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AN EXTENSION OF THE LUPAS THEOREM
FOR HERMITE-HADAMARD FUNCTIONALS

JOAN GAVREA

(Communicated by I. Peri¢)

Abstract. In this paper we investigate a representation theorem of Lupas type for Hermite-
Hadamard functionals. We use the obtained results by considering integral mean values with
respect to certain signed measures.

1. Introduction

The well known Hermite-Hadamard inequality [7] is

f(a+b) - a/f fla)+f(b) f(b) 0

which holds for a convex function f : [a,b] — R. A weighted form of this inequality
was proved by L. Fejér [3].

More precisely, if f : [a,b] — R is a convex function and p : [a,b] — R is a
nonnegative integrable function, symmetric with respect to the point (a+ b)/2 then

(52 [ owax< [ rwpeoar< L e o

A. M. Fink [4] made an important remark concerning the generality of (1), by
noting the possibility of considering certain signed measures.

Let A : Cla,b] — R be a linear bounded functional such that A(ep) = 1, where
ei:[a,b] = R, ej(x) =x', i€ N.

It is well known that for a functional A as above there exists a real Borel measure
W on [a,b] such that

= [ rtaute), 3)

b
forevery f € Cla,b] and/ du(x) =
a
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In the following we denote by
ak:A(ek), keN.

We say that, A is a linear Hermite-Hadamard functional if for every convex func-
tion f : [a,b] — R, the following inequalities hold:

A(f) = f(ar) 4)
b— _
A(f) < 7= (@) + F—F(b) 5)

A. Florea and C. P. Niculescu [5], called the Borel measure u corresponding to
the Hermite-Hadamard functional A a Hermite-Hadamard measure.

A. M. Fink [4] gave a complete characterization of the real-valued Borel measure
u for which (4) works.

In the same paper A. M. Fink proved a sufficient condition for the measure from
(3) for which (5) is true.

A. Florea and C. P. Niculescu [5] gave a complete characterization of the measures
for which (5) works for every convex function f: [a,b] — R.

The following theorem shows that the characterization of the functionals A which
satisfy (5) follows by the characterization of the functionals which satisfy (4) for every
convex function.

THEOREM 1.1. Let A be a linear functional, A(eg) = 1. The functional A is
a Hermite-Hadamard functional if and only if the functional A and the functional B
defined by
b— aj
b—a

a) —da

B(f) = -A(f)+ fla)+2—f(b) + fla) (6)

satisfy inequality (4).

Proof. First, suppose that the functionals A and B satisfy inequality (4) for every
convex function f. Then, we have

Bler) =a (7)
From (7) and from the inequality
B(f) = f(a1)

follows inequality (5).
Now, let us suppose that (5) works for every convex function f.
Inequality (5) can be written as:

P2 pa)+ S 0+ fla) A > flar)
or
B(f) > f(B(er)).

P. Czinder and Z. Péles ([1]) extended the Hermite-Hadamard inequality in another
direction, by considering functions that mix the up and down convexity.
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THEOREM 1.2. ([1]) Suppose that I is an interval and f: 1 — R is a symmetric
Sfunction with respect to an element m € I, that is:

) +f@2m—x) =2f(m), (8

Sforall x € IN(—oo,m].
If f is convex over the interval 1N (—eo,m] and concave over the interval 1N
[m,o0), then, for every interval [a,b] C I with (a+b)/2 > m the following inequalities

hold true: ) . " )
f(“+ )> [lﬂmdx>fgliﬁl. ©)

2 b—a. 2
If (a+b)/2 < m then the inequalities (9) should be reversed.

An extension of Theorem 2.1 for absolutely continuous measures with positive
weights was obtained by P. Czinder ([2]).

A. Florea and C. P. Niculescu ([5]) proved that Theorem 1.2 works in the general
framework of Hermite-Hadamard measures. [

THEOREM 1.3. ([S]) Suppose that f:1— R verifies condition (8) and is convex
over the interval 1N (—oo,m] and concave over the interval 1N [m,oo).

If (a+b)/2 > m and W is a Hermite-Hadamard measure on each of the intervals
[a,2m — a] and [2m — a,b] and is invariant with respect to the map T (x) =2m —x on
[a,2m — a] then

b—xy
M p )+

Xy—a
b—a

1 b
ﬂm>mgmﬁfwww> £(b) (10)

1 b
where u([a,b]) >0 and x; = @ d]) / xdp(x).

Ja
If (a+b)/2 < m, then the inequalities (10) work in a reverse way, provided U is
a Hermite-Hadamard measure on each of the intervals [a,2m — b] and [2m — b,b] and
is invariant with respect to the map T (x) =2m —x on [2m — b, b].
The divided difference, [x,x2,...,%,+1;f] of a function f € R[] on the distinct
knots x1,x7,...,x,+1 is defined by:

N )
[xlax2a"'7-xn+l7f] L 1:21 l/(xi)'

A function f € R4%! is a convex function iff:

[x1,22,x3: f] >0,

for every distinct knots xj,x2,x3 € [a,b]. A function f, f: [a,b] — R is a convex
function of order n if all divided differences of the function f on n+ 2 distinct points
from the interval [a,b] are positive.

A. Lupas ([6]) proved the following representation theorem for linear positive
functionals:
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THEOREM 1.4. ([6]) Letr A : Cla,b] — R be a linear positive functional with
A(eo) = 1. Then, for any f € Cla,b] there exist distinct points 0y,6,,03 € [a,b], de-
pending on f, such that

A(f) = flar) + (a2 — a})[61, 62, 05; f]. (11)

The aim of this paper is to prove that Theorem 1.4 is true in the general framework
of Hermite-Hadamard functionals and to improve the results from Theorems 1.2 and
1.3.

The important tool for the demonstration of the main result is given by T. Popovi-
ciu ([8]) in connection with P,-simple functionals. In order to recall it here we need a
preparation.

Let n be an integer number, n > —1. A linear functional A, A : Cla,b] — R has
the degree of exactness n if

Ale)) =0, i=0,1,....n

and
Alens1) #0.

A functional A is a P,-simple functional if A has the degree of exactness n and for
every f € Cla,b] there exist n+ 2 distinct points 6; = 6;(f) € [a,b], i=1,2,...,n+2
such that

A(f) = A(€”+1)[91, 92, ceey 9n+2;f]

where [01,0,...,0,.2; f] is divided difference of the function f on the points 8;,6;,...

9n+2 .
THEOREM 1.5. ([8]) IfA:C[a,b] — R is a linear bounded functional of degree
of exactness n then the functional A is P, -simple if and only if

A(erH»l)A(u/t,n) 20, re [a>b] (12)

where .
—t —t
Vi) o= (x— 1)) = (%) .

2. The extension of the Lupas theorem

Let A : Cla,b] — R be a linear functional. The following theorem shows that
Lupas’s theorem works for Hermite-Hadamard functionals.

THEOREM 2.1. If A is a linear bounded functional such that A(eg) =1 and A
satisfies the inequality (4) for every convex function f, then for every f € Cla,b] there
exist points 0; = 0;(f) € [a,b], i = 1,2,3, such that

A(f) = f(a1) + (a2 —a})[61, 65, 63; f]. (13)
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Proof. If A = d,, x1 € [a,b], then (13) is true for every selection of the distinct
points 6,,0,,05 € [a,b].

Now, we suppose that A is not a Dirac functional. Let B be the linear bounded
functional, B : Cla,b] — R, defined by

We have
B(e()) =B(el) =0. (14)
By (4), for every convex function, we have
B(f) > 0.
In particular
B(ez) > 0. (15)

Let us prove that in (15) the inequality is strictly satisfied.
In the contrary case, from (14) we get:

B(e; —a)? = B(ey) =0.

Let k be a fixed natural number, k£ > 3. If inequality (4) holds for every convex
function f, then for a concave function inequality (4) reverses sign.
Let us consider the function g defined by

g0 =——ap '+ D -0y
The function g is a concave function on [a,b] and we have:
A() = =A(ter— )+ D - 01 ay —a?
=A@+ D g ae -0 (o
Because the function g is a concave function we get
ag) < (- + D ey —ap a7

Let & be the function defined by

h(x) = —(x—a)" + @(b—a)kil(x—a)z, X € [a,b].

h is a convex function, and
A(h) =A(g) (18)

h being a convex function we obtain

AM)2f@uf®H4+EQ;l%bfaV”@ufaY. (19)
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From (16), (17), (18) and (19) we get
Al(ler —a)™) = (@ —a)*!, keN. (20)
The equalities (20) imply that
A(P) = P(a1) 1)

for every polynomial P.
The functional A is bounded and therefore A is a continuous functional.
Since the set of all polynomials is dense in C[a,b], from (21) we get

A(f) = flar).

This is a contradiction with the fact that A is different from the Dirac functional.
So,
B (62) > 0.

This means that the functional A has the degree of exactness 1. Because the func-
tional A satisfies (4) we have

B(ez)B(l[/,_]l) > 0.

Since the conditions of Theorem 1.5 are satisfied for the functional B, it follows
that B is P;-simple.

This means that, for f € Cla,b] there exist the distinct points 0,6,,03 € [a,b],
depending on the function f such that

B(f) = B(e2)[01,0,05; f]

or
A(f) = f(a1) + (a2 — a1)[61, 05, 05; f]. O

COROLLARY 2.2. A linear bounded functional A, A : Cla,b] — R for which
A(eg) =1 is a Hermite-Hadamard functional if and only if for every t € [a,b] the
following inequalities hold:

Aller — 1)) > |ar —1| 22)
b— _
Aler —1]) < b_é;l(tfa)Jrabl_:(bft). (23)

Proof. In the case when A is Dirac functional, the relations (22) and (23) are
straightforward to obtain. In what follows we assume that A is not a Dirac functional.
In this case Theorem 2.1 shows that A is a Hermite-Hadamard functional if and only if
the functionals By, B; : C[a,b] — R defined by

Bi(f) = A(f) — flar)
o b—a1

Ba(f) = T2 f(a) +

ay—a

12 p) - )
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are P;—simple functionals and
Bi(e2) >0
Bs(e2) > 0.
From Theorem 1.5, B; and B, are P;—simple functionals if and only if

Bi(¥;1) >0
BZ(‘Ptl) 2 0.7
inequalities that are the same with (22) and (23). O

REMARK 2.3. In the case when u is a Borel measure on [a,b] with p([a,b]) >0
and

1 b
A(f) = 7/ x)du(x),
(N = gy [, P
then (22) is equivalent with the conditions:
i) [1(t—x)du(x) >0 forevery ¢ € [a,a1],
ii) [P(x—1)du(x) >0 forevery t € [aj,b].

Let us prove i). We can assume that p([a,b]) = 1. If ¢ € [a,a;] inequality (22) can be
written in the following form:

b
/ |x—z|ldu(x) > a; —t
Ja

or . b
/(t—x)du(x)+/ (r—)du(x) > a1 — 1
< t ’ b t A
/Q(t—x)d,u(x)—i—/a (x—t)d,u(x)—l—/a(t—x)du(x)}al—t
=

2/at(tfx)d,u(x) >0.

For ¢ € [a,b] inequality (22) becomes:

ot b
[ =nduw+ [ c=ndue >1-a
or b b b
[e=naue 2 [ w-naue > [ -dut).

The last inequality is the same with ii).
A. M. Fink ([4]) proved that if i) and ii) are true for every ¢ € [a,b], then the
functional

1 b
AU = gy, T @amt)

satisfies inequality (4) for every convex function f. Inequality (23) becomes inequality
(10) obtained by A. Florea and C. P. Niculescu in [5]. The following theorem is an
extension of Theorem 2.1.
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THEOREM 2.3. Let A be a linear bounded functional defined on Cla,b], different
from the null functional.

If
A(f) =0 (24)
for every convex function f of order n, then A is a P,-simple functional.
Proof. The functions e;,—e;, i=0,1,2,...,n are simultaneously convex and con-
cave of order n. So, from (24) it follows that
Ae;))=0, i=0,1,2,...,n. (25)

To complete the proof it is necessary to show that
A(€n+1) > 0. (26)

Let suppose the contrary, A(e,+1) =0.
Let m be a natural number, m > 1. The function g, g: [a,b] — R defined by

_ n+m+1 (n+m+1)! m n+1
g(x)=—(x—a) +m(b—0) (x—a)
is a convex function of order n.
From (24), it follows that:
A(g) 0.
On the other hand, we have:
A(g) = —A((er —a)"™" 1) 27
and therefore
A((ep —a)™™ 1 <0, (28)
The function % defined by
h(x) — 7(x7a)m+n+1
is a n-concave function and so
A(h) <0
or
A((e; —a)™™ 1 > 0. (29)
From (28) and (29) we obtain
A((e; —a)™™ =0 (30)
forevery m=0,1,2,...
Relations (25) and (30) imply that
A(P)=0 3D

for every polynomial P.
The functional A being a continuous functional, (31) imply that A is the null
functional. This concludes the proof of the result. [J
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COROLLARY 2.4. Let A be a non-zero linear bounded functional defined on
Cla,b]. The inequality
A(f)=0

holds for every convex function of order n if and only if

A(yin) 20 (32)

forevery t € [a,b], where Vi, , is the function defined by

x—t+|x—1]\"
R

Proof. The proof follows from Theorem 2.3 and by Popoviciu’s Theorem 1.5. [J

REMARK 2.5. Corollary 2.4 generalizes a result obtained by A. M. Fink ([4])
(Theorem 4, pp. 227).

3. An application of Hermite-Hadamard measure to
convex-concave symmetrical functions

In what follows we consider a function f :1 — R which verifies the symmetry
condition (8).

The following theorems improve the results obtained by A. Florea and C. P. Nicu-
lescu ([5]).

THEOREM 3.1. Let f:1— R be afunction which verifies the symmetry condition
(8) and is convex over the interval 1N (—eo,m| and concave over the interval 1N [m,eo).

If (a+b)/2 > m and u is a Hermite-Hadamard measure on each of the intervals
[a,2m — a] and [2m — a,b], and is invariant with respect to the map T (x) =2m —x on
[a,2m — a], then there exist the distinct points 6; = 0,(f) € 2m—a,b], i =1,2,3 such
that the following equality holds:

m ./ff ()dp(x) = f (xu)

of (33)

1 b 1 b 2
(D) </zma"2d“<’“> e ( /zmaxdmx)) ) 101,05, 05:7].

where K = <m m.AZQXd“(X))z‘
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Proof. The following equality follows from the invariance properties of f and u
(see [5]):

g |
Bl 2m—d)) p(2m—ab) ! .
~ ot e (e o 70)
u([2m—a,b)) 1 b
D) (u([zm—a,b]) na? )
1 b
- (M ./2“”“(”)) - (34)

The Borel measure u being a Hermite-Hadamard measure on the interval [2m —
a,b], we obtain from Theorem 2.1 the existence of the distinct points 6;(f) € [2m —
a,b], i=1,2,3 such that

1 b 1 b
T SR~ f (7“([% ) /maxdu(x)) (35)

1 b 1 b 2
) (m fo P~ (L 000 ) 01,6205 11

Let o € [0,1] and x,y € [a,b]. The following equality holds

(1— ) f(x) +af(y) = F(1 = a)x+ay) = a(l — o) (x—y)*[x, (1 — a)x+ oy, y; f].
(36)
From (35) we get

p(la,2m—a]) = u(2m—a,b)) 1 b
a(@s) | pab) f(u([Zma,b}) ,/zmax"“@c)) — flow)
:M([a,Zm—a]).u(pm—a,b]) {mx 1
u([a,bl) u([a,b]) T u(2m—a,b)).
From (34), (35) and (37) we obtain (33). O

f(m)

b
/ xdu(x);f] .37

m—a

THEOREM 3.2. Let f:1— R be afunction which verifies the symmetry condition
(8) and is convex over the interval IN(—eo,m| and concave over the interval 1N [m,eo).

If (a+b)/2 > m and W is a Hermite-Hadamard measure on each of the intervals
[a,2m — a] and [2m — a,b], u([a,b]) = 1, and is invariant with respect to the map
T(x) =2m—x on [a,2m — a], then there exist distinct points n;(f) € [2m—a,b], i =
1,2,3, such that the following equality is true:

IR L i

=(1—7t)(a2— X = (x = 2m+a) (b — ) (11,12, 13:f)

(2=2A)b+Aa—2xy)(m—a)(b—m)
(b—a)
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where

[oanw [ Rau

2m—a .
A = u([a,2m—al), ‘x;,l:?7 a = )
Proof. We have
b b
| rdne) = pemr+ [ pduc).
The last equality can be written in the following form:
b J s 12 Xy —2m+a ) b—x, )
[ s =ason + - (B )+ L rom-a))
b
1-2 Am*“f(X)dH(X) o Imta L b L, 39
+1=4) T Sy s e A e Ll IS

U being a Hermite-Hadamard measure on [2m — a,b].
From Theorem 1.1 and Theorem 2.1, it follows that there exist the distinct points
ni(f) € 2m—a,b], i =1,2,3 such that

b

@)y oyt g b—x,
2m—a u u
T Ry, e Ay A C Lt
= (az — X7 — (x;; —2m+a)(b—x,.)) [, M2, M3 £ (40)

To complete the proof, we see from (39) and (40) that it is sufficient to show the
following equality

Xy, —2m+a b—x, Xu—a b—xy
Afm+(1=4) (mf o’ <2’”“>> “hma T O, @
(2= A)b+Aa—2xy)(m—a)(b+a—2m) )
- (b—a)(b+a—2m)(b—m) m2m—a,bifl. (4D
We have
1 b
¥, = xdp(x)
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Since
fla) =2f(m) - f(2m—a)
we obtain
Xy —2m-+a b—x, Xu—a b—xy
A +(1-4) (T o rem-a) ) )5 p

(b=m)((2—A)b+Aa—xy) o
=G alra ) @na)
(m—a)(2—A)b+aA —2xy)
a (b—a)(b+a—2m) =)
_ (b-m)((2—A)b+Aa—2xy) b+a—2m m—a
B (b—a)(b+a—2m) - (f(Zma) b—m fm) = f(b)>
:_((2ﬂt)bJr/la(beZ;(ma)(bm)[m’zm_mb;f]. 0

2—-A)b+Aa—2x,
b—a

f(m)

REMARK. From Theorem 3.1 and 3.2 we get the result obtained by A. Florea and
C. P. Niculescu in ([5]).
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