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Abstract. Boundedness of the Hardy operator (Tf )(x) =
∫ x
−∞ f (t)dt between amalgam spaces

�q(Xu) and �q(Lp
v ) is obtained, where Xu is a weighted Banach function space. The adjoint

opertor (T∗f )(x) =
∫∞
x f (t)dt has also been treated.

1. Introduction

In [3], Lebrun, Heinig and Hofmann have studied the boundedness of the Hardy
operator (Tf )(x) =

∫ x
−∞ f (t)dt in the context of weighted amalgams �q(Lp

w) . In fact
their idea was to study the corresponding inequality in terms of two standard Hardy
inequalities one in the continuous form and other in the discrete form.

In this paper, we follow their idea and consider a more general amalgam where
the weighted Lebesgue space Lp

w is replaced by a weighted Banach function space Xw ,
i.e., we consider the space �q(Xw) and characterize the boundedness of the operator
T in the framework of such spaces. We derive as a special case, the results for the
�q(Xp

w) , i.e., when the Banach function space X is taken as Xp . We also study the
corresponding boundedness for the adjoint operator (T∗f )(x) =

∫∞
x f (t)dt . Unlike

the Lp -Lq boundedness or �q(Lq) - �p(Lp) boundedness of T∗ which can be obtained
directly from the corresponding boundedness of T using duality arguments, the situation
here is different. Since the duals of the spaces involved here are not known, the duality
argument can not be applied. So, we treat this case directly.

The Lp -Lq Hardy inequality is well known in the literature. For a complete
description of such inequalities with several variants, generalizations and applications,
one may refer to [7], [8], [12], [13], and the references therein. The space Xp has been
considered and used in [11], [14] and Hardy inequalities on these spaces have recently
been studied in [5], [6]. The paper is organized as follows:

In order not to distrub our discussions later on, we give some preliminaries in
Section 2. In Section 3, we characterize the boundedness of T between the weighted
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amalgams �q(Xu) and �q(Lp
v ) in terms of two inequalities. Also, this characterization

is given in terms of the condition on weights u and v . As an example, we consider the
case when X is replaced by the space Xp . Finally, a similar study regarding the adjoint
operator T∗ is made in Section 4.

2. Preliminaries

By a weight function, we mean a function which is measurable, finite and positive
a.e. on the appropriate domain. For a weight function defined on R , we shall denote
by Lp

w , the weighted Lebesgue space which is the space of all measurable functions f
for which

‖f ‖p,w :=
(∫

R

|f (x)|pw(x)dx

) 1
p

< ∞.

We denote by �p , the sequence space which consists of all sequences ξ = {ξn}n∈Z for
which

‖ξ‖�p :=

(∑
n∈Z

|ξn|p
) 1

p

< ∞

and for a sequence weight {wn} , we denote by �p
{wn} , the weighted sequence space

which consists of all sequences ξ = {ξn}n∈Z for which

‖ξ‖�
p
{wn}

:=

(∑
n∈Z

wn|ξn|p
) 1

p

< ∞ .

For 1 � p < ∞ , both the spaces Lp
w and �p are Banach spaces.

For a weight w , we denote by Xw , the weighted normed linear space of measurable
functions with the norm defined by

‖f ‖Xw := ‖f w‖X ,

where X is the underlying non-weighted normed linear space of measurable functions.
The weighted normed linear space Xw is called a weighted Banach function space
(BFS) if in addition to the usual norm axioms, ‖f ‖Xw satisfies the following:

(1) ‖f ‖Xw = ‖|f |‖Xw for all f ∈ Xw ;
(2) 0 � f � g a.e. ⇒ ‖f ‖Xw � ‖g‖Xw ;
(3) 0 � f n ↑ f a.e. ⇒ ‖f n‖Xw ↑ ‖f ‖Xw .
(4) If E is a measurable subset of (0,∞) such that w(E) :=

∫
E w < ∞ , then

‖χE‖Xw < ∞ .
(5) For all measurable E ⊂ (0,∞) with w(E) < ∞ , there exists a constant

cE > 0 such that
∫

E f w � cE‖f ‖Xw for all f ∈ Xw .
The notion of BFS was introduced by Luxemburg [10]. These spaces enjoy the

properties as possessed by Lp -spaces and are yet far general than Lp -spaces. A BFS
satisfying properties (1)-(5) above with respect to the count measure is called a Banach
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sequence space (BSS). A good treatment of BFS can be found in [1]. The weighted
BFS have been considered in [4] where the compactness of Hardy-type operators in
such spaces has been studied.

For a BFS X and −∞ < p < ∞ , p �= 0 , we denote by Xp , the space of all
measurable functions f for which

‖f ‖Xp := ‖|f |p‖
1
p
X < ∞ .

For 1 < p < ∞ , Xp is a BFS and for X = L1 , Xp coincides with the usual Lp -
space. Such spaces have been studied in [11], [14]. Recently, in [5], [6], the authors
have obtained weight characterization of the Hardy inequalities in the framework of
Xp -spaces.

For 1 < p , q < ∞ and a weight function w the weighted amalgams �q(Lp
w)

consists of functions which are locally integrable in the weighted Lebesgue space Lp
w ,

where the integral over intervals [n, n + 1] form a sequence of the sequence space �q ,
i.e.,

‖f ‖p,w,q :=

⎧⎨
⎩
∑
n∈N

(∫ n+1

n
|f (x)|pw(x)dx

) q
p
⎫⎬
⎭

1
q

< ∞.

We consider in this paper, the weighted amalgams �q(Xw) in which the weighted
Lebesgue space Lp

w is replaced by the weighted BFS Xw . The natural norm in such a
space is defined by

‖f ‖�q(Xw) :=

(∑
n∈Z

‖f χnw‖q
X

) 1
q

.

Clearly, when X = Lp , then �q(Xw) = �q
(
Lp

w1/p

)
.

The following is the well known result giving the boundedness of the discrete
Hardy operator H(an) =

∑n
k=−∞ ak between appropriate sequence spaces.

THEOREM A. Let 1 < p, q < ∞ , un � 0 , vn > 0 , n ∈ Z and 1
r = 1

q − 1
p . Then

there exists a constant C > 0 such that

(∑
n∈Z

un

(
n∑

k=−∞
ak

)q) 1
q

� C

(∑
n∈Z

ap
nvn

) 1
p

,

holds for all non-negative sequence {ak} ∈ �q
{vn} , if and only if

(a) for 1 < p � q < ∞

sup
m∈Z

( ∞∑
n=m

un

) 1
q
(

m∑
n=−∞

v1−p′
n

) 1
p′

< ∞
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(b) for 1 < q < p < ∞⎧⎨
⎩
∑
m∈Z

( ∞∑
n=m

un

) r
q
(

m∑
n=−∞

v1−p′
n

) r
q′

v1−p′
m

⎫⎬
⎭

1
r

< ∞.

The corresponding result for the adjoint operator H∗(an) =
∞∑
k=n

ak is the following:

THEOREM B. Let 1 < p, q < ∞ , un � 0 , vn > 0 , n ∈ Z and 1
r = 1

q − 1
p . Then

there exists a constant C > 0 such that(∑
n∈Z

un

( ∞∑
k=n

ak

)q) 1
q

� C

(∑
n∈Z

ap
nvn

) 1
p

holds for all non-negative sequence {ak} ∈ �q
{vn} , if and only if

(a) for 1 < p � q < ∞

sup
m∈Z

(
m∑

n=−∞
un

) 1
q
( ∞∑

n=m

v1−p′
n

)
< ∞

(b) for 1 < q < p < ∞⎧⎨
⎩
∑
m∈Z

(
m∑

n=−∞
un

) r
q
( ∞∑

n=m

v1−p′
n

) r
q′

um

⎫⎬
⎭

1
r

< ∞ .

In Theorem A and throughout primes will denote the conjugate indices, e.g.,
p′ = p

p−1 . As usual, the symbol χ[a,b] will denote the characteristic function over the
interval [a, b] . However, for any integer, say n , χ[n,n+1] will be denoted by χn . X′

will denote the associate space of a BFS X .

3. Boundedness of the operator T

We begin with our first main result which characterizes the boundedness of the

operator T between the amalgams �q(Xu) and �q(Lp
v ) .

THEOREM 1. Let u, v be weight functions, Xu be a weighted BFS and 1 <
p, q, q < ∞ . Then the inequality

‖Tf ‖�q(Xu) � C‖f ‖p,v,q (3.1)

holds for all f ∈ �q(Lp
v ) if and only if the following inequalities hold:

(a) for all sequences {Ak} ∈ �q
{Vn}(∑

n∈Z

(
n∑

k=−∞
Ak

)q

Uq
n

) 1
q

� C

(∑
n∈Z

Aq
nVn

) 1

q

, (3.2)
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where

Ak =
∫ k

k−1
f , Un = ‖χn‖Xu and Vn =

(∫ n

n−1
v1−p′

)−q

p
′

(b) for each n ∈ Z

∥∥∥∥
(∫ x

n
f

)
χn

∥∥∥∥
Xu

� C

(∫ n+1

n
f pv

) 1

p

. (3.3)

Proof. We prove sufficiency first. Without any loss of generality, we may assume
that f � 0 since |Tf | � T|f | . We have

‖(Tf )χn‖Xu =
∥∥∥∥
(∫ n

−∞
f +

∫ x

n
f

)
χn

∥∥∥∥
Xu

�
∥∥∥∥
(∫ n

−∞
f

)
χn

∥∥∥∥
Xu

+
∥∥∥∥
(∫ x

n
f

)
χn

∥∥∥∥
Xu

=

∥∥∥∥∥
(

n∑
k=−∞

∫ k

k−1
f

)
χn

∥∥∥∥∥
Xu

+
∥∥∥∥
(∫ x

n
f

)
χn

∥∥∥∥
Xu

so that

‖Tf ‖�q(Xu) �
(∑

n∈Z

(
n∑

k=−∞

∫ k

k−1
f

)q

‖χn‖q
Xu

) 1
q

+

(∑
n∈Z

∥∥∥∥
(∫ x

n
f

)
χn

∥∥∥∥
q

Xu

) 1
q

= J1 + J2 . (3.4)

Taking Un = ‖χn‖Xu , Ak =
∫ k

k−1 f , using (3.2) and applying Hölder’s inequality, we
get

J1 =

(∑
n∈Z

(
n∑

k=−∞
Ak

)q

Un

) 1
q

� C

⎛
⎝∑

n∈Z

Aq
n

(∫ n

n−1
v1−p′

)−q

p′
⎞
⎠

1

q

= C

⎛
⎝∑

n∈Z

(∫ n

n−1
f

)q (∫ n

n−1
v1−p′

)−q

p′
⎞
⎠

1

q

� C

⎛
⎝∑

n∈Z

(∫ n

n−1
f pv

) q
p

⎞
⎠

1

q

= C‖f ‖p,v,q . (3.5)
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Also, since (3.3) holds, we find that

J2 � C‖f ‖p,v,q . (3.6)

Now, (3.4), (3.5) and (3.6) give sufficiency.
In order to prove the necessity, define for any non-negative sequence {ak} , a

function

f =
∑
k∈Z

akv
1−p′χk

so that if we write Bk = ak−1
∫ k

k−1 v1−p′ , we have for n � x < n + 1 ;

|(Tf )(x)| =
∣∣∣∣
∫ n

−∞
f +

∫ x

n
f

∣∣∣∣ �
(

n∑
k=−∞

Bk

)

which gives

‖Tf ‖�q(Xu) �
(∑

n∈Z

(
n∑

k=−∞
Bk

)q

‖χn‖q
Xu

) 1
q

and also for this f

‖f ‖p,v,q =

(∑
n∈Z

Bq
nVn

) 1

q

.

Consequently, (3.1) reduces to

⎛
⎝∑

n∈Z

(
n∑

k=−∞
Bk

) 1
q

‖χn‖q
Xu

⎞
⎠

1
q

� C

(∑
n∈Z

Bq
nVn

) 1

q

for {Bk} ∈ �q
{vn} which proves the necessity of (3.2). Finally, in order to prove the

necessity of (3.3), take for a fixed m ∈ Z , g � 0 and m � x < m + 1

f = gχm ;

so that the LHS of (3.1) can be estimated as

‖Tf ‖�q(Xu) =
∥∥∥∥
(∫ x

−∞
f

)
χm

∥∥∥∥
Xu

=
∥∥∥∥
(∫ x

m
g

)
χm

∥∥∥∥
Xu

while

‖f ‖p,v,q =

(∫ m+1

m
gpv

) 1

p
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so that (3.1) becomes

∥∥∥∥
(∫ x

m
g

)
χm

∥∥∥∥
Xu

�
(∫ m+1

m
gpv

) 1

p

for each m ∈ Z and the assertion follows. �

Berezhnoi [2] (also Lomakina and Stepanov [9, Theorem 4]) obtained a charac-
terization for the boundedness of the Hardy operator (Hf )(x) = φ(x)

∫ x
a ψ(y)f (y)dy

between BFS X and Y , where φ,ψ are weight functions.

The following was proved:

THEOREM C. Let −∞ � a < b � ∞ and X , Y be BFS satisfying the � -
condition. Then the inequality

‖Hf ‖Y � C‖f ‖X (3.7)

holds for all measurable functions f if and only if

A := sup
b>t>a

A(t) := sup
b>t>a

‖χ[t,b]φ‖Y‖χ[a,t]ψ‖X′ < ∞.

REMARK 1. In fact, Theorem C was proved for a = 0 and b = ∞ . However,
it remains valid for general a and b . This fact has also been confirmed through a
personal communication with Professor V. D. Stepanov.

REMARK 2. The “ � -condition” mentioned in Theorem C was introduced by
Berezhnoi [2] which provides an ordering in certain sense: Two BFS X and Y are
said to satisfy an � -condition, if there exists a BSS � such that X is � -concave and Y
is � -convex simultaneously. For the notions of � -concavity and � -convexity, one may
refer to [2] (see also [9]). The � -condition, for the Lp -Lq case, corresponds to the case
p � q .

Theorem 1 characterizes the inequality (3.1) in terms of two further inequalities
namely (3.2) and (3.3). Next, we provide a characterization of (3.1) in terms of the
weights u and v . This is indeed simple once we have the weight characterizations of
the inequalities (3.2) and (3.3). The corresponding characterizations for (3.2) is given

by Theorem A while for (3.3), if we take g ≡ f v
1
p , u ≡ ψ , v

−1
p ≡ φ , then (3.3)

becomes equivalent to (3.7) and its characterization can be obtained by Theorem C.
Precisely, we have proved the following:

THEOREM 2. Let 1 < p, q, q < ∞ , u, v be weight functions and Xu be a weighted
BFS. Let Xu and the Lebesgue space Lp satisfy � -condition. Then the inequality

‖Tf ‖�q(Xu) � C‖f ‖p,v,q (3.8)

holds for all f ∈ �q(Lp
v ) if and only if
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(a) for p � q

A1 := sup
m∈Z

( ∞∑
n=m

‖χnu‖q
X

) 1
q

⎛
⎜⎝ m−1∑

n=−∞

(∫ n+1

n
v1−p′

) q
′

p′
⎞
⎟⎠

1

q
′

< ∞,

A2 := sup
m∈Z

sup
m<t<m+1

(
‖χ[t,m+1]u

1
q ‖X

)(
‖χ[m,t]v

−1
p ‖Lp′

)
< ∞ .

(b) for q < q , A2 < ∞ and

A3 :=

⎛
⎜⎝∑

k∈Z

( ∞∑
n=k

‖xnu‖q
X

) β
q

×
⎛
⎝ k∑

n=−∞

(∫ n

n−1
v1−p′

) q
′

p′
⎞
⎠

β
q′ (∫ k

k−1
v1−p′

) q
′

p′

⎞
⎟⎟⎠

1
β

< ∞

where
1
β

=
1
q
− 1

q
.

REMARK 3. In Theorem 2, the spaces Xu and Lp were assumed to satisfy � -
condition. If we replace the BFS X by Xp then the � -condition for the pair of spaces
Xp

u and Lp corresponds to the case p � p . In such situation, Theorem 2 can be written

for the boundedness of T between the amalgams �q(Lp
v ) and �q(Xp

u) . We next provide
the corresponding boundedness that covers the case p � p too. For this purpose, we
need the following results from [5], [6].

THEOREM D. Let 1 < p , p < ∞ , −∞ � a < b � ∞ , u, v be weight functions
defined on (a, b) . Then the inequality

∥∥∥∥
(∫ x

a
f

)
u

1
p

∥∥∥∥
Xp

� C

(∫ b

a
f pv

) 1

p

holds for all measurable functions f � 0 , if and only if
(a) for p � p

sup
a<t<b

‖χ[t,b]u
1

p ‖
Xp

(∫ t

a
v1−p′

) 1
p′

< ∞ (3.9)

(b) for p > p(∫ b

a

(
‖χ[t,b]u

1

p ‖
Xp

)α (∫ x

a
v1−p′

) α
q′

v1−p′(x)dx

) 1
α

< ∞,

where
1
α

=
1
p
− 1

p
.
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REMARK 4. In [5], it was proved that (3.9) is equivalent to the following condition,
which was, in fact, proved in [5] for a = 0 , b = ∞

sup
a<t<b

V
(s−1)

p
1 (t)‖V

(p−s)
p

1 u
1

p χ[t,b]‖Xp < ∞,

where V1(t) =
∫ t

a v1−p′ and s ∈ (1, p) .

Now, in view of Theorems 2 and D, the boundedness of the operator T between

the amalgams �q(Xp
u) and �q(Lp

v ) can be obtained immediately. The following is the
result:

THEOREM 3. Let 1 < p, q, p, q < ∞ and u, v be weight functions. Then the
inequality

‖Tf ‖�q(Xp
u) � C‖f ‖p,v,q

holds for all f ∈ �q(Lp
v ) if and only if

(a) for p � p , q � q

B1 := sup
m∈Z

( ∞∑
n=m

‖χnu
1
p ‖q

Xp

) 1
q

⎛
⎜⎝ m−1∑

n=−∞

(∫ n+1

n
v1−p′

) q′
p′
⎞
⎟⎠

1

q
′

< ∞,

B2 := sup
m∈Z

sup
m<t<m+1

(
‖χ[t,m+1]u

1
p ‖Xp

)(∫ t

m
v1−p′

) 1

p′
< ∞ .

(b) for p < p , q � q ; B1 < ∞ and

B3 :=

(∫ n+1

n
‖χ[t,n+1]u

1
p ‖αXp

(∫ t

n
v1−p′

) α
p
′
v1−p′(t)dt

) 1
α

< ∞,

where
1
α

=
1
p
− 1

p
.

(c) for q < q , p � p ; B2 < ∞ and

B4 :=

⎛
⎜⎝∑

k∈Z

( ∞∑
n=k

‖xnu
1
p ‖q

Xp

) β
q

×
⎛
⎝ k∑

n=−∞

(∫ n

n−1
v1−p′

) q′
p′
⎞
⎠

β
q′ (∫ k

k−1
v1−p′

) q′
p
′

⎞
⎟⎟⎠

1
β

< ∞

where
1
β

=
1
q
− 1

q
.

(d) for q < q , p � p

B1 < ∞ and B3 < ∞ .
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REMARK 5. Theorem 3 extends a result of Carton-Lebrun, Heinig and Hofmann
[9] who proved it for X = L1 .

4. Boundedness of the operator T∗

This section is devoted to the boundedness of the adjoint operator (T∗f )(x) =∫∞
x f (t)dt between �q(Xu) and �q(Lp

v ) . It is known that the dual of �q(Lp
v ) is the space

�q
′
(Lp′

v1−p′ ) . However, no concrete structure to the dual of �q(Xu) is known. Therefore

the usual practice of deriving the boundedness of T∗ by duality argument is ruled out
here. So, we treat this case directly. However, the result is obtained on similar lines as
that in Theorem 1. Precisely, we prove the following:

THEOREM 4. Let u, v be weight functions, Xu be a weighted BFS and 1 <
p, q, q < ∞ . Then the inequality

‖T∗f ‖�q(Xu) � C‖f ‖p,v,q (4.1)

holds for all f ∈ �q(Lp
v ) if and only if the following inequalities hold:

(a) for all sequence {Ak} ∈ �q
{Ṽn}

(∑
n∈Z

( ∞∑
k=n

Ãk

)q

Uq
n

) 1
q

� C

(∑
n∈Z

Ãq
nṼn

) 1

q

, (4.2)

where

Ãn =
∫ n+1

n
f , Un = ‖χn‖Xu and Ṽn =

(∫ n+1

n
v1−p′

)−q

p′

(b) for each n ∈ Z

∥∥∥∥∥
(∫ n+1

x
f

)
χn

∥∥∥∥∥
Xu

� C

(∫ n+1

n
f pv

) 1

p

. (4.3)

Proof. We prove sufficiency first. Without any loss of generality, we may assume
that |T∗f | � T∗|f | . We have

‖(T∗f )χn‖ =

∥∥∥∥∥
(∫ n+1

x
f +

∫ ∞

n+1
f

)
χn

∥∥∥∥∥
Xu

�
∥∥∥∥∥
(∫ n+1

x
f

)
χn

∥∥∥∥∥
Xu

+

∥∥∥∥∥
( ∞∑

k=n+1

∫ k+1

k

)
χn

∥∥∥∥∥
Xu

.
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So that

‖T∗f ‖�q(Xu) �
(∑

n∈Z

∥∥∥∥∥
(∫ n+1

x
f

)
χn

∥∥∥∥∥
q

Xu

) 1
q

+

(∑
n∈Z

( ∞∑
k=n+1

∫ k+1

k
f

)q

‖χn‖q
Xu

) 1
q

= J∗1 + J∗2 . (4.4)

Since (4.3) holds, we find,

J∗1 � C‖f ‖p,v,q . (4.5)

Taking Un = ‖χn‖Xu , Ãk =
∫ k+1

k f , using (4.2) and applying analogous procedure as
done in Theorem 1, we get

J∗2 =

(∑
n∈Z

( ∞∑
k=n+1

Ãk

)q

Uq
n

) 1
q

� C

(∑
n∈Z

Ã
1

q
n Ṽn

) 1

q

� C‖f ‖p,v,q . (4.6)

Sufficiency now follows from (4.4), (4.5) and (4.6).
In order to prove the necessity, define for any non-negative sequence {an} , a

function

f =
∑
k∈Z

akv
1−p′χk

so that if we write B̃k =
(
ak
∫ k+1

k v1−p′
)

, we have for n � x < n + 1 ;

|(T∗f )(x)| =
∣∣∣∣
∫ n

x
f +

∫ ∞

n
f

∣∣∣∣ �
( ∞∑

k=n

B̃k

)

which gives

‖T∗f ‖�q(Xu) �
(∑

n∈Z

(∑
k=n

B̃k

)q

‖χn‖q
Xu

) 1
q

and also for this f

‖f ‖p,v,q =

(∑
n∈Z

B̃q
nṼn

) 1

q

.

Consequently, (4.1) becomes(∑
n∈Z

( ∞∑
k=n

B̃k

)q

‖χn‖q
Xu

) 1
q

� C

(∑
n∈Z

B̃q
nṼn

) 1

q
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for {B̃k} ∈ �q
{Ṽn} which proves the necessity of (4.2). Finally, in order to prove the

necessity of (4.3), take for a fixed m ∈ Z , g � 0 and m < x � m + 1

f = gχm ;

so that the LHS of (4.1) can be estimated as

‖T∗f ‖�q(Xu) =
∥∥∥∥
(∫ ∞

x
f

)
χm

∥∥∥∥
Xu

�
∥∥∥∥∥
(∫ m+1

x
g

)
χm

∥∥∥∥∥
Xu

while

‖f ‖p,v,q =

(∫ m+1

m
gpv

) 1

p

and (4.1) becomes

∥∥∥∥∥
(∫ m+1

x
g

)
χm

∥∥∥∥∥
Xu

� C

(∫ m+1

m
gpv

) 1

p

for each m ∈ Z and the assertion follows. �

REMARK 6. Naturally, one may expect a result corresponding to Theorem 2, i.e.,
precise weight conditions for the inequality (4.1) to hold. This involves precise weight
conditions for the inequality (4.3) which, unfortunately, are not yet known. However,
for the special case when X is taken as the space Xp , these conditions have been
obtained in [5], [6]. Using these conditions, we can obtain the result corresponding to
Theorem 3. This result reads:

THEOREM 5. Let 1 < p, q, p, q < ∞ and u , v be weight functions. Then the
inequality

|T∗f |�q(Xp
u) � C‖f ‖p,vq

holds for all f ∈ �q(Lp
v ) if and only if

(a) for p � p and q � q

C∗
1 := sup

m∈Z

{
m−1∑

n=−∞
‖χnu

1
p ‖q

Xp

} 1
q

⎧⎪⎨
⎪⎩

∞∑
n=m

(∫ n+1

n
v1−p

′
) q′

p′
⎫⎪⎬
⎪⎭

1

q′

< ∞

and

C∗
2 := sup

m∈Z

sup
m<t<m+1

(
‖χ[m,t]u

1
p ‖Xp

)(∫ m+1

t
v1−p′

) 1

p′
< ∞
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(b) for q < q and p � p ; C∗
2 < ∞ and

C∗
3 :=

⎧⎪⎨
⎪⎩
∑
k∈Z

[
k∑

n=−∞
‖χnu

1
p ‖q

Xp

] β
q

×
⎡
⎣ ∞∑

n=k

(∫ n

n−1
v1−p′

) q′
p′
⎤
⎦

β
q′

‖χku
1
p ‖q

Xp

⎫⎪⎪⎬
⎪⎪⎭

1
β

< ∞

where
1
β

=
1
q
− 1

q
.

(c) for q < q and p � p ; C∗
3 < ∞ and

C∗
4 :=

⎛
⎝∫ n+1

n
‖χ[n,t]u

1
p ‖αXp

(∫ n+1

t
v1−p

′
) α

p′
‖χ[n,t]u

1
p ‖Xp

⎞
⎠

1
α

< ∞

where
1
α

=
1
p
− 1

p
.

(d) for q < q and p � p

C∗
1 < ∞ and C∗

4 < ∞ .

REMARK 7. Theorem 5 extends a result of Carton-Lebrun, Heining and Hofmann
[3] who proved it for X = L1 .

REMARK 8. In this paper, one of the amalgam spaces has been �q(Lp
v ) . It is of

interest if this space is taken also as a more general space such as �q(Xp
v ) or even

�p(Yv) , Xv , Yv being weighted BFS different from Xu . In this direction, one needs to
extend Theorems D and E to Xp -Xq boundedness of the operators T and T∗ .
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