athematical
nequalities
& Papplications

Volume 12, Number 3 (2009), 525-536

HARDY-HILBERT’S INEQUALITY WITH GENERAL
HOMOGENEOUS KERNEL

IVAN PERIC AND PREDRAG VUKOVIC

(Communicated by J. Pecaric)

Abstract. A general form of recently obtained Hardy-Hilbert’s inequality with perturbed Hilbert’s
kernel with the best possible estimation in the case of conjugate exponents is obtained. The
multidimensional case is also considered. The case of non-conjugate exponents is briefly given.

1. Introduction

Although classical, Hilbert’s inequality and its generalizations and modifications
are still of a great interest. Yongjin Li et al. in [7] considered the Hardy-Hilbert
inequality in the case when the kernel is given by K(x,y) = (x +y + max{x,y})~!,
and they obtained the following result:

THEOREM A. Suppose f (x), g(x) =0, 0 < [;* f2(x)dx < 00, 0 < [ g*(x)dx <
00. Then the following inequalities hold and are equivalent

/0°° /000 x +;ixfii){x,y}dxdy <c (/Ooof2<X>dx /Ooo gz(x)dx> W

/00" (/000 X+y4{1(1)1€e)1x{x,y}dx>2dy <t /0°°f2(x)dx’ )

where the constant factors ¢ = \/2(m — 2 arctan/2) and c¢* are the best possible.

In this paper a generalization of Theorem A for a general type of homogeneous
kernels is obtained. Recall that for a homogeneous function K(x,y) of degree —s,
s > 0, equality K(tx,ty) = t—°K(x,y) is satisfied for every ¢+ > 0. Further, we define
k(e) := [5° K(1,u)u"*du and suppose that k(a) < oo for 1 —s < ot < 1.

In what follows, without further explanation, we assume that all integrals exist on
the respective domains of their definitions.

Our results will be based on the following result of Krni¢ and Pecari¢ in [6].
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526 IVAN PERIC AND PREDRAG VUKOVIC

THEOREM B. Let %—&—é =1withp>11Iff(x), gx) 20, f, g #0, and
K(x,y) is nonnegative homogeneous function of degree —s, s > 0, then the following
inequalities hold and are equivalent

/O°° /000 K(x,y)f (x)g(y)dxdy

1 1
q

oo P oo
<L {/0 xls+I7(A1A2>fP(x)dx:| {/0 ylfAH’Q(AZ*AI)g‘I(y)dy (3)

and

e o0 P
/0 y<”1><‘”>+”"“"2>( /0 K(x7y)f(x)dx) dy

< IP / xl*SJrP(Al*Az)fl’(x)dx7 (4)
0

where L = k(pAg)%k(2 —5— qu)é, A€ (%, é) and A; € (%,},)

In Section 3. analogous results for the multidimensional case are given. Note that
the best possible constant is obtained in [4] and [5] for the involved kernels K(x,y) =
(x +y)~! and K(x,y) = (x +y)~* respectively. Here we obtain the best possible
constant for a general homogeneous kernels K(xy,...,x,), n > 2.

Another way of generalizing the inequalities (1) and (2) is their extension to the
case of non-conjugate exponents p and g. In 1951, Bonsall investigated this problem
and established the following conditions for non-conjugate exponents (see [2]). Let p
and g be real numbers such that

1 1
p>1, g>1, —+=->1, (5)
P 49
and let p’ and ¢’ respectively be their conjugate exponents, that is, Il, + 1% =1 and
% + % = 1. Further, define
1 1

and note that 0 < A < 1 forall p and g satisfying (5). Especially, A = 1 holds if and
only if ¢ = p’, thatis, only when p and ¢ are mutually conjugate. Otherwise, we have
0 <A < 1,and insuch case p and g will be referred to as non-conjugate exponents.

Applying results from [3] we shall obtain a generalization of inequalities (1) and
(2) with non-conjugate exponents, but without a proof that the obtained estimations are
the best possible.

2. The conjugate case

By putting the kernel K(x,y) = (x+y+ max{x,y})~*, s > 0, in Theorem B, we
get the following
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COROLLARY 1. Let s >0, 1+ 5 =1 withp> 1 Iff(x), g(x) >0, f, g #0,
then the following inequalities hold and are equivalent

/ / xX+y+ ma(ﬁx v})* dxdy 1 |

<ta| [Tammampma] | [Tyesggn] T 0
0 0

and
o0 fo’e) p
/ YD l=1+p(41—42) (/ f ) dx) dy
0 o (x+y+ max{x,y})*
< L’l)/ X TP AA) 2P () (8)
0
1 1 s s
where Ly = k(pA2)Pk(2 — s — qA1)7, A1 € (122,1), A€ (1T 1) and
2—S
k() = ———F (s,s+a— ;s +0;—=
oa+s—1

275
F l—o2—0;—= ).
R <S’ 2)

F(a, B;7v;z) denotes the hypergeometric function defined by
1
F(o,B;v;z) = 7/ P 1= P (1—z)" %, y>B>0, z<1.
B = rgrg —p )y T 0

Proof. The proof follows directly from Theorem B setting the kernel K(x,y) =
(x + y + max{x, y})~*. Namely, in that case we have

k(a):[) K(l,u)ufadu:/o (1—|—u—‘,—maX{1,M})bdu

1 —a o] —o
u u
T +/ "y
l (w+2) L ur ™
2 S

ik g F(s,1—0;2—0;—1/2)

2—5

“rmF(S,S-FOC— 1;S+O€;—1/2).

O

REMARK 1. If the function K(x,y) from Theorem B is symmetrical, then k(2 — s —
gAy) = k(gA,). So, if max{ﬁ7 é} < s, then we can set A| = A, = i in Corollary

1

1 and obtain that the constant factor is equal to L; = & 11,) "k (é) Now, setting
s =1 and p = g = 2, we obtain Theorem A from Introduction.

~i—
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Here we shall obtain that the constants L and L involved in the right-hand side
of the inequalities (3) and (4) from Theorem B are the best possible for some choices
of the parameters A;, A, and a weak condition on K(x,y). To prove this result we
need the next lemma.

LEMMA 1. Let s > 0, % + % = 1 with p > 1. If K(x,y) is nonnegative function
such that K(1,1) is bounded on (0, 1), then

0o X!
/ x e ! (/ K(l,t)t"”‘z_%dt> dx=0(1), &—0+, ©)
1 0

where Ay < 117

Proof. Using assumptions we have K(1,7) < C for some C > 0 and every
€ (0,1). Let € > 0 be such that € < pg (— fAz) . We have

0o 1/x . o 1/x .
/ x1E (/ K(l,t)fPAz—adt> dx < C/ xlE (/ t—PAz—adr> dx
1 0 1 0

rrE—e—2 ¢
/ e dx_(l—pAg——)(l—pAz—i- )

wherefrom (9) follows. O

1pr2f-

THEOREM 1. Let s, Ay, Ay and K(x,y) be defined as in Theorem B. Let K(x,y)
be such that K(1,t) is boundedon (0, 1). Ifthe parameters Ay and A, satisfy condition
pAy + gA; = 2 — s, then the constants L = k(pA,) and LP from Theorem B are the
best possible.

Proof. For this purpose, with 0 < & < pg (% — Az) set f(x) =x 70 )C[1,oo)(x)

and g(y) =y "~ sx[lm) (y), where x4 is the characteristic function of a set A.
Now, let us suppose that there exists a smaller constant 0 < M < L such that the the
inequality (3) from Theorem B is valid. Let I denotes the right-hand side of (3). Then

=M (/loox_g_ldx>% (/looy_g_ldy> fo %W (10)

Applying respectively Fubini’s theorem, substitution 7 = X and Lemma 1, we have

/ooo /OO K(x, y)f (x)g(v)dxdy
/ o (/ K(x,y)y ™" "dy)d

:/ (/ (l,t)t_pAz_gdt/OXIK(I,t)t_pAz_Edt> dx
%(k (pA2+§> +0(1)>. (11)
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From (3), (10) and (11) we get
k<pA2+2> +o(l) < M. (12)
Now, by letting € — 04, we obtain from (12) a contradiction with assumption M <

L =k(pA,).
Finally, equivalence of the inequalities (3) and (4) means that the constant [ =

[k(pAy))P is the best possible in the inequality (4). This completes the proof. O
REMARK 2. Ifweput s=1, A =A; = qu in Theorem B, then the inequalities
(3) and (4) become
|| &G estiasdy <L, el (13)
and - - »
I ([ xworas) av < il (14)

where L = k (é) . The following kernels K(x,y) are homogenous with bounded

K(1,1) on (0,1). For each of these functions we compute the constant L = k (é) :

1
~ x+y+ max{x,y}’

1 L1 1y 1 111
L= ~qF (1, Z 1+—;——> +-pF (1, Z. 1+—;——> L L=V2 (n—zarctanﬁ) .
2 9 q p P

K(x,y)

2 2 2
K(x,) :
X =
24 X +y+ min{x,y}’
1 1 1 1
L—qF(l,—;lJr—;2>+pF<l,—;1+—;2>7 L2:2\/§arctan\/§.
q q 14 p
1 1
K(x,y) L=pq, Ly=4

T y — min{x, y} - max{x,y}’

1 1 1

K(x,y) = — L== o —— ), L=nv2
x+y— T 2 Cos 5, COS 3,

1 4r
K(x, , —
(x.7) x+y+ /Xy 3V3

1 8
Kx,y)=———, L,=——.
(5,) X+Yy— /Xy ? 3V3

1

K(x,y) =

B |)C—y‘ —l—max{x,y}’
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1 1 11 1 1 11 1
L=—-qgF(1,=:1 F1, =1+ =:= L, = 2 artanh—.
21 (’q Jrq 2>+2p< +p 2) 2= 2 A

x)L—l A—1 1 1
Kooy =22 =2 +—=1, A2>1

A A in Z r
Xty A sin 7 sin 7

PZa G S - - -
K(%)’):ﬂ, L:/l (COtE +COt/l_q> A>1

Note that the parameters s = 1, A} = Ay = pl—q satisfy condition pA; + gA; =
2 — 5. Therefore, Theorem 1 implies that the constants L and L” involved in
the inequalities (13) and (14) are the best possible for above choices of the ker-
nels K(x,y). This means that the constants L are the norms of the Hilbert type
operator K : #7(0,00) — £7(0,00) defined by Kf(x) = [;°K (y)dy for
f € 27(0,00), where £7(0,00) denotes the space of Lebesgue measurable funct1on
with [ [f [P (x)dx < oo.

3. The conjugate multidimensional case

Results in this section will be based on the following general form of Hardy-
Hilbert’s inequality proven in [1]. All the measures are assumed to be o— finite on
some measure space £2.

THEOREM 2. Let n > 2 be an integer and let py, . . ., p, be conjugate parameters
suchthat p; > 1, i=1,...n. Let K: Q" — Rand ¢;; : Q —=R, i,j=1,...,n
be nonnegative measurable functions such that H?Fl 0ij(x;) = 1. Then the following
inequalities hold and are equivalent

/Q KRG o) T fiadan (o) - )
i=1

n L (15)
<11 ([ rtarr oot )
and
n—1 q
/Qh(xn)< QnilK(xl,.--,xn) _Hfi(xi)dm(xl)~-~dun_1(xn-1)> At (X))
n—1 piz
i )f P () O (i ) d i (x; ) ) (16)
<I(/r )
where

n

Fi(x;) = / 1 K(x1,...,%;) I | i () dn (x1) - duiy (- 1) dpig (Xipr) - - - ditg (x0),
Qﬂ* . 7
J=1j#i
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h(x,) = ¢,;,q(xn)F,l,7‘](xn) and - =

In the same paper the authors discussed the case of equality in inequalities (15)
and (16). They proved that the equality holds in (15) (and analogously in (16)) if and
only if

pi_ .
fi(xi) = Ci¢ii(xi) =ri C;=20, i=1,...,n. (17)
In the following theorem we give the case where Q = (0, 00), the measures p;, i =
1,...,n, are Lebesgue measures, K is a nonnegative homogeneous function of degree

—s, s > 0, and the functions ¢ are of the form ¢;(x;) = xJ ' where A; € R,
i,j = 1,...,n. We define multidimensional version of the function k(ct), but in this

section it will be more convenient to slightly change the definition:

k(Oﬂl,...,O!n_l) Z:/ K(l,ll...,l‘n_l)lixl a" ldll -dt,_1,
(0,00) !

where we suppose that k (o, ..., 0,—1) < oo for o,..., 0,1 > —1and o +---+
Oy 1+n<s+1.

THEOREM 3. Let n > 2 be an integer and let py, . . . ,pn, be conjugate parameters
such that p; > 1, i = 1,...,n. Let K : (0,00)" — R be nonnegative measurable
homogeneous function of degree —s, s > 0, and let Ay, i,j = 1,...,n, be real
numbers such that Y . | A; = 0 for j = 1,...,n. If fi : (0,00) — R, fi # 0,
i = 1,...,n are nonnegative measurable functions, then the following inequalities

hold and are equivalent

/ K(xla'~'7xn) Hfi(xi)dxl "'dxn
(0,00)" i—
: N (18)

" > ¢ LY . pi
<L | I (/ xS Hpic ,P’(x,-)dx,-)
i=1 0

and

o q
/ x,(ll_‘f)("_l_s>_qo‘” (/ K(xp,...,x Hf’ (x;)dxy - - dx,,_1> dx,
0 (0,00)7—1

n—1 o) 4
pi
< oI ([ e man) " (19
i=1 /0
where

1 1
L =k(piAiz,...,p1AL)P k(s —n—pr(0r — An), p2An3, . . ., p2A2,) P2
o k(pnAn2> DR 7pnAn,n—17 §s—n _pn(an - Ann))p_tU (20)

L=y L Lo =3 Ay and piAy > =1, i £ ], piAi— o) >n—s—1,
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Aij . .
Proof. Set ¢;;(x;) = x;" in Theorem 2, where > 7' | A; = 0 for every j =

1,...,n. It is enough to calculate the functions F;(x;), i = 1,...,n. Using homo-
geneity of the function K and obvious change of variables we have

Fl(XI):/ K(xl,xz,...,xn)folA‘de2...dxn
(0700);171 j:2

n
:/ foK(l,xz/xl,...,x,,/xl)folAljdxzn-dx,,
(0,00)1—1 i

= A kA, L piAL).

Using homogeneity of the function K and the change of variables

1 t; . 0(x1,x3,...,x o
XI=Xp - —, X;=Xx2-—, i=23,...,n, M:x; 5,
15 15 8(t2,t3,...,tn)
where % denotes the Jacobian of the transformation, we have
335000

Fr(xy) = / K(x1,%2, .., %) H xszZjdxldx3~--dxn
(Bre0)™™ iz

— / x K(Lxa/x1, ... X0 /x1) H xszZjdxldx3 eedx,
(@00) =1

—1—s n—A
— s+p2 (o zz)k

=X, (s =n—pa(r — A2),p2Ans, ..., p2An).

In a similar manner we obtain
Fi(x) = xS 7P A k(A o pildii 1, s—n—pi(Ci—Ai), piiists - - - Pikin),

for i = 3,...,n. This gives inequalities (18) and (19) with inequality sign <.
Condition (17) immediately gives that nontrivial case of equality in (18) and (19) leads
to the divergent integrals. This completes the proof. |

To obtain a case of the best possible inequality in (18) and (19) it is natural to
impose the following conditions on the parameters A;;:

ijJl = S_n_Pi(ai_Aii)> i:2>"'7n>j7éi7
PiAic = P, k#ij, k#1. (21)
The missing cases i = 1 and k = 1 can be deduced from (21) as follows:
pi(on —An) =piAy; +pi ZAli =s—n—pj(o; — Ay) +ijAj,- =s—n—piAj,
i#1j i#,1
where j # 1. Thus, the complete set of conditions is
pAji = s—n—pi(c—Ay), i,j=12,....n i#],
PiAic = DiAjk, kFi,j. (22)
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THEOREM 4. Suppose that the real parameters Ay, i,j = 1,...,n satisfy condi-
tions in Theorem 3 and conditions given in (22). If the kernel K = K(x1,...,x,) is as
in Theorem 3 and for every i =2,...,n

K(1,t2,...,t;,...,1,) < CK(1,12,...,0,....8,), 0<t;<1, ;=0, j#Ii,
for some C > 0, then the constants L and LY are the best possible in inequalities (18)
and (19), where L = k(p1A12,p14A13, - . ., P1A1).

Proof. Itis easy to see that n — s+ p;0; = fp,-g,- where X, = p1Ay; for i # 1 and
Ay = ppAyr . Inequality (18) can now be written as follows:

/ K(xl,...,xn)Hf,-(x,-)dxl~-~dxn
(0,00)" i=1

L
pi

L n oo i,lfpi;{\; ip,— idi) , 23
< H(/ PRSP () (23)

where L = k(;l\;, e ,;\v,,)

Now let’s suppose that the constant factor L is not the best possible. Then, there
exists a positive constant M, smaller than L such that the inequality (23) is still valid
if we replace L by M. For this purpose, set

~ 0 x€ (0,1
fi(xi):{ Ak O.1) , i=1,...,n,

X Tr x € [l,00)
where 0 < € < min; ;< {pi + p,-Av,-} . If we put these functions in the inequality (23),
then the right-hand side of the inequality becomes % , since

n

I1 {/O‘X’ xi_l_pi&ﬁpi(xi)dxi} " é (24)

i=1
Further, let J denotes the left-hand side of the inequality (23), for above choice of
the functions f;. By using substitution u; = <, i = 2,...,n in J, we find that

x1?

]:/ x 7 E [/ / K(l,uz,-..,un)HuiAif’iiduz...dun] dx;.  (25)
1 L L X
X X1 i=2

It is easy to see that the following inequality holds

J > / x; ¢ / K(l,uz,...7un)Hu,-A"fl’iiduz...dun dx;
1 (ano>n71 =2
7\/ Xliligzg‘(xl)dxl
1 =

1 [~ ~ > -
= ok (A2 S A 3) —/ S I ), (26)
1 =

p2 Pn
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where for j = 2,...,n, Ij(x;) is defined by

n

Ij(xl):/DK(l,uz,...,u,,)Hu,-A"fl’iiduz...du,,,

J i=2

where D; = {(up,u3,...,1,);0 < uj < o , 0 < up < 00,k # j}. Without losing
generality, we only estimate the integral I, (xl) The case n = 2 is proven in Theorem
1. For n > 3 we have

n - YL ~
/ K(1,0,us,...,u,) HuiA"’”_"dm .. .dun] . / l u2A2_p_2dM2
(0,00)"—2 i3 0

—1
£  —~ £ _p_ ~ € ~ &
:C<1——+A2> x 72 lk(Ag——,...7A,,——),
P2 pP3 DPn

where & (:4\; - p%, .. ,:4\,/, - 1%) is well defined since obviously Ay + -+ A, <

Iz(xl) < C

s —n+ 2. Hence, we have [;(x;) :xl”_fiAFle(l) for e - 0+, j=2,...,n, and

consequently
/ 7Y L(a)dxy = O(1). (27)
1 -
=2

We conclude, by using (24), (26) and (27), that L < M when &€ — 0+, which is an
obvious contradiction. It follows that the constant L in (23) is the best possible.
Further, since the equivalence keeps the best possible constant, the proof is com-

pleted.
O
REMARK 3. If we define the parameters A; with A;; = (n—s)25 i = by
i#j, i,j=1,...,n, then we have
Say= oY gl o (L)
i — pipj P pi \‘Ipi
i=1 i#] i=1
forj=1,2,...,n. Since the parameters A;; are symmetric one obtains o; = Z A=
0, for i = 1,...,n. Also, it is obvious that the parameters A;;, i,j=1,...,n satisfy
conditions (22). In this case Theorem 4 gives
n 0o L
pi
/ K(xp,... Hf’ x;)dxy - - dx, < LH (/ x?ﬂfl i”i(xi)dxi> ,
(0,00)" i—1 0
where L = k (ﬂ, e %) is the best possible constant. For s = n — 1 we obtain
non-weighted case with the best possible constant L = k (—p—2 ey —p—ln) (compare

Remark 2).
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4. The non-conjugate case

To obtain an analogous result for the case of non-conjugate exponents, but without
a proof that the obtained estimations are the best possible, we need the following result
from [3]:

THEOREM 5. Let s > 0, p, p', q, ¢’ and A be as in (5) and (6). If f (x),
g(x) = 0, and K(x,y) is homogeneous function of degree —s, s > 0, then the following
inequalities hold and are equivalent

1 1

/ / K (x,y)f (x)g(y)dxdy
K y >~ g s 9
< L |:/ X7 (1 )+p(Ar— Az)fp(x)dx:|’ |:/ yr /(1 )+q(Ar— A1>gq(y)dy:| 1 (28)
0 0

and

1

[e’s} q_f [ee] l]’ q
(/0 AR A2>(/0 K*(x,y)f(x)dX> dy)
o p 1%
< L </ x_l(l $)+P(A1 Az)fp(x)dx> , (29)
0

1
where L = k(q'A2) ¢ k(2 — s — ’Al) , Al € ( :

) and A, € (l(f L.

T q
By putting the kernel K(x,y) = (x +y + max{x,y})~*, s > 0, in Theorem 5, we get
the following

| '°L|~

COROLLARY 2. Let s >0, p, p', q, ¢ and A be as in (5) and (6). If f(x),
g(y) are nonnegative functions, then the following inequalities hold and are equivalent

R e fx)gl)
/o / (it y + maxtx, o oY

O P _
<L </ xq/(l 5)+p(Ar AZ)f‘”(x)dx)
0
and

(/Owy;—,o o A2)</000( +y+fn§a3<{x yh x) )
L (/O“”x - (1=s)+p(41—A ) (31)

L
Py

where Ly = k(q'A2)7 k(2 — s — ’Al) , Ap € (4 7‘,%,), A € (1(;“, ql—,) and k(o)
be as in Corollary 1.

1

L (1—5)tq(Ar—A q
( /0 yif (1o atda= ”g‘f(y)dy) (30)

1

Tl
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It remains an open problem if the constant L = k (q’Az))L is the best possible one under
condition p’A| +q'A; = 2 — s, even if the kernel is K(x,y) = (x+y)~* ? The problem
is open even in the case s = 1 and A; = A, (see [2]).
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