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Abstract. General closed 4-point quadrature formulae where the integral over [0,1] is approxi-
mated with the values of the function in points: 0,x,1− x and 1 are derived. As special cases,
Simpson’s formula, Simpson’s 3/8 formula and the Gauss 2-point formula are recaptured. Next,
general corrected closed 4-point quadrature formulae are derived, and the Lobatto 4-point, cor-
rected Simpson’s, corrected Simpson’s 3/8 formula and the corrected Gauss 2-point formula are
obtained as special cases. We call ”corrected” such quadrature formulae where the integral is
approximated not only with the values of the integrand at certain points but with the values of its
first derivative at the end points of the interval as well.

1. Introduction

The aim of this paper is to derive closed 4-point quadrature formulae using the
extended Euler identities. First, we derive general closed quadrature formulae where
the integral over [0,1] is approximated by values of the function at points: 0, x, 1− x
and 1. As special cases, Simpson’s formula, Simpson’s 3/8 formula and the Gauss
2-point formula are recaptured.

Next, general corrected closed 4-point quadrature formulae are derived. We call
”corrected” such quadrature formulae where the integral is approximated not only with
the values of the integrand at certain points but with the values of its first derivative
at the end points of the interval as well. Corrected formulae have a degree of exact-
ness higher than the adjoint original formulae (see [13], [11]). The Lobatto 4-point,
corrected Simpson’s, corrected Simpson’s 3/8 formula and the corrected Gauss 2-point
formula are obtained as special cases.

The main tool used are the extended Euler formulae, obtained in [3]: for f :
[a,b] → R such that f (n−1) is continuous of bounded variation on [a,b] , for some
n � 1, for every x ∈ [a,b] we have

1
b−a

∫ b

a
f (t)dt = f (x)−Tn(x)+

(b−a)n−1

n!

∫ b

a
B∗

n

(
x− t
b−a

)
d f (n−1)(t) (1.1)

1
b−a

∫ b

a
f (t)dt = f (x)−Tn−1(x) (1.2)

+
(b−a)n−1

n!

∫ b

a

[
B∗

n

(
x− t
b−a

)
−Bn

(
x−a
b−a

)]
d f (n−1)(t)
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where T0(x) = 0 and for 1 � m � n

Tm(x) =
m

∑
k=1

(b−a)k−1

k!
Bk

(
x−a
b−a

)[
f (k−1)(b)− f (k−1)(a)

]
.

where Bk(t) is the k -th Bernoulli polynomial and B∗
k(t) = Bk(t − �t�), t ∈ R . Re-

call that Bernoulli numbers are defined by Bk = Bk(0), k � 0. For further details on
Bernoulli polynomials see [1] and [10].

2. On General Closed 4-Point Quadrature Formulae

Let x ∈ (0,1/2] and f : [0,1] → R be such that f (2n+1) is continuous of bounded
variation on [0,1] for some n � 0. Put x ≡ 0, x, 1− x and 1 in (1.2), multiply by
1/2−A(x), A(x), A(x), 1/2−A(x), respectively and add. The following formula is
obtained:∫ 1

0
f (t)dt − (1/2−A(x))[ f (0)+ f (1)]−A(x)[ f (x)+ f (1− x)]+ T̃2n(x)

=
1

(2n+2)!

∫ 1

0
F̃2n+2(x,t)d f (2n+1)(t), (2.1)

where, for t ∈ R ,

T̃2n(x) =
2n

∑
k=2

1
k!

G̃k(x,0) [ f (k−1)(1)− f (k−1)(0)],

G̃k(x, t) = [1−2A(x)]B∗
k (1− t)+A(x) [B∗

k (x− t)+B∗
k (1− x− t)] , k � 1 (2.2)

F̃k(x, t) = G̃k(x, t)− G̃k(x,0), k � 2.

It is easy to verify that

G̃k(x,1− t) = (−1)kG̃k(x,t) for 0 � t � 1

and
∂ G̃k(x,t)

∂ t
= −kG̃k−1(x, t).

Further, notice that G̃2k−1(x,0) = 0 for k � 2 and this is not affected with any choice
of the coefficient A(x) . On the other hand, in general, G̃2k(x,0) �= 0. To obtain the
closed 4-point quadrature formulae with the highest possible degree of exactness, it is
clear from (2.1) that we have to impose the following condition: G̃2(x,0) = 0. This
condition produces:

A2(x) := A(x) = − B2

2(B2(x)−B2)
=

1
12x(1− x)

. (2.3)

This is the coefficient we will work with in this section. Formula (2.1) now becomes:∫ 1

0
f (t)dt−Q(0,x,1− x,1)+T2n(x) =

1
(2n+2)!

∫ 1

0
F2n+2(x,t)d f (2n+1)(t) (2.4)
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where

Q(0,x,1− x,1) =
1

12x(1− x)
[−6B2(x) f (0)+ f (x)+ f (1− x)−6B2(x) f (1)] ,

T2n(x) =
n

∑
k=2

1
(2k)!

G2k(x,0) [ f (2k−1)(1)− f (2k−1)(0)],

Gk(x, t) =
1

12x(1− x)
[B∗

k (x− t)−12B2(x) ·B∗
k (1− t)+B∗

k (1− x− t)] ,

Fk(x, t) = Gk(x, t)−Gk(x,0), k � 2 .

Changing the assumptions on function f , we can obtain two more identities where
the remainder of the quadrature formula on the left-hand side of (2.4) is expressed
differently. Namely, assuming f (2n−1) is continuous of bounded variation on [0,1] for
some n � 1, from (1.1) we get:∫ 1

0
f (t)dt −Q(0,x,1− x,1)+T2n(x) =

1
(2n)!

∫ 1

0
G2n(x,t)d f (2n−1)(t), (2.5)

and assuming f (2n) is continuous of bounded variation on [0,1] for some n � 0, from
(1.1) (or (1.2)) we get:∫ 1

0
f (t)dt−Q(0,x,1− x,1)+T2n(x) =

1
(2n+1)!

∫ 1

0
G2n+1(x,t)d f (2n)(t). (2.6)

If we assumed G̃2k(x,0) = 0 for some k � 2, it would increase the exactness but
the quadrature formula thus produced would include values of up to (2k−3)-th order
derivatives at end points of the interval. In cases when those values are easy to calculate,
this is not an obstacle, especially when f (k)(1) = f (k)(0) for k � 1. This will be the
topic of the next section.

The following lemma is the key step for obtaining sharp estimates of error for this
type of quadrature formulae.

LEMMA 1. For x ∈ (0, 1
2 −

√
3

6 ]∪ [ 1
3 , 1

2 ] and k � 1 , G2k+1(x,t) has no zeros in
variable t in the interval (0,1/2) . The sign of this function is determined by:

(−1)kG2k+1(x,t) > 0 for x ∈ (0,1/2−
√

3/6],
(−1)k+1G2k+1(x,t) > 0 for x ∈ [1/3,1/2].

Proof. Observe G3(x,t) . For 0 � t � x, it takes the form:

G3(x,t) = −t2
(

t +
3B2(x)

2x(1− x)

)
.

Its only zero, except 0, is t1 = 3B2(x)
2x(x−1) . It is easy to see that 0 < t1 � x iff x ∈ ( 1

2 −√
3

6 ,1−
√

2
2 ] . Further, for x � t � 1/2, function G3(x, t) takes the form:

G3(x,t) = −t3 +
3t2

2
− t

2(1− x)
+

x
4(1− x)

.
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Here it has 3 zeros:

t =
1
2
, t2 =

1
2
−

√
3x2−4x+1
2(1− x)

, t3 =
1
2

+

√
3x2−4x+1
2(1− x)

.

It only needs to be checked if t2 is a zero for x∈ (0,1/3) since t2,t3 ∈R iff x∈ (0,1/3]
and it is obvious that t3 � 1/2. That t2 < 1/2 is trivial and it is easy to see that t2 � x

iff x ∈ [1−
√

2
2 , 1

3 ) . Therefore, our statement is valid for k = 1. Assuming the opposite,
the statement for k � 2 follows by induction.

It is elementary to determine the sign of G3(x,t) since we know its form. From
there we can conclude whether G5(x,t) is convex or concave on (0,1/2) and as it has
no zeros there, that is enough to determine its sign. By this procedure we can determine
the sign of G2k+1(x, t) for k � 3 which completes the proof.

REMARK 1. From Lemma 1 it follows immediately that for k � 1 and x∈ (0,1/2−√
3/6] , function (−1)k+1F2k+2(x,t) is strictly increasing in variable t on (0,1/2) and

strictly decreasing on (1/2,1) . Since F2k+2(x,0) = F2k+2(x,1) = 0, it has constant
sign on (0,1) and obtains its maximum at t = 1/2. Analogous statement, but with the
opposite sign, is valid in the case when x ∈ [1/3,1/2] .

THEOREM 1. Let f : [0,1] → R be such that f (2n+2) is continuous and has con-

stant sign on [0,1] for some n � 1 and let x ∈ (0, 1
2 −

√
3

6 ]∪ [ 1
3 , 1

2 ] . Then there exists a
point θ ∈ [0,1] such that

R2n+2(x, f ) =
θ

(2n+2)!
·F2n+2

(
x,

1
2

)
·
[
f (2n+1)(1)− f (2n+1)(0)

]
(2.7)

where R2n+2(x, f ) denotes the right-hand side of (2.4) and

F2n+2 (x,1/2) =
1

6x(1− x)
[
B2n+2 (1/2− x)−B2n+2(x)+

(
2−2−2n−1)B2n+2

]
− (2−2−2n−1)B2n+2. (2.8)

Proof. Let x ∈ (0, 1
2 −

√
3

6 ] and suppose f (2n+2)(t) � 0 on [0,1] . Then we have

0 �
∫ 1

0
(−1)n+1F2n+2 (x,t) f (2n+2)(t)dt � (−1)n+1F2n+2 (x,1/2) ·

∫ 1

0
f (2n+2)(t)dt,

which means there exists θ ∈ [0,1] such that

(2n+2)! ·R2n+2(x, f ) = θ ·F2n+2 (x,1/2)
[
f (2n+1)(1)− f (2n+1)(0)

]
.

When x ∈ [ 1
3 , 1

2 ] or f (2n+2)(t) � 0 the statement follows similarly.
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THEOREM 2. If f : [0,1] → R is such that f (2n+2) is continuous on [0,1] for

some n � 1 and x ∈ (0, 1
2 −

√
3

6 ]∪ [ 1
3 , 1

2 ] , then there exists a point ξ ∈ [0,1] such that

R2n+2(x, f ) = −G2n+2(x,0)
(2n+2)!

· f (2n+2)(ξ ). (2.9)

where R2n+2(x, f ) denotes the right-hand side of (2.4) and

G2n+2(x,0) =
1

6x(1− x)
[B2n+2(x)−B2n+2]+B2n+2. (2.10)

Proof. From Remark 1 we know that function F2n+2(x, t) has constant sign under
these conditions, so the claim follows from the mean value theorem for integrals.

When we apply (2.9) to the remainder in formula (2.4) for n = 1, we obtain:
∫ 1

0
f (t)dt −Q(0,x,1− x,1) =

1
720

(5x2−5x+1) · f (4)(ξ ). (2.11)

For x = 1/3, this formula becomes the classical Simpson’s 3/8 formula, for x = 1/2
it becomes the well-known Simpson’s formula, and finally for x = 1/2−√

3/6 ⇔
A2(x) = 1/2 it becomes the classical Gauss 2-point formula (stated on [0,1]). These
three formulae were studied and generalized using a similar technique as in this paper
in [4], [5] and [6], respectively. Of course, all related results from those papers follow
as special cases of our results.

REMARK 2. Although only x ∈ (0,1/2] were taken into consideration here, re-
sults for x = 0 can easily be obtained by considering the limit process when x tends to
0. Namely,

lim
x→0

Q(0,x,1− x,1) =
1
2
[ f (0)+ f (1)]− 1

12
[ f ′(1)− f ′(0)]

lim
x→0

Gk(x,t) = B∗
k(1− t)

Consequently, from (2.11) it follows:
∫ 1

0
f (t)dt− 1

2
[ f (0)+ f (1)]+

1
12

[ f ′(1)− f ′(0)] =
1

720
f (4)(ξ ). (2.12)

THEOREM 3. Let p,q ∈ R be such that 1 � p, q � ∞ and 1/p + 1/q = 1 . If
f : [0,1] → R is such that f (2n) ∈ Lp[0,1] for some n � 1 , then we have∣∣∣∣

∫ 1

0
f (t)dt −Q(0,x,1− x,1)+T2n(x)

∣∣∣∣� K(2n,q) · ‖ f (2n)‖p. (2.13)

If f (2n+1) ∈ Lp[0,1] for some n � 0 , then we have∣∣∣∣
∫ 1

0
f (t)dt −Q(0,x,1− x,1)+T2n(x)

∣∣∣∣� K(2n+1,q) · ‖ f (2n+1)‖p. (2.14)
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If f (2n+2) ∈ Lp[0,1] for some n � 0 , then we have∣∣∣∣
∫ 1

0
f (t)dt−Q(0,x,1− x,1)+T2n(x)

∣∣∣∣� K∗(2n+2,q) · ‖ f (2n+2)‖p, (2.15)

where

K(m,q) =
1
m!

[∫ 1

0
|Gm(x,t)|q dt

] 1
q

and K∗(m,q) =
1
m!

[∫ 1

0
|Fm(x, t)|q dt

] 1
q

.

These inequalities are sharp for 1 < p � ∞ and the best possible for p = 1 .

Proof. Inequalities (2.13), (2.14) and (2.15) follow immediately after applying
Hölder’s inequality to the remainders in formulae (2.5), (2.6) and (2.4). To prove in-
equalities are sharp, put

f (m)(t) = sgnGm(x,t) · |Gm(x,t)|1/(p−1) for 1 < p < ∞ and

f (m)(t) = sgnGm(x,t) for p = ∞ in (2.13) and (2.14),

f (m)(t) = sgnFm(x,t) · |Fm(x,t)|1/(p−1) for 1 < p < ∞ and

f (m)(t) = sgnFm(x,t) for p = ∞ in (2.15).

The proof that these inequalities are the best possible for p = 1 is the same as in the
proof of Theorem 2 in [12].

For x ∈ (0, 1
2 −

√
3

6 ]∪ [ 1
3 , 1

2 ] and n � 1, using Lemma 1 and Remark 1, we can
calculate the following constants as special cases of the previous Theorem:

K∗(2n+2,1) =
1

(2n+2)!
|G2n+2(x,0)| ,

K∗(2n+2,∞) =
1
2

K(2n+1,1) =
1

(2n+2)!

∣∣∣∣F2n+2

(
x,

1
2

)∣∣∣∣ ,
where G2n+2(x,0) is as in (2.10) and F2n+2 (x,1/2) is as in (2.8). In view of this, let us
consider inequalities (2.14) and (2.15) for n = 1 and p = ∞ :∣∣∣∣

∫ 1

0
f (t)dt −Q(0,x,1− x,1)

∣∣∣∣� 1
576

∣∣∣∣16x2−15x+3
1− x

∣∣∣∣ · ‖ f ′′′‖∞∣∣∣∣
∫ 1

0
f (t)dt −Q(0,x,1− x,1)

∣∣∣∣� 1
720

∣∣5x2−5x+1
∣∣ · ‖ f (4)‖∞

In order to find which admissible x gives the least estimate of error, we have to mini-
mize the functions on the right-hand side. It is easy to see that both those functions are

decreasing on (0, 1
2 −

√
3

6 ] and increasing on [ 1
3 , 1

2 ] and that they reach their minimal
values at x = 1/3. In fact, the same is valid in the case when n = 1 and p = 1, since
K∗(4,∞) = 1

2 K(3,1) .
Therefore, the node that gives the least estimate of error in these three cases is

x = 1/3, i.e. the optimal closed 4-point quadrature formula is Simpson’s 3/8 formula.
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3. On General Corrected Closed 4-Point Quadrature Formulae

In this section, we consider closed 4-point quadrature formulae with a degree of
exactness higher than the formulae obtained in the previous section but such that in-
volve values of the first derivative of the integrand at both ends of the interval. Such
quadrature formulae are sometimes called ”corrected” (cf. [13], [11]).

Let us observe formula (2.1) again. If, instead of the condition G̃2(x,0) = 0, we
impose condition G̃4(x,0) = 0, thus leaving the values of the first derivative in the
quadrature formula and removing the values of the third, we will get corrected closed
4-point quadrature formulae. This new condition produces the following coefficient:

A4(x) := A(x) = − B4

2(B4(x)−B4)
=

1
60x2(1− x)2 . (3.1)

Now, assuming f (2n−1) is continuous of bounded variation on [0,1] for some
n � 1, we have:

∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TC

2n(x) =
1

(2n)!

∫ 1

0
GC

2n(x,t)d f (2n−1)(t); (3.2)

assuming f (2n) is continuous of bounded variation on [0,1] for some n � 0, we have:

∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TC

2n(x) =
1

(2n+1)!

∫ 1

0
GC

2n+1(x,t)d f (2n)(t); (3.3)

and finally, assuming f (2n+1) is continuous of bounded variation on [0,1] for some
n � 0, we have:

∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TC

2n(x) =
1

(2n+2)!

∫ 1

0
FC

2n+2(x,t)d f (2n+1)(t), (3.4)

where

QC(0,x,1− x,1) =
1

60x2(1− x)2 [30B4(x) f (0)+ f (x)+ f (1− x)+30B4(x) f (1)],

GC
k (x, t) = [1−2A4(x)]B∗

k (1− t)+A4(x) [B∗
k (x− t)+B∗

k (1− x− t)] , k � 1

FC
k (x, t) = GC

k (x,t)−GC
k (x,0), k � 2

TC
2n(x) =

2n

∑
k=2

1
k!

GC
k (x,0) [ f (k−1)(1)− f (k−1)(0)]

=
5x2−5x+1
60x(x−1)

[ f ′(1)− f ′(0)]+
n

∑
k=3

GC
2k(x,0)
(2k)!

[ f (2k−1)(1)− f (2k−1)(0)]

Now we proceed to the key lemma.
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LEMMA 2. For x ∈ (0, 1
2 −

√
5

10 ]∪ [ 1
3 , 1

2 ] and k � 2 , GC
2k+1(x,t) has no zeros in

variable t in the interval (0,1/2) . The sign of the function is determined by:

(−1)kGC
2k+1(x,t) > 0 for x ∈ (0,1/2−

√
5/10],

(−1)k+1GC
2k+1(x,t) > 0 for x ∈ [1/3,1/2].

Proof. We start from GC
5 (x,t) and claim that for x∈ (1/2−√

5/10,1/3) , GC
5 (x,t)

has at least one zero in variable t in (0,1/2) . To prove this, first notice that GC
5 (x,0) =

∂GC
5

∂ t (x,0) = ∂ 2GC
5

∂ t2
(x,0) = GC

5 (x,1/2)= 0 and that x∈ (1/2−√
5/10,1/3) is equivalent

to
∂ 3GC

5
∂ t3

(x,0) < 0 and
∂GC

5
∂ t (x, 1

2) < 0. From
∂ 3GC

5
∂ t3

(x,0) < 0 we conclude
∂ 3GC

5
∂ t3

(x,t) < 0

in some neighborhood of t = 0. Therefore,
∂ 2GC

5
∂ t2

(x,t) is decreasing in some neighbor-

hood of t = 0 and since
∂ 2GC

5
∂ t2

(x,0) = 0, it follows that there we have
∂ 2GC

5
∂ t2

(x,t) <

0. Further,
∂GC

5
∂ t (x, t) is then also decreasing and since

∂GC
5

∂ t (x,0) = 0, we conclude
∂GC

5
∂ t (x, t) < 0 in some neighborhood of t = 0. Finally, from here we see that GC

5 (x,t)
is decreasing and since GC

5 (x,0) = 0 we have GC
5 (x, t) < 0 in some neighborhood of

0. On the other hand, from
∂GC

5
∂ t (x, 1

2) < 0 we conclude that
∂GC

5
∂ t (x,t) < 0 in some

neighborhood of t = 1/2. Then GC
5 (x,t) is decreasing and since GC

5 (x,1/2) = 0 we

see that GC
5 (x, t) > 0 in that neighborhood. Now it is clear that when

∂ 3GC
5

∂ t3
(x,0) < 0

and
∂GC

5
∂ t (x, 1

2 ) < 0, i.e. when x ∈ (1/2−√
5/10,1/3) , GC

5 (x,t) has at least one zero
on (0,1/2) .

It is left to prove that for x ∈ (0, 1
2 −

√
5

10 ]∪ [ 1
3 , 1

2 ] , GC
5 (x,t) has constant sign. This

will be done by showing that GC
5 (x,t) is decreasing in the variable x and after checking

its behavior at the end points, our statement will follow. First assume 0 < t � x � 1/2.
Then

∂GC
5

∂x
(x,t) = t3 · 1−2x

6x3(1− x)3 [t −2x(1− x)].

Since t � x � 2x(1− x) , it follows that
∂GC

5
∂x (x,t) < 0 on this interval. When 0 < x �

t < 1/2, we have
∂GC

5

∂x
(x,t) =

(1−2t)
6(1− x)3 [x−2t(1− t)].

Similarly as before, now x � t � 2t(1− t) . Therefore GC
5 (x,t) is decreasing in x .

To complete our proof, we need to consider the sign of GC
5

(
5−√

5
10 ,t

)
and GC

5

( 1
3 ,t
)
.

Assume 0 < t � x � 1/2. Then GC
5 (x,t) = −t3

12x2(1−x)2 ·g(x,t) where g(x, t) = 12t2(1−
x)2 ·x2 + t(−30x4 +60x3−30x2 +1)+4x(5x3−10x2 +6x−1). Now, it is trivial to see

that GC
5

(
5−√

5
10 , t

)
> 0 and that GC

5

(
1
3 ,t
)

< 0. Similarly, when 0 < x � t � 1/2, we

have GC
5 (x, t) = 1−2t

12(1−x)2 ·h(x,t) where h(x,t) = 6t4(1− x)2 −12t3(1− x)3 + t2(4x2 −
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8x+6)+2t · x(x−2)+ x2 and again GC
5

(
5−√

5
10 ,t

)
> 0 and GC

5

( 1
3 ,t
)

< 0. Therefore,

since GC
5 (x, t) is decreasing in x , it follows that GC

5 (x,t) > 0 for x ∈ (0, 1
2 −

√
5

10 ] and
that GC

5 (x, t) < 0 for x ∈ [ 1
3 , 1

2 ] .
Thus, the assertion is true for k = 2. For k � 3 it follows by induction. As for the

sign of functions GC
2k+1 (x,t) , the proof is analogous to the same part of the proof of

Lemma 1.

THEOREM 4. Let f : [0,1] → R be such that f (2n+2) is continuous and has con-

stant sign on [0,1] for some n � 2 and let x ∈ (0, 1
2 −

√
5

10 ]∪ [ 1
3 , 1

2 ] . Then there exists a
point θ ∈ [0,1] such that

RC
2n+2(x, f ) =

θ
(2n+2)!

·FC
2n+2

(
x,

1
2

)[
f (2n+1)(1)− f (2n+1)(0)

]
(3.5)

where RC
2n+2(x, f ) denotes the right-hand side of (3.4) and

FC
2n+2 (x,1/2) =

1
30x2(1− x)2

[
B2n+2 (1/2− x)−B2n+2(x)+

(
2−2−2n−1)B2n+2

]
− (2−2−2n−1)B2n+2. (3.6)

Proof. Analogous to the proof of Theorem 1.

THEOREM 5. If f : [0,1] → R is such that f (2n+2) is continuous on [0,1] for

some n � 2 and x ∈ (0, 1
2 −

√
5

10 ]∪ [ 1
3 , 1

2 ] , then there exists a point ξ ∈ [0,1] such that

RC
2n+2(x, f ) = −GC

2n+2(x,0)
(2n+2)!

· f (2n+2)(ξ ). (3.7)

where RC
2n+2(x, f ) denotes the right-hand side of (3.4) and

GC
2n+2(x,0) =

1
30x2(1− x)2 [B2n+2(x)−B2n+2]+B2n+2. (3.8)

Proof. Analogous to the proof of Theorem 2.
When we apply (3.7) to the remainder in formula (3.4) for n = 2, we obtain:

∫ 1

0
f (t)dt −QC(0,x,1− x,1)+

5x2−5x+1
60x(x−1)

[ f ′(1)− f ′(0)]

= −14x2−14x+3
302400

· f (6)(ξ ). (3.9)

The above formula produces corrected Simpson’s 3/8, corrected Simpson’s and the
corrected Gauss 2-point formula (the case when A4(x) = 1/2) as special cases for ap-
propriate x . Those three formulae were studied and generalized in [7], [8] and [6],
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respectively. All results from those papers follow as special cases of results from this
section.

For x = 1/2−√
5/10, formula (3.9) produces the Lobatto 4-point formula which

will be considered in more detail in a separate subsection.

REMARK 3. Similarly as in Remark 2, one might wonder if similar results can be
obtained for x = 0. By considering the limit process we get:

lim
x→0

(
QC(0,x,1− x,1)− 5x2−5x+1

60x(x−1)
[ f ′(1)− f ′(0)]

)

=
1
2
[ f (0)+ f (1)]− 1

10
[ f ′(1)− f ′(0)]+

1
120

[ f ′′(0)+ f ′′(1)]

lim
x→0

Gk(x, t) = B∗
k(1− t)+

k(k−1)
60

B∗
k−2(1− t)

Consequently, from (3.9) it follows:∫ 1

0
f (t)dt− 1

2
[ f (0)+ f (1)]+

1
10

[ f ′(1)− f ′(0)]− 1
120

[ f ′′(0)+ f ′′(1)] =− 1
100800

f (6)(ξ ).

(3.10)
Note that quadrature formulae (2.12) and (3.10) were derived in [2], by integrating the
two-point Taylor interpolation formula.

REMARK 4. For the sake of contrast, let us give the n = 2 case of (2.4), applying
(2.9) for the remainder:∫ 1

0
f (t)dt −Q(0,x,1− x,1)− 5x2−5x+1

720
[ f ′′′(1)− f ′′′(0)]

=
14x4−28x3 +7x2 +7x−2

60480
· f (6)(ξ ).

The obtained quadrature formula has the same degree of exactness as formula (3.9),
only it makes use of the third derivative values instead of the first.

THEOREM 6. Let p,q ∈ R be such that 1 � p, q � ∞ and 1/p + 1/q = 1 . If
f : [0,1] → R is such that f (2n) ∈ Lp[0,1] for some n � 1 , then we have∣∣∣∣

∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TC

2n(x)
∣∣∣∣� KC(2n,q) · ‖ f (2n)‖p. (3.11)

If f (2n+1) ∈ Lp[0,1] for some n � 0 , then we have∣∣∣∣
∫ 1

0
f (t)dt−QC(0,x,1− x,1)+TC

2n(x)
∣∣∣∣� KC(2n+1,q) · ‖ f (2n+1)‖p (3.12)

and if f (2n+2) ∈ Lp[0,1] for some n � 0 , then we have∣∣∣∣
∫ 1

0
f (t)dt −QC(0,x,1− x,1)+TC

2n(x)
∣∣∣∣� K∗

C(2n+2,q) · ‖ f (2n+2)‖p, (3.13)
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where

KC(m,q) =
1
m!

[∫ 1

0

∣∣GC
m(x,t)

∣∣q dt

] 1
q

and K∗
C(m,q) =

1
m!

[∫ 1

0

∣∣FC
m (x, t)

∣∣q dt

] 1
q

.

These inequalities are sharp for 1 < p � ∞ and the best possible for p = 1 .

Proof. Analogous to the proof of Theorem 3.

Similarly as in the previous section, for x ∈ (0, 1
2 −

√
5

10 ]∪ [ 1
3 , 1

2 ] and n � 2, we can
calculate the following constants as special cases of the previous Theorem:

K∗
C(2n+2,1) =

1
(2n+2)!

∣∣GC
2n+2(x,0)

∣∣ ,
K∗

C(2n+2,∞) =
1
2

KC(2n+1,1) =
1

(2n+2)!

∣∣∣∣FC
2n+2

(
x,

1
2

)∣∣∣∣ ,
where GC

2n+2(x,0) and FC
2n+2 (x,1/2) are as in (3.8) and (3.6), respectively.

We now seek for the optimal corrected closed 4-point quadrature formula for x ∈
(0, 1

2 −
√

5
10 ]∪ [ 1

3 , 1
2 ] , n = 2 and p = ∞ . Theorem 6 gives:

∣∣∣∣
∫ 1

0
f (t)dt−QC(0,x,1− x,1)+

5x2−5x+1
60x(x−1)

[ f ′(1)− f ′(0)]
∣∣∣∣

� |32x3−55x2 +30x−5|
115200(1− x)2 · ‖ f (5)‖∞∣∣∣∣

∫ 1

0
f (t)dt−QC(0,x,1− x,1)+

5x2−5x+1
60x(x−1)

[ f ′(1)− f ′(0)]
∣∣∣∣

� |14x2−14x+3|
302400

· ‖ f (6)‖∞

It is not hard to see that functions on the right-hand sides of both of these inequalities

are decreasing on (0, 1
2 −

√
5

10 ] and increasing on [ 1
3 , 1

2 ] and they reach their minimum
at x = 1/3. The same goes for the case when n = 2 and p = 1.

Thus, once again, we conclude that the node which gives the best estimation of
error in these three cases is x = 1/3, i.e. the optimal corrected closed 4-point quadrature
formula is corrected Simpson’s 3/8 formula.

3.1. Lobatto 4-Point Quadrature Formulae

The Lobatto formulae are quadrature formulae which involve both ends of the
interval as nodes and choose the other nodes to obtain maximal exactness. They are
especially useful for functions which vanish at both ends of the interval of integration.
In such cases, a higher effective degree of exactness is attained than that afforded even
by the formulae of Gaussian type. Namely, while in this case the use of r nodes in the
Lobatto formulae leads to a degree of exactness 2r +1, same number of nodes used in
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the Gauss formulae leads to a degree of exactness of ”only” 2r−1. For further details
on the Lobatto formulae see [9] or [10].

In the simplest nontrivial case, the Lobatto 3-point formula reduces to the classical
Simpson’s rule. As for the Lobatto 4-point formula, its nodes and coefficients are in fact
the unique solution of the system:

G̃2(x,0) = G̃4(x,0) = 0 ⇔ A2(x) = A4(x).

This system is consistent with wanting to obtain from (2.1) the quadrature formula
with the highest possible degree of exactness, i.e. a formula which has a degree of
exactness higher than the quadrature formulae studied in Section 2 and equal to that of
the corrected quadrature formulae studied in Section 3, not being corrected itself at the
same time. This is of course a well-known fact and our method illustrates it nicely.

It is customary to study the Lobatto formulae on the interval [−1,1] , in order to
make use of the symmetry of the nodes and coefficients, so by a simple linear trans-
formation we will transform the results to this interval. Formulae (3.2), (3.3) and (3.4)
now become: ∫ 1

−1
f (t)dt −QL +TL

2n =
22n−1

(2n)!

∫ 1

−1
GL

2n(t)d f (2n−1)(t), (3.14)

∫ 1

−1
f (t)dt −QL +TL

2n =
22n

(2n+1)!

∫ 1

−1
GL

2n+1(t)d f (2n)(t), (3.15)

∫ 1

−1
f (t)dt −QL +TL

2n =
22n+1

(2n+2)!

∫ 1

−1
FL

2n+2(t)d f (2n+1)(t), (3.16)

where

QL =
1
6

[
f (−1)+5 f

(
−
√

5
5

)
+5 f

(√
5

5

)
+ f (1)

]
,

GL
k (t) =

1
3
B∗

k

(
1
2
− t

2

)
+

5
6

[
B∗

k

(√
5

10
− t

2

)
+B∗

k

(
−
√

5
10

− t
2

)]
, k � 1

FL
k (t) = GL

k (t)−GL
k (−1), k � 2

TL
2n =

n

∑
k=3

22k−1

(2k)!
GL

2k(−1) [ f (2k−1)(1)− f (2k−1)(−1)]

Theorem 5 now becomes:

COROLLARY 1. If f : [−1,1] → R is such that f (2n+2) is continuous on [−1,1]
for some n � 2 , then there exists a point ξ ∈ [−1,1] such that

RL
2n+2( f ) = − 22n+2

(2n+2)!
GL

2n+2(−1) · f (2n+2)(ξ ) (3.17)

where

GL
2n+2(−1) =

1
3

[
B2n+2 +5B2n+2

(
1
2
−

√
5

10

)]
.
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Applying (3.17) for n = 2 to the remainder in (3.16) we get the Lobatto 4-point
formula: ∫ 1

−1
f (t)dt −QL = − 2

23625
f (6)(ξ )

Using Hölder’s inequality we can easily obtain an analogue of Theorem 6. As
immediate consequences for p = 1 and p = ∞ the following estimations are obtained:∣∣∣∣

∫ 1

−1
f (t)dt −QL

∣∣∣∣� C(m,q) · ‖ f (m)‖p, m = 1, . . . ,6

where

C(1,1) ≈ 3.76866 ·10−1, C(1,∞) =
∣∣∣∣GL

1

(
1√
5

)∣∣∣∣= 1√
5
≈ 4.47214 ·10−1,

C(2,1) ≈ 4.17772 ·10−2, C(2,∞) = GL
2

(
1√
5

)
≈ 6.06553 ·10−2,

C(3,1) ≈ 6.4048 ·10−3, C(3,∞) ≈ 7.35788 ·10−3

C(4,1) ≈ 1.13265 ·10−3, C(4,∞) = GL
4(0)/3 ≈ 1.46629 ·10−3,

C(5,1) =
4
45

|FL
6 (0)| ≈ 2.48452 ·10−4, C(5,∞) ≈ 2.83162 ·10−4,

C(6,1) =
4
45

|GL
6(−1)| ≈ 8.46561 ·10−5,

C(6,∞) =
2
45

|FL
6 (0)| =

√
5

18000
≈ 1.24226 ·10−4.

REMARK 5. Similar estimations can be obtained for m � 7. However, the val-
ues of derivatives, starting from the 5th, at the end points of the interval are then also
included in the quadrature formula. As we’ve mentioned before, in cases when those
values are easy to calculate, this is not an obstacle and if f (k)(1) = f (k)(−1) for k � 5,
we get a formula with an even higher degree of exactness.
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[8] I.FRANJIĆ, J.PEČARIĆ,Generalisation of corrected Simpson’s formula, ANZIAM J., 47 (2006), 367–
385.

[9] F.B.HILDEBRAND, Introduction to Numerical Analysis, McGraw-Hill Book Company Inc., New
York, 1956.

[10] V. I. KRYLOV, Approximate calculation of integrals, Macmillan, New York-London, 1962.
[11] C.LANCZOS,Applied Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1956.
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