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LOWER AND UPPER ESTIMATES OF NUMERICAL SUMS

L. LEINDLER

(Communicated by N. Elezović)

Abstract. Some useful inequalities pertaining to lower and upper estimates of numerical series
are improved. Moreover necessary and sufficient conditions are given that certain estimates be
valid. Finally an application of the new inequalities is presented.

1. Introduction

One of the aims of the present paper is to extend some useful inequalities pertain-
ing to numerical sums.

In [2] (Lemma) we proved that for any positive sequence � := {γn} the inequali-
ties

Hm :=
m

∑
n=1

γn � Kγm, (1.1)

or

Tm :=
∞

∑
n=m

γn � Kγm (1.2)

hold if and only if the sequence � is a quasi geometrically increasing or decreasing,
respectively.

A sequence � of positive terms is quasi geometrically increasing (decreasing) if
there exist a natural number μ and a constant K = K(�) � 1 such that

γn+μ � 2γn and γn � Kγn+1

(
γn+μ �

1

2
γn and γn+1 � Kγn

)

hold for all natural numbers n .
Hereafter K, Ki, K(.) will designate either an absolute constant, or a constant

depending on the indicated parameters, not necessarily the same at each occurrence.
The letters H and T refer to the initials of the words “Heads and Tails of the

sums”.
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In [4] (Lemma 4), we verified that (1.1) and (1.2) imply that there exists a small
positive ε such that

m

∑
n=1

γn2−nε � Kγm2−mε (1.3)

and
∞

∑
n=m

γn2nε � Kγm2mε (1.4)

also hold, respectively.
It is clear that (1.1) with γn = qncn, q > 1 and cn > 0; and (1.2) with γn =

qncn, 0 < q < 1, imply that

m

∑
n=1

qncn2
−nε � Kqmcm2−mε , (1.5)

and
∞

∑
n=m

qncn2nε � Kqmcm2mε (1.6)

also hold.
Newly we encountered a similar phenomenon at the class AMp of weight functions

(see e.g. the new attractive book of A. Kufner, L. Maligranda and L. E. Persson [1],
Lemma 2(a) on p. 94), where it is proved that if w ∈ AMp , then w ∈ AMp−ε for some
ε > 0 also holds.

The definition of AMp is the following: w ∈ AMp if

∞∫
y

t−pw(t)dt � Ky−p

y∫
0

w(t)dt for all y > 0. (1.7)

This fact brought my inspiration into action to extend the inequalities (1.5) and
(1.6) such that our new inequalities are going to imply the statement w ∈ AMp =⇒ w ∈
AMp−ε , too.

We shall sharpen some further inequalities likewise.

2. Theorems

First we extend the inequalities (1.5) and (1.6)

THEOREM 1. The inequalities

m

∑
n=0

qncn � Kqm
∞

∑
n=m

cn, q > 1, m = 1,2, . . . (2.1)

imply
m

∑
n=0

qn2−nεcn � K(ε)qm2−mε
∞

∑
n=m

cn (2.2)
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for some ε > 0 ; furthermore

∞

∑
n=m

qncn � Kqm
m

∑
n=0

cn, 0 < q < 1, m = 1,2, . . . (2.3)

imply
∞

∑
n=m

qncn2
nε � K(ε)qm2mε

m

∑
n=0

cn. (2.4)

Before recalling two further useful inequalities, we present two definitions.
A sequence � := {γn} of positive terms is quasi β -power-monotone increasing

(decreasing) if there exists a constant K = K(β ,�) � 1 such that

Knβ γn � mβ γm (nβ γn � Kmβ γm)

holds for any n � m .
These sequences have very strong connection with the quasi geometrically increas-

ing and decreasing sequences. See e.g. in [4] Corollary 1.
A sequence � is called bounded by blocks if the inequalities

K1 min(γ2k ,γ2k+1) � γn � K2 max(γ2k ,γ2k+1) 0 < K1 � K2 < ∞

hold for any 2k � n � 2k+1, k = 1,2, . . . .
In [4] (Corollary 2) we proved the following result:
A positive sequence � bounded by blocks is quasi β -power-monotone increasing

(decreasing) with a certain negative (positive) exponent β if and only if the inequalities

H̃m :=
m

∑
n=1

γnn−1 � Kγm
(

T̃m :=
∞

∑
n=m

γnn−1 � Kγm
)

(2.5)

hold for all natural number m, respectively.
Next we improve the inequalities (2.5) as (1.1) and (1.2) were extended by (1.3)

and (1.4), respectively.

THEOREM 2. If a positive sequence � satisfies (2.5), then there exists a positive
ε such that

m

∑
n=1

γnn−1−ε � K(ε)γmm−ε , (2.6)

and
∞

∑
n=m

γnn−1+ε � K(ε)γmmε (2.7)

hold, respectively.

Recently we have tried to prove the dual of (2.5), that is, to give necessary and
sufficient conditions pertaining to � such that

γm � KH̃m and γm � KT̃m (2.8)
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should hold; but we could solve this problem only if the estimates

K1γm � H̃m � K2γm and K1γm � T̃m � K2γm

hold simultaneously. (See [3], Theorem 2.1.)
Now we give necessary and sufficient conditions for (2.8), but our conditions per-

taining to the sums H̃m and T̃m . Finally, with H̃m and T̃m , we give necessary and
sufficient conditions for the inequalities (2.5), too.

These assertions are collected in the following theorem.

THEOREM 3. (i) The inequalities (2.8) hold if and only if there exists a positive β
such that the sequence {n−β H̃m} is nonincreasing ({nβ T̃m} is nondecreasing) for all
sufficiently large n.

(ii) The inequalities (2.5) hold if and only if for some β > 0 {n−β H̃m} is nonde-
creasing ({nβ T̃n} is nonincreasing) for all sufficiently large n.

The lower estimates given in (2.8) show a further strange feature. Namely we have
intended to improve the inequalities (2.8) as we did it in the case of the upper estimates
by (2.6) and (2.7), but our attempt was aborted. Finally we have constructed a sim-
ple counterexample; this clearly proves that the generalization intended is impossible
universally. Now we present a sequence � which fulfills the inequalities (2.8), but the
stricter inequalities

γmmε � K
m

∑
n=1

γnn−1+ε and γmm−ε � K
∞

∑
n=m

γnn−1−ε (2.9)

do not hold for all m at any ε > 0. We do believe that everyone can easily check our
assertions if the sequence � is defined as follows:

γn :=
{

logn, if n �= 2k,

log2 n, if n = 2k,
k = 1,2, . . . .

Naturally the inequalities (2.9) fail at m = 2k.

3. Proofs

Proof of Theorem 1. First we verify the implication (2.1)=⇒(2.2). For the time
being let ε be a small positive number satisfying the condition 2ε < q . Furthermore let
E := (2−εq−1)−1 and V := (1−2−ε)−1.

By (2.1) we have that

n

∑
m=0

2−mε
m

∑
k=0

qkck � K
n

∑
m=0

2−mεqm
∞

∑
k=m

ck.

Now, changing the order of summation in both sides, we get that

n

∑
k=0

qkck

n

∑
m=k

2−mε � K

{
n

∑
k=0

ck

k

∑
m=0

2−mεqm +
∞

∑
k=n+1

ck

n

∑
m=0

2−mεqm

}
.
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Hence we obtain that

V
n

∑
k=0

qkck(2−kε −2−(n+1)ε)

� KE

{
n

∑
k=0

ck(2−(k+1)εqk+1−1)+
∞

∑
k=n+1

ck(2−(n+1)εqn+1−1)

}
,

thus

(V −KE2−εq)
n

∑
k=0

qkck2
−kε � V2−(n+1)ε

n

∑
k=0

qkck +KEq2−ε2−nεqn
∞

∑
k=n

ck −KE
∞

∑
k=0

ck.

Applying again (2.1) we arrive at the inequalities

(V −KE2−εq)
n

∑
k=0

qkck2
−kε � (VK2−ε +KEq2−ε)2−nεqn

∞

∑
k=n

ck −KE
∞

∑
k=0

ck. (3.1)

Finally letting ε → 0, it is easy to see that V → ∞ , whence, by virtue of (3.1) we see
that if ε is small enough, then (2.2) holds with some constant K(ε) .

A similar method can be used to prove the implication (2.3)=⇒(2.4). Now let
E1 := 2ε/(2ε −1) and V1 := 1/(1−q2ε) assuming that q2ε < 1.

Then (2.3) yields

∞

∑
n=m

2nε
∞

∑
k=n

qkck � K
∞

∑
n=m

2nεqn
n

∑
k=0

ck.

Changing the order of summations we obtain that

∞

∑
k=m

qkck

k

∑
n=m

2nε � K

{
m

∑
k=0

ck

∞

∑
n=m

2nεqn +
∞

∑
k=m+1

ck

∞

∑
n=k

2nεqn

}
.

Consequently

E1

∞

∑
k=m

qkck(2kε −2mε) � K

{
m

∑
k=0

ckV12
mεqm +

∞

∑
k=m+1

ckV12
kεqk

}
,

whence, using again (2.3), we get

(E1 −KV1)
∞

∑
k=m

qkck2
kε � E1K2mεqm

m

∑
k=0

ck +KV1q
m2mε

m

∑
k=0

ck.

Since E1 → ∞ if ε → 0, thus the inequality above clearly conveys (2.4).
The proof is complete. �

Proof of Theorem 2. The proof is carried out analogously to the proof of Theorem
1. Let ε be again a small positive number satisfying the condition Kε < 1, where K
denotes the constant given in (2.5).
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Then, by (2.5),
m

∑
n=1

n−ε−1
n

∑
k=1

γkk−1 � K
m

∑
n=1

n−ε−1γn (3.2)

and
m

∑
k=1

γkk−1
m

∑
n=k

n−ε−1 �
1

ε

m

∑
k=1

γkk−1(k−ε −m−ε)

=
1

ε

m

∑
k=1

γkk−1−ε − m−ε

ε

m

∑
k=1

γkk−1,

(3.3)

thus, by (2.5), (3.2) and (3.3) we get that(
1

ε
−K

)
m

∑
k=1

γkk−1−ε �
m−ε

ε

m

∑
k=1

γkk−1 �
K

ε
m−εγm,

whence (2.6) plainly follows.
The proof of (2.7) runs analogously with the change that we start as follows:

∞

∑
n=m

nε−1
∞

∑
k=n

γkk−1 � K
∞

∑
n=m

nε−1γn,

and we change the order of summation on the left-hand side.
Omitting the details, the theorem is proved. �

Proof of Theorem 3. First we prove that if

γm � KH̃m (3.4)

holds, then there exists a β > 0 such that the sequence {n−β H̃n} is nonincreasing.
Namely (3.4) implies that

γm+1 � NH̃m+1 = N

(
H̃m +

γm+1

m+1

)
, (3.5)

where N(� K) is an integer. By (3.5)

γm+1

(
1− N

m+1

)
� NH̃m

and

γm+1 � NH̃m
m+1

m+1−N
.

This and (3.5) yield

H̃m+1 � H̃m

(
1+

N

m+1−N

)
= H̃m

m+1

m+1−N
.
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Hence
H̃m+1

(m+1)β
�

H̃m

(m+1)β
m+1

m+1−N
�

H̃m

mβ

holds if

m+1

m+1−N
�
(

m+1

m

)β

(3.6)

is satisfied. But an elementary consideration, using e.g. Bernoulli inequality, shows
that (3.6) holds if β = 2N and m � 3N.

Similarly if

γm � NT̃m = N

(
γm
m

+ T̃m+1

)
,

then

γm � NT̃m+1
m

m−N
,

whence

T̃m � T̃m+1
m

m−N

holds. Thus it suffices to show that

mβ T̃m � mβ T̃m+1
m

m−N
� T̃m+1(m+1)β (3.7)

uphold. As before, an easy calculation shows that if β = 2N and m � 2N , then (3.7)
maintains.

Herewith the necessary part of the statement (i) is verified.
The proof of the sufficience of (i) is shorter. Namely if {H̃mm−β} is nonincreasing

then
γm
m

= H̃m − H̃m−1 = mβ H̃mm−β − (m−1)β H̃m−1(m−1)−β

� H̃mm−β (mβ − (m−1)β) � KH̃mm−1.

(3.8)

Analogously, if {T̃mmβ} is nondecreasing, then

γm
m

= T̃m − T̃m+1 � mβ T̃m(m−β − (m+1)−β) � KT̃mm−1. (3.9)

The statement (i) is proved.
The statements (ii) can be proved by similar arguments.
If

H̃m � Kγm � Nγm,
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then

γm �
H̃m

N
=

H̃m−1

N
+

γm
Nm

, (3.10)

thus

γm � H̃m−1
m

Nm−1
,

whence, by (3.10),

H̃m � H̃m−1
Nm

Nm−1
, (3.11)

furthermore, by (3.11),
m−β H̃m � H̃m−1(m−1)−β (3.12)

holds if β = (N +1)−1 and m � N.
If

T̃m � Nγm,

then, by

γm �
T̃m

N
=

γm
Nm

+
T̃m+1

N

we arrive to

T̃m � T̃m+1
Nm

Nm−1
,

and hence
mβ T̃m � (m+1)β T̃m+1 (3.13)

follows if β = N−1 and m � 2.
If (3.12) and (3.13) hold, then in the estimates (3.8) and (3.9) the inequality signs

“�” turn to “�”, herewith the sufficiency of (3.12) and (3.13) in the case of estimates
(2.5) is also proved.

The proof of Theorem 3 is complete. �

4. Application

Finally we present an application of the second part of Theorem 1, that is, we show
that the implication (2.3)=⇒(2.4) with

q := 2−p, p > 0 and c0 := x−p

x∫
0

w(t)dt, cn := x−p

2nx∫
2n−1x

w(t)dt, n � 1; (4.1)

proves that if w ∈ AMp then w ∈ AMp−ε also holds for some ε > 0.
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Namely if w ∈ AMp , then by (1.7), assuming that y := 2mx, x > 0, m = 0,1, . . .
and 0 < p < ∞ , we obtain that

I :=
∞∫

2mx

t−pw(t)dt � K(2mx)−p

2mx∫
0

w(t)dt. (4.2)

Since

I =
∞

∑
n=m+1

2nx∫
2n−1x

t−pw(t)dt �
∞

∑
n=m+1

2−pnx−p

2nx∫
2n−1x

w(t)dt, (4.3)

thus, (4.1), (4.2) and (4.3) imply that

∞

∑
n=m+1

2−pncn � K2−pmx−p

2mx∫
0

w(t)dt = K2−mp
m

∑
n=0

cn. (4.4)

By (4.4) it is clear that then (2.3) also holds, e.g. with 2K in place of K . Consequently
we can utilize the implication (2.3)=⇒(2.4), and this conveys the inequality

∞

∑
n=m+1

2n(ε−p)cn � K(ε)2m(ε−p)
m

∑
n=0

cn. (4.5)

Multiplying both sides of (4.5) by xε and substituting the definitions of cn , we get that

∞

∑
n=m+1

2n(ε−p)xε−p

2nx∫
2n−1x

w(t)dt � K(ε)2m(ε−p)

⎧⎨⎩xε−p

⎛⎝ x∫
0

w(t)dt +
m

∑
n=1

2nx∫
2n−1x

w(t)dt

⎞⎠
⎫⎬⎭ ,

that is,

2(ε−p)
∞∫

2mx

tε−pw(t)dt � K(ε)(2mx)ε−p

2mx∫
0

w(t)dt,

and this inequality means that w ∈ AMp−ε , as stated.
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