n!
i1!i2! · . . . · in!

(
g(1)(x)

1!

)i1(
g(2)(x)

2!

)i2

· . . . ·
(

g(n)(x)
n!

)in

.

Taking it to the limit and recalling (4), one obtains (10). Using formula (6) in (10) one
obtains (11).

60 From (8) and (9) it follows that the function θ is n−1 times differentiable on
]a− δ ,a+ δ [ and

θ (n−1) (x) =
(

c(x)− c(a)
x−a

)(n−1)

,
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for all x ∈]a− δ ,a+ δ [\{a} and hence

θ (n−1) (a) = lim
x→a

(
c(x)− c(a)

x−a

)(n−1)

.

Considering (13) one obtains (12).

REMARK 14. Theorem 13 remains true if the point a ∈ I is an extremity of the
interval I.

THEOREM 15. Let I ⊆ R be an interval, a ∈ I the left (respectively right) ex-
tremity of I and f : I → R be a function satisfies the following conditions:

(i) f is n+1 times differentiable on I ,
(ii) the function f (n+1) is continuous on I ,
(iii) f (2)(a) �= 0.
Then, there exists a real number δ > 0 , such that ]a,a + δ [⊆ I (respectively

]a− δ ,a[⊆ I) and
10 f (2)(x) �= 0 for all x ∈]a,a+ δ [ (respectively x ∈]a− δ ,a[) .
20 The function ϕ : [a,a + δ [→ J , where J = f (1) ([a,a+ δ [) (respectively ϕ :

]a− δ ,a]→ J , where J = f (1) (]a− δ ,a]) defined by

ϕ (x) = f (1) (x) , for all x ∈ [a,a+ δ [ (respectively x ∈]a− δ ,a])

is bijective.
30 There exists a uniquely determined function c :]a,a+δ [→]a,a+δ [ (respectively

c :]a− δ ,a[→]a− δ ,a[) such that

f (x)− f (a) = (x−a) f (1)(c(x)),

for all x ∈]a,a+ δ [ (respectivrly x ∈]a− δ ,a[).
40 There exists a uniquely determined function θ :]a,a+ δ [→]0,1[ (respectively

θ :]a− δ ,a[→]0,1[) such that

f (x)− f (a) = (x−a) f (1)(a+(x−a)θ (x)),

for all x ∈]a,a+ δ [ (respectively x ∈]a− δ ,a[).
50 The function c : [a,a+ δ [→ [a,a+ δ [ (respectively c :]a− δ ,a] →]a− δ ,a])

defined by

c(x) =

⎧⎪⎨
⎪⎩

c(x), if x ∈]a,a+ δ [ (respectively x ∈]a− δ ,a[

a, if x = a

is n times differentiable on [a,a+ δ [ (respectively ]a− δ ,a]) and the relations

c(n)(a) =
n

∑
m=1

(
ϕ−1)(m)

(
f (1)(a)

)
×
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× ∑
i1+2i2+...+nin=n
i1+i2+...+in=m

n!
i1!i2! · . . . · in!

(
f (2)(a)

2!

)i1(
f (3)(a)

3!

)i2

· . . . ·
(

f (n+1)(a)
(n+1)!

)in

and

c(n)(a) =
n

∑
m=1

∑
j2+2 j3+...+(m−1) jm=m−1

j1+ j2+...+ jm=m−1

(−1)m−1+ j1(2m−2− j1)!

j2! j3! · . . . · jm!
[
f (2)(a)

]2m−1 ×

×
(

f (2)(a)
1!

) j1(
f (3)(a)

2!

) j2

· . . . ·
(

f (m+1)(a)
m!

) jm

×

× ∑
i1+2i2+...+nin=n
i1+i2+...+in=m

n!
i1!i2! · . . . · in!

(
f (2)(a)

2!

)i1(
f (3)(a)

3!

)i2

· . . . ·
(

f (n+1)(a)
(n+1)!

)in

hold.
60 The function θ : [a,a+ δ [→]0,1[ (respectively θ :]a− δ ,a] →]0,1[) defined

by

θ (x) =

⎧⎪⎨
⎪⎩
θ (x), if x ∈]a,a+ δ [ (respectively x ∈]a− δ ,a[)

1

2
, if x = a

is n−1 times differentiable on [a,a+ δ [ (respectively ]a− δ ,a]) and

θ (n−1)(a) =
1
n

c(n)(a).

Proof. The proof is similar to the one given for Theorem 13.
Now, we give three applications in the conditions of Theorem 13.

EXAMPLE 16. If n = 1, then from (10) we have that

c(1) (a) =
1
2

and then, according to (12) , it results that

θ (a) = c(1) (a) =
1
2
.

(see [6]).

EXAMPLE 17. If n = 2, then from (10) we have that

c(2) (a) =
f (3) (a)

12 f (2) (a)
,
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hence

θ (1) (a) =
f (3) (a)

24 f (2) (a)
.

(see [9]).

EXAMPLE 18. If n = 3, then (10) and (12) yield after computations

1
3
c(3) (a) = θ (2) (a) =

f (2) (a) f (4) (a)−
(

f (3) (a)
)2

24
(
f (2) (a)

)2 .
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