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FOR HERMITE–HADAMARD FUNCTIONALS
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Abstract. In this paper we investigate a representation theorem of Lupaş type for Hermite-
Hadamard functionals. We use the obtained results by considering integral mean values with
respect to certain signed measures.

1. Introduction

The well known Hermite-Hadamard inequality [7] is

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
(1)

which holds for a convex function f : [a,b] → R . A weighted form of this inequality
was proved by L. Fejér [3].

More precisely, if f : [a,b] → R is a convex function and p : [a,b] → R is a
nonnegative integrable function, symmetric with respect to the point (a+b)/2 then

f

(
a+b

2

)∫ b

a
p(x)dx �

∫ b

a
f (x)p(x)dx � f (a)+ f (b)

2

∫ b

a
f (x)dx. (2)

A. M. Fink [4] made an important remark concerning the generality of (1), by
noting the possibility of considering certain signed measures.

Let A : C[a,b] → R be a linear bounded functional such that A(e0) = 1, where
ei : [a,b] → R , ei(x) = xi , i ∈ N .

It is well known that for a functional A as above there exists a real Borel measure
μ on [a,b] such that

A( f ) =
∫ b

a
f (x)dμ(x), (3)

for every f ∈C[a,b] and
∫ b

a
dμ(x) = 1.
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In the following we denote by

ak = A(ek), k ∈ N.

We say that, A is a linear Hermite-Hadamard functional if for every convex func-
tion f : [a,b]→ R , the following inequalities hold:

A( f ) � f (a1) (4)

A( f ) � b−a1

b−a
f (a)+

a1−a
b−a

f (b) (5)

A. Florea and C. P. Niculescu [5], called the Borel measure μ corresponding to
the Hermite-Hadamard functional A a Hermite-Hadamard measure.

A. M. Fink [4] gave a complete characterization of the real-valued Borel measure
μ for which (4) works.

In the same paper A. M. Fink proved a sufficient condition for the measure from
(3) for which (5) is true.

A. Florea and C. P. Niculescu [5] gave a complete characterization of the measures
for which (5) works for every convex function f : [a,b] → R .

The following theorem shows that the characterization of the functionals A which
satisfy (5) follows by the characterization of the functionals which satisfy (4) for every
convex function.

THEOREM 1.1. Let A be a linear functional, A(e0) = 1 . The functional A is
a Hermite-Hadamard functional if and only if the functional A and the functional B
defined by

B( f ) = −A( f )+
b−a1

b−a
f (a)+

a1−a
b−a

f (b)+ f (a1) (6)

satisfy inequality (4).

Proof. First, suppose that the functionals A and B satisfy inequality (4) for every
convex function f . Then, we have

B(e1) = a1 (7)

From (7) and from the inequality

B( f ) � f (a1)

follows inequality (5).
Now, let us suppose that (5) works for every convex function f .
Inequality (5) can be written as:

b−a1

b−a
f (a)+

a1−a
b−a

f (b)+ f (a1)−A( f ) � f (a1)

or
B( f ) � f (B(e1)).

P. Czinder and Z. Páles ([1]) extended the Hermite-Hadamard inequality in another
direction, by considering functions that mix the up and down convexity.
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THEOREM 1.2. ([1]) Suppose that I is an interval and f : I →R is a symmetric
function with respect to an element m ∈ I , that is:

f (x)+ f (2m− x) = 2 f (m), (8)

for all x ∈ I∩ (−∞,m] .
If f is convex over the interval I ∩ (−∞,m] and concave over the interval I ∩

[m,∞) , then, for every interval [a,b]⊂ I with (a+b)/2 � m the following inequalities
hold true:

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2
. (9)

If (a+b)/2 � m then the inequalities (9) should be reversed.

An extension of Theorem 2.1 for absolutely continuous measures with positive
weights was obtained by P. Czinder ([2]).

A. Florea and C. P. Niculescu ([5]) proved that Theorem 1.2 works in the general
framework of Hermite-Hadamard measures. �

THEOREM 1.3. ([5]) Suppose that f : I →R verifies condition (8) and is convex
over the interval I∩ (−∞,m] and concave over the interval I∩ [m,∞) .

If (a+b)/2 � m and μ is a Hermite-Hadamard measure on each of the intervals
[a,2m−a] and [2m−a,b] and is invariant with respect to the map T(x) = 2m− x on
[a,2m−a] then

f (xμ) � 1
μ([a,b])

∫ b

a
f (x)dμ(x) � b− xμ

b−a
f (a)+

xμ −a

b−a
f (b) (10)

where μ([a,b]) > 0 and xμ =
1

μ([a,b])

∫ b

a
xdμ(x) .

If (a+b)/2 � m, then the inequalities (10) work in a reverse way, provided μ is
a Hermite-Hadamard measure on each of the intervals [a,2m−b] and [2m−b,b] and
is invariant with respect to the map T(x) = 2m− x on [2m−b,b] .

The divided difference, [x1,x2, ...,xn+1; f ] of a function f ∈ R
[a,b] on the distinct

knots x1,x2, ...,xn+1 is defined by:

[x1,x2, ...,xn+1; f ] :=
n+1

∑
i=1

f (xi)
l′(xi)

.

A function f ∈ R
[a,b] is a convex function iff:

[x1,x2,x3; f ] � 0,

for every distinct knots x1,x2,x3 ∈ [a,b] . A function f , f : [a,b] → R is a convex
function of order n if all divided differences of the function f on n+2 distinct points
from the interval [a,b] are positive.

A. Lupaş ([6]) proved the following representation theorem for linear positive
functionals:
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THEOREM 1.4. ([6]) Let A : C[a,b] → R be a linear positive functional with
A(e0) = 1 . Then, for any f ∈ C[a,b] there exist distinct points θ1,θ2,θ3 ∈ [a,b] , de-
pending on f , such that

A( f ) = f (a1)+ (a2−a2
1)[θ1,θ2,θ3; f ]. (11)

The aim of this paper is to prove that Theorem 1.4 is true in the general framework
of Hermite-Hadamard functionals and to improve the results from Theorems 1.2 and
1.3.

The important tool for the demonstration of the main result is given by T. Popovi-
ciu ([8]) in connection with Pn -simple functionals. In order to recall it here we need a
preparation.

Let n be an integer number, n � −1. A linear functional A , A : C[a,b] → R has
the degree of exactness n if

A(ei) = 0, i = 0,1, . . . ,n

and
A(en+1) �= 0.

A functional A is a Pn -simple functional if A has the degree of exactness n and for
every f ∈C[a,b] there exist n+2 distinct points θi = θi( f ) ∈ [a,b] , i = 1,2, . . . ,n+2
such that

A( f ) = A(en+1)[θ1,θ2, . . . ,θn+2; f ]

where [θ1,θ2, . . . ,θn+2; f ] is divided difference of the function f on the points θ1,θ2, . . . ,
θn+2 .

THEOREM 1.5. ([8]) If A :C[a,b]→R is a linear bounded functional of degree
of exactness n then the functional A is Pn -simple if and only if

A(en+1)A(ψt,n) � 0, t ∈ [a,b] (12)

where

ψt,n(x) := (x− t)n
+ :=

(
x− t + |x− t|

2

)n

.

2. The extension of the Lupaş theorem

Let A : C[a,b] → R be a linear functional. The following theorem shows that
Lupaş’s theorem works for Hermite-Hadamard functionals.

THEOREM 2.1. If A is a linear bounded functional such that A(e0) = 1 and A
satisfies the inequality (4) for every convex function f , then for every f ∈C[a,b] there
exist points θi = θi( f ) ∈ [a,b] , i = 1,2,3, such that

A( f ) = f (a1)+ (a2−a2
1)[θ1,θ2,θ3; f ]. (13)
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Proof. If A = δx1 , x1 ∈ [a,b] , then (13) is true for every selection of the distinct
points θ1,θ2,θ3 ∈ [a,b] .

Now, we suppose that A is not a Dirac functional. Let B be the linear bounded
functional, B : C[a,b] → R , defined by

B( f ) = A( f )− f (a1).

We have
B(e0) = B(e1) = 0. (14)

By (4), for every convex function, we have

B( f ) � 0.

In particular
B(e2) � 0. (15)

Let us prove that in (15) the inequality is strictly satisfied.
In the contrary case, from (14) we get:

B(e1 −a)2 = B(e2) = 0.

Let k be a fixed natural number, k � 3. If inequality (4) holds for every convex
function f , then for a concave function inequality (4) reverses sign.

Let us consider the function g defined by

g(x) = −(x−a)k+1 +
k(k+1)

2
(b−a)k−1(a1−a)(x−a).

The function g is a concave function on [a,b] and we have:

A(g) = −A((e1−a)k+1)+
k(k+1)

2
(b−a)k−1(a1−a)2

= −A((e1−a)k+1)+
k(k+1)

2
(b−a)k−1A((e1−a)2) (16)

Because the function g is a concave function we get

A(g) � −(a1−a)k+1 +
k(k+1)

2
(b−a)k−1(a1−a)2 (17)

Let h be the function defined by

h(x) = −(x−a)k+1 +
k(k+1)

2
(b−a)k−1(x−a)2, x ∈ [a,b].

h is a convex function, and
A(h) = A(g) (18)

h being a convex function we obtain

A(h) � −(a1−a)k+1 +
k(k+1)

2
(b−a)k−1(a1 −a)2. (19)
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From (16), (17), (18) and (19) we get

A((e1−a)k+1) = (a1−a)k+1, k ∈ N. (20)

The equalities (20) imply that

A(P) = P(a1) (21)

for every polynomial P .
The functional A is bounded and therefore A is a continuous functional.
Since the set of all polynomials is dense in C[a,b] , from (21) we get

A( f ) = f (a1).

This is a contradiction with the fact that A is different from the Dirac functional.
So,

B(e2) > 0.

This means that the functional A has the degree of exactness 1. Because the func-
tional A satisfies (4) we have

B(e2)B(ψt,1) � 0.

Since the conditions of Theorem 1.5 are satisfied for the functional B , it follows
that B is P1 -simple.

This means that, for f ∈ C[a,b] there exist the distinct points θ1,θ2,θ3 ∈ [a,b] ,
depending on the function f such that

B( f ) = B(e2)[θ1,θ2,θ3; f ]

or
A( f ) = f (a1)+ (a2−a2

1)[θ1,θ2,θ3; f ]. �

COROLLARY 2.2. A linear bounded functional A, A : C[a,b] → R for which
A(e0) = 1 is a Hermite-Hadamard functional if and only if for every t ∈ [a,b] the
following inequalities hold:

A(|e1 − t|) � |a1− t| (22)

A(|e1− t|) � b−a1

b−a
(t−a)+

a1−a
b−a

(b− t). (23)

Proof. In the case when A is Dirac functional, the relations (22) and (23) are
straightforward to obtain. In what follows we assume that A is not a Dirac functional.
In this case Theorem 2.1 shows that A is a Hermite-Hadamard functional if and only if
the functionals B1, B2 : C[a,b] → R defined by

B1( f ) = A( f )− f (a1)

B2( f ) =
b−a1

b−a
f (a)+

a1−a
b−a

f (b)−A( f )



LUPAŞ THEOREM FOR HERMITE-HADAMARD FUNCTIONALS 543

are P1 –simple functionals and

B1(e2) > 0

B2(e2) > 0.

From Theorem 1.5, B1 and B2 are P1 –simple functionals if and only if

B1(Ψt,1) � 0

B2(Ψt,1) � 0.,

inequalities that are the same with (22) and (23). �

REMARK 2.3. In the case when μ is a Borel measure on [a,b] with μ([a,b]) > 0
and

A( f ) =
1

μ([a,b])

∫ b

a
f (x)dμ(x),

then (22) is equivalent with the conditions:

i)
∫ t
a(t − x)dμ(x) � 0 for every t ∈ [a,a1] ,

ii)
∫ b
t (x− t)dμ(x) � 0 for every t ∈ [a1,b] .

Let us prove i). We can assume that μ([a,b]) = 1. If t ∈ [a,a1] inequality (22) can be
written in the following form: ∫ b

a
|x− t|dμ(x) � a1− t

or ∫ t

a
(t− x)dμ(x)+

∫ b

t
(x− t)dμ(x) � a1− t

⇔ ∫ t

a
(t− x)dμ(x)+

∫ b

a
(x− t)dμ(x)+

∫ t

a
(t− x)dμ(x) � a1− t

⇔
2
∫ t

a
(t− x)dμ(x) � 0.

For t ∈ [a,b] inequality (22) becomes:∫ t

a
(t− x)dμ(x)+

∫ b

t
(x− t)dμ(x) � t−a1

or ∫ b

a
(t− x)dμ(x)+2

∫ b

t
(x− t)dμ(x) �

∫ b

a
(t − x)dμ(x).

The last inequality is the same with ii).
A. M. Fink ([4]) proved that if i) and ii) are true for every t ∈ [a,b] , then the

functional

A( f ) =
1

μ([a,b])

∫ b

a
f (x)dμ(x)

satisfies inequality (4) for every convex function f . Inequality (23) becomes inequality
(10) obtained by A. Florea and C. P. Niculescu in [5]. The following theorem is an
extension of Theorem 2.1.
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THEOREM 2.3. Let A be a linear bounded functional defined on C[a,b] , different
from the null functional.

If
A( f ) � 0 (24)

for every convex function f of order n, then A is a Pn -simple functional.

Proof. The functions ei,−ei , i = 0,1,2, . . . ,n are simultaneously convex and con-
cave of order n . So, from (24) it follows that

A(ei) = 0, i = 0,1,2, . . . ,n. (25)

To complete the proof it is necessary to show that

A(en+1) > 0. (26)

Let suppose the contrary, A(en+1) = 0.
Let m be a natural number, m � 1. The function g , g : [a,b] → R defined by

g(x) = −(x−a)n+m+1 +
(n+m+1)!
(n+1)!m!

(b−a)m(x−a)n+1

is a convex function of order n .
From (24), it follows that:

A(g) � 0.

On the other hand, we have:

A(g) = −A((e1−a)m+n+1) (27)

and therefore
A((e1−a)m+n+1) � 0. (28)

The function h defined by

h(x) = −(x−a)m+n+1

is a n -concave function and so
A(h) � 0

or
A((e1−a)m+n+1) � 0. (29)

From (28) and (29) we obtain

A((e1−a)m+n+1) = 0 (30)

for every m = 0,1,2, . . .
Relations (25) and (30) imply that

A(P) = 0 (31)

for every polynomial P .
The functional A being a continuous functional, (31) imply that A is the null

functional. This concludes the proof of the result. �
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COROLLARY 2.4. Let A be a non-zero linear bounded functional defined on
C[a,b] . The inequality

A( f ) � 0

holds for every convex function of order n if and only if

A(ψt,n) � 0 (32)

for every t ∈ [a,b] , where ψt,n is the function defined by

ψt,n(x) =
(

x− t + |x− t|
2

)n

.

Proof. The proof follows from Theorem 2.3 and by Popoviciu’s Theorem 1.5. �

REMARK 2.5. Corollary 2.4 generalizes a result obtained by A. M. Fink ([4])
(Theorem 4, pp. 227).

3. An application of Hermite-Hadamard measure to
convex-concave symmetrical functions

In what follows we consider a function f : I → R which verifies the symmetry
condition (8).

The following theorems improve the results obtained by A. Florea and C. P. Nicu-
lescu ([5]).

THEOREM 3.1. Let f : I →R be a function which verifies the symmetry condition
(8) and is convex over the interval I∩(−∞,m] and concave over the interval I∩ [m,∞) .

If (a+b)/2 � m and μ is a Hermite-Hadamard measure on each of the intervals
[a,2m−a] and [2m−a,b] , and is invariant with respect to the map T(x) = 2m− x on
[a,2m−a] , then there exist the distinct points θi = θi( f ) ∈ [2m−a,b] , i = 1,2,3 such
that the following equality holds:

1
μ([a,b])

∫ b

a
f (x)dμ(x)− f (xμ)

=
μ([a,2m−a])μ([2m−a,b])

μ2([a,b])

⎡
⎢⎢⎣m,xμ ,

∫ b

2m−a
xdμ(x)

μ([2m−a,b])
; f

⎤
⎥⎥⎦ (33)

+
1

μ([a,b])

(∫ b

2m−a
x2dμ(x)− 1

μ([2m−a,b])

(∫ b

2m−a
xdμ(x)

)2
)

[θ1,θ2,θ3; f ],

where K =
(

m− 1
μ([2m−a,b])

∫ a

2m−a
xdμ(x)

)2

.
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Proof. The following equality follows from the invariance properties of f and μ
(see [5]):

1
μ([a,b])

∫ b

a
f (x)dμ(x)

= f (m)
μ([a,2m−a])

μ([a,b])
+
μ([2m−a,b])

μ([a,b])
f

(
1

μ([2m−a,b])

∫ b

2m−a
xdμ(x)

)

+
μ([2m−a,b])

μ([a,b])

(
1

μ([2m−a,b])

∫ b

2m−a
f (x)dμ(x)

− f

(
1

μ([2m−a,b])

∫ b

2m−a
xdμ(x)

))
. (34)

The Borel measure μ being a Hermite-Hadamard measure on the interval [2m−
a,b] , we obtain from Theorem 2.1 the existence of the distinct points θi( f ) ∈ [2m−
a,b] , i = 1,2,3 such that

1
μ([2m−a,b])

∫ b

2m−a
f (x)dμ(x)− f

(
1

μ([2m−a,b])

∫ b

2m−a
xdμ(x)

)
(35)

=

(
1

μ([2m−a,b])

∫ b

2m−a
x2dμ(x)−

(
1

μ([2m−a,b])

∫ b

2m−a
xdμ(x)

)2
)

[θ1,θ2,θ3; f ].

Let α ∈ [0,1] and x,y ∈ [a,b] . The following equality holds

(1−α) f (x)+α f (y)− f ((1−α)x+αy) = α(1−α)(x− y)2[x,(1−α)x+αy,y; f ].
(36)

From (35) we get

f (m)
μ([a,2m−a])

μ([a,b])
+
μ([2m−a,b])

μ([a,b])
f

(
1

μ([2m−a,b])

∫ b

2m−a
xdμ(x)

)
− f (xμ)

=
μ([a,2m−a])

μ([a,b])
· μ([2m−a,b])

μ([a,b])

[
m,xμ ,

1
μ([2m−a,b])

∫ b

2m−a
xdμ(x); f

]
. (37)

From (34), (35) and (37) we obtain (33). �

THEOREM 3.2. Let f : I →R be a function which verifies the symmetry condition
(8) and is convex over the interval I∩(−∞,m] and concave over the interval I∩ [m,∞) .

If (a+b)/2 � m and μ is a Hermite-Hadamard measure on each of the intervals
[a,2m− a] and [2m− a,b] , μ([a,b]) = 1 , and is invariant with respect to the map
T (x) = 2m− x on [a,2m− a] , then there exist distinct points ηi( f ) ∈ [2m− a,b] , i =
1,2,3 , such that the following equality is true:∫ b

a
f (x)dμ(x)− xμ −a

b−a
f (b)− b− xμ

b−a
f (a)

= (1−λ )(a2− x′2μ − (x′μ−2m+a)(b− x′μ))[η1,η2,η3; f ]

− ((2−λ )b+λa−2xμ)(m−a)(b−m)
(b−a)

[m,2m−a,b; f ] (38)
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where

λ = μ([a,2m−a]), x′μ =

∫ b

2m−a
xdμ(x)

1−λ
, a2 =

∫ b

2m−a
x2dμ(x)

1−λ
.

Proof. We have

∫ b

a
f (x)dμ(x) = f (m)λ +

∫ b

2m−a
f (x)dμ(x).

The last equality can be written in the following form:

∫ b

a
f (x)dμ(x) = λ f (m)+ (1−λ )

(
x′μ −2m+a

a+b−2m
f (b)+

b− x′μ
a+b−2m

f (2m−a)
)

+(1−λ )

⎛
⎜⎜⎝
∫ b

2m−a
f (x)dμ(x)

1−λ
− x′μ −2m+a

a+b−2m
f (b)− b− x′μ

a+b−2m
f (2m−a)

⎞
⎟⎟⎠ (39)

μ being a Hermite-Hadamard measure on [2m−a,b] .
From Theorem 1.1 and Theorem 2.1, it follows that there exist the distinct points

ηi( f ) ∈ [2m−a,b] , i = 1,2,3 such that

∫ b

2m−a
f (x)dμ(x)

1−λ
− x′μ −2m+a

a+b−2m
f (b)− b− x′μ

a+b−2m
f (2m−a)

= (a2− x′2μ − (x′μ −2m+a)(b− x′μ))[η1,η2,η3; f ]. (40)

To complete the proof, we see from (39) and (40) that it is sufficient to show the
following equality

λ f (m)+(1−λ )
(

x′μ−2m+a

a+b−2m
f (b)+

b−x′μ
a+b−2m

f (2m−a)
)
−xμ−a

b−a
f (b)−b−xμ

b−a
f (a)

= − ((2−λ )b+λa−2xμ)(m−a)(b+a−2m)
(b−a)(b+a−2m)(b−m)

[m,2m−a,b; f ]. (41)

We have

x′μ =
1

1−λ

∫ b

2m−a
xdμ(x)

=
1

1−λ

(∫ b

a
xdμ(x)−

∫ 2m−a

a
xdμ(x)

)

=
xμ −mλ
1−λ

.
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Since
f (a) = 2 f (m)− f (2m−a)

we obtain

λ f (m)+(1−λ )
(

x′μ−2m+a

a+b−2m
f (b)+

b−x′μ
a+b−2m

f (2m−a)
)
−xμ−a

b−a
f (b)−b−xμ

b−a
f (a)

=
(b−m)((2−λ )b+λa− xμ)

(b−a)(b+a−2m)
f (2m−a)− (2−λ )b+λa−2xμ

b−a
f (m)

− (m−a)((2−λ )b+aλ−2xμ)
(b−a)(b+a−2m)

f (b)

=
(b−m)((2−λ )b+λa−2xμ)

(b−a)(b+a−2m)

(
f (2m−a)− b+a−2m

b−m
f (m)− m−a

b−m
f (b)
)

= − ((2−λ )b+λa−2xμ)(m−a)(b−m)
(b−a)

[m,2m−a,b; f ]. �

REMARK. From Theorem 3.1 and 3.2 we get the result obtained by A. Florea and
C. P. Niculescu in ([5]).

Acknowledgments. We would like to thank the anonymous reviewer who made
important remarks and suggestions that led to the improvement of this work.

RE F ER EN C ES

[1] P. CZINDER AND Z. PÁLES, Hadamard-type inequality and an application for Gini and Stolarsky
means, JIPAM, 5 2 (42) (2004).

[2] P. CZINDER, A weighted Hermite-Hadamard-type inequality for convex-concave symmetric functions,
Publ. Math. Debrecen, 68 (2006), 215–224.
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