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DISCRETE MOMENT PROBLEMS WITH

DISTRIBUTIONS KNOWN TO BE UNIMODAL

ERSOY SUBASI, MINE SUBASI AND ANDRÁS PRÉKOPA

Abstract. Discrete moment problems with given finite supports and unimodal distributions with
known mode, are formulated and used to obtain sharp lower and upper bounds for expectations
of higher order convex functions of discrete random variables as well as probabilities of the
union of events. The bounds are based on the knowledge of some of the power moments of
the random variables involved, or the binomial moments of the number of events which occur.
The bounding problems are formulated as LP’s and dual feasible basis structure theorems as
well as the application of the dual method of linear programming provide us with the results.
Applications in PERT and reliability are presented.
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