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Abstract. Discrete moment problems with given finite supports and unimodal distributions with
known mode, are formulated and used to obtain sharp lower and upper bounds for expectations
of higher order convex functions of discrete random variables as well as probabilities of the
union of events. The bounds are based on the knowledge of some of the power moments of
the random variables involved, or the binomial moments of the number of events which occur.
The bounding problems are formulated as LP’s and dual feasible basis structure theorems as
well as the application of the dual method of linear programming provide us with the results.
Applications in PERT and reliability are presented.

1. Introduction

Let ξ be a random variable, the possible values of which are known to be the
nonnegative numbers z0 < z1 < ... < zn . Let pi = P(ξ = zi), i = 0, 1, ..., n .
Suppose that these probabilities are unknown but either the power moments μk =

E(ξ k), k = 1, ..., m or the binomial moments Sk = E

[(
ξ

k

)]
, k = 1, ..., m , where

m < n , are known.
The starting points of our investigation are the following linear programming

problems

min(max)
n∑

i=0

f (zi)pi

subject to

n∑
i=0

zk
i pi = μk , k = 0, 1, ..., m (1.1)

pi � 0 , i = 0, 1, ..., n

and

min(max)
n∑

i=0

f (zi)pi
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subject to

n∑
i=0

(
zi

k

)
pi = Sk , k = 0, 1, ..., m (1.2)

pi � 0 , i = 0, 1, .., n

where μ0 = S0 = 1 .
Problems (1.1) and (1.2) are called the power and binomial moment problems,

respectively and have been studied extensively in [13, 14, 15, 16, 2]. The two problems
can be transformed into each other by the use of a simple linear transformation (see
[17], Section 5.6).

In this paper we specialize problems (1.1) and (1.2) in the following manner. We
will alternatively use the notation f k instead of f (zk) .

(1) In case of problem (1.1) we assume that the function f has positive divided
differences of order m+1 , where m is some fixed nonnegative integer satisfying
0 � m � n . The two optimum values of problem (1.1) provide us with sharp
lower and upper bounds for E[f (ξ)] .

(2) In case of problem (1.2) we assume that zi = i, i = 0, ..., n and f 0 = 0, f i =
1, i = 1, ..., n . The problem can be used in connection with arbitrary events
A1, ..., An , to obtain sharp lower and upper bounds for the probability of the
union. In fact, if we define

Sk =
∑

1�i1<...<ik�n

P(Ai1 ...Aik ), k = 1, ..., n,

then by a well-known theorem (see, e.g., [17]) we have the equation

Sk = E

[(
ξ
k

)]
, k = 1, ..., n, (1.3)

where ξ is the number of those events which occur. The equality constraints in
(1.2) for k = 1, ..., m are just the same as the equations in (1.3) for k = 1, ..., m
and the objective function is the probability of ξ � 1 under the distribution
p0, ..., pn . The distribution, however, is allowed to vary subject to the constraints,
hence the two optimum values of problem (1.2) provide us with the best possible
lower and upper bounds for the probability P(ξ � 1) , given S1, ..., Sm .

Note that if the binomial moment problem (1.2), in the above mentioned special
case (2), has feasible solution, then there exists a probability space and events A1, ..., An

such that S1, ..., Sm are their binomial moments. In fact, we can take, as sample space,
the set of all n -vectors with 0-1 components, form a 2n×n matrix with them and define
Ai as the set of those rows of the matrix which have 1’s in the i th column, i = 1, ..., n .
Then, assign pk as probability, to the set of those rows in which the number of 1’s is
k , further, split pk arbitrarily among the elements within that set, k = 1, ..., n . The
obtained events have the required property.

For small m values (m � 4) closed form bounds are presented in the literature.
For power moment bounds see [16, 17]. Bounds for the probability of the union have
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been obtained by Fréchet [4], when m = 1 , Dawson and Sankoff [5], when m = 2 ,
Kwerel [11], when m � 3 , Boros and Prékopa [2], when m � 4 . In the last two papers
bounds for the probability that at least r events occur, are also presented. We call a
probability bound of order m if joint probabilities of m events, but not more than m
events are used in it. For other closed form probability bounds see [8, 17]. Prékopa
[13, 14, 15, 16] showed that the probability bounds based on the binomial and power
moments of the number of events that occur, out of a given collection A1, ..., An , can
be obtained as optimum values of discrete moment problems (DMP). He also showed
that for arbitrary m values simple dual algorithms solve problems (1.1) and (1.2) if f
is of type (1) or (2) (and even for other objective function types).

Probability bounds, based on the probabilities of the individual events and their
intersections, also exist in the literature. For typical results in this respect, see the papers
by Hunter [9], Bukszár, Prékopa [3] and Bukszár [4].

In this paper we formulate and use moment problems with given finite supports
and unimodal distributions with known mode to obtain sharp lower and upper bounds
for expectations of higher order convex functions of discrete random variables and for
the probability that at least one out of n events occurs.

In Section 2 some basic notions and theorems are given. In Section 3 we use the
dual feasible basis structure theorems in [14, 16] to obtain dual feasible basis structure
theorems for our problems and sharp bounds for E[f (ξ)] in case of problems, where
the first or the first two power moments are known. In Section 4 we present a dual
feasible basis structure theorem and give closed form bounds for P(ξ � 1) in case
of problems, where the first two binomial moments are known. In Section 5 we give
numerical examples to compare the bounds obtained by the binomial moment problem
with andwithout shape information. The results show that the use of the shape constraint
significantly improves on the bounds. In Section 6 we present two examples for the
application of our bounding technique.

2. Basic Notions and Theorems

Let f be a function on the discrete set Z = {z0, ..., zn}, z0 < z1 < ... < zn . The
first order divided differences of f are defined by

[zi, zi+1; f ] =
f (zi+1) − f (zi)

zi+1 − zi
, i = 0, 1, ..., n− 1.

The kth order divided differences are defined recursively by

[zi, ..., zi+k; f ] =
[zi+1, ..., zi+k; f ] − [zi, ..., zi+k−1; f ]

zi+1 − zi
, k � 2.

The function f is said to be kth order convex if all of its kth order divided differences
are positive.

Note that the k th order divided difference of f on the set {z0, ..., zk} can be
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obtained in the following closed form:

[z0, ..., zk; f ] =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z0 z1 · · · zk
...

...
...

...
zk−1
0 zk−1

1 · · · zk−1
k

f 0 f 1 · · · f k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z0 z1 · · · zk
...

...
...

...
zk
0 zk

1 · · · zk
k

∣∣∣∣∣∣∣∣∣

. (2.1)

For further information about divided differences see [10, 16].
The following two results are due to Prékopa [14, 16].

THEOREM 1. Suppose that all (m+1)st order divided differences of the function
f (z) , z ∈ {z0, z1, ..., zn} are positive. Then, in problems (1.1) and (1.2) all bases are
dual nondegenerate and the dual feasible bases have the following structures, presented
in terms of the subscripts of the basic vectors:

m + 1 even m + 1 odd
min problem {i, i + 1, ..., j, j + 1} {0, i, i + 1, ..., j, j + 1}
max problem {0, i, i + 1, ..., j, j + 1, n} {i, i + 1, ..., j, j + 1, n}

where in all parentheses the numbers are arranged in increasing order.

More general theorems are presented in [14] and [16] for problems called totally
positive linear programming problems and those involving discrete Chebyshev systems.
We recall from those papers the assertion that we need here.

THEOREM 2. Let A be an (m + 1) × (n + 1) matrix, x, c n + 1 -component and
b m + 1 -component vectors and consider the LP:

min(max) cTx

subject to (2.2)

Ax = b , x � 0 .

Suppose that all minors of order m + 1 from A are positive. If all minors of order

m+2 from

(
A

cT

)
are positive, then any dual feasible basis has the following structure,

presented in terms of the subscripts of the basic vectors:
m + 1 even m + 1 odd

min problem {i, i + 1, ..., j, j + 1} {0, i, i + 1, ..., j, j + 1}
max problem {0, i, i + 1, ..., j, j + 1, n} {i, i + 1, ..., j, j + 1, n}

All dual feasible bases in all cases are dual nondegenerate.
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The proof of Theorem 2 is based on the relation

cp − cT
BB−1ap =

1
|B|
∣∣∣∣ cp cT

B
ap B

∣∣∣∣ , (2.3)

where |.| means determinant. Theorem 1 is also proved by the use of Lagrange
interpolation polynomials [16]. We see that the basis structures in Theorem 2 are the
same as those in Theorem 1.

3. The Case of the Power Moment Problem

In this section we consider the power moment problem (1.1) for the cases of
m = 1, 2 . We give lower and upper bound formulas for E[f (ξ)] for three problem
types: the sequence of probabilities p0, ..., pn is (1) unimodal with a known mode, (2)
increasing, (3) decreasing.

3.1. TYPE 1: The Case of a Unimodal Distribution

We assume that the distribution is unimodal with a known mode zk , 1 < k < n ,
i.e., p0 � ... � pk−1 � pk � pk+1 � ... � pn . We also assume that f has positive
divided differences of order m + 1 .

First, we remark that there are two possible representations of problem (1.1) with
the shape constraint. In the first one, that we call forward representation, we introduce
the variables vi, i = 0, 1, ..., n and obtain:

p0 = v0 , p1 = v0 + v1 , ... , pk = v0 + ... + vk

pk+1 = vk+1 + ... + vn , pk+2 = vk+2 + ... + vn , ... , pn = vn . (3.1)

In the second one, that we call backward representation, only the representation of pk

is different and it is: pk = vk + ... + vn .
If we use the forward representation in problem (1.1), with the additional infor-

mation regarding p0, ..., pn , we obtain the following problem:

min(max)
k∑

i=0

(f i + ... + f k)vi +
n∑

i=k+1

(f k+1 + ... + f i)vi

subject to

k∑
i=0

(ai + ... + ak)vi +
n∑

i=k+1

(ak+1 + ... + ai)vi = b (3.2)

v0 + ... + vk − vk+1 − ... − vn � 0 (3.2a)

vi � 0 , i = 0, 1, ..., n ,

where ai = (1, zi, ..., zm
i )T , i = 0, ..., n and b = (1,μ1, ...,μm)T .
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In case of the backward representation the problem can be formulated as follows:

min(max)
k−1∑
i=0

(f i + ... + f k−1)vi +
n∑

i=k

(f k + ... + f i)vi

subject to

k−1∑
i=0

(ai + ... + ak−1)vi +
n∑

i=k

(ak + ... + ai)vi = b (3.3)

vk + ... + vn − v0 − ... − vk−1 � 0 (3.3a)

vi � 0 , i = 0, 1, ..., n ,

where ai, i = 0, ..., n and b are the same as before.
The optimum values of the corresponding problems (3.2) and (3.3) are the same.

However if we remove from them the constraints (3.2a) and (3.3a), then the optimum
values of the corresponding relaxed problems may be different.

The general method that we can apply to solve problem (3.2) (or (3.3)) is the
following. First relax the problem by removing the constraint (3.2a) (or (3.3a)) and
solve the relaxed problem. If m is small, then the optimum values can be obtained
in closed forms. Otherwise, the dual method of linear programming, presented in [16,
Section 4], can be applied to obtain algorithmically the solution. In both cases primal-
dual feasible bases are obtained. Second, prescribe (3.2a) (or (3.3a)) as additional
constraint and use the dual method to reoptimize the problem. We also remark that if
we obtain pk � pk+1 (or pk−1 � pk ) in the optimal solution of the relaxed problem,
then reoptimization is not needed.

Note that if we designate the optimum values of problem (3.2) (or (3.3)) as minopt

and maxopt and the optimum values of the relaxed problem as min′opt and max′opt , then
we have the inequalities min′opt � minopt � maxopt � max′opt .

THEOREM 3. If the constraints (3.2a) and (3.3a) are removed from problems
(3.2) and (3.3) , respectively, then the matrix Ã of the equality constraints and the
coefficient vector ˜f of the objective function satisfy the conditions of Theorem 2 .

Proof. We prove the assertion in case of problem (3.2) . Take an (m+2)×(m+2)

minor from
(

Ã

˜f T

)
. The columns of

(
Ã

˜f T

)
are special partial sums of the columns(

ai

f T
i

)
, i = 0, ..., n . In the first part of the matrix we always remove the first term

from one partial sum to obtain the next one. In the second part we add a new column to
obtain the next one. The minor may be entirely from the first k columns or from the last
n − k columns or in a mixed manner. In all cases we can apply a column subtraction
procedure such that the resulting determinant (equal to the minor) has the following
property: if Ii = {j | aj is a term in the sum in the ith column}, i = 1, ..., m + 2 , then
for any pair It, Iu, t < u we have that all elements in It are smaller than any of the
elements in Iu . This implies that the determinant of resulting matrix splits into the
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sum of positive determinants since all (m + 1) st order divided differences of f are
positive (i.e., (2.1) is positive). The same column subtraction procedure can be applied
to show that any (m + 1) × (m + 1) minor of Ã is positive since (a0, a1, ..., an) is a
Vandermonde matrix.

The proof of the assertion in case of problem (3.3) can be done similarly. �
The bounds for E[f (ξ)] in case of problem (3.2)

Below we present closed formbounds for the second relaxed problem, i.e., problem
(3.2) without the additional constraint (3.2a), when m = 1, 2 .
Case 1. Let m = 1 . Since m + 1 is even, by the use of Theorem 2, any dual feasible
basis of the minimization problem, that we designate by Bmin , is of the form

Bmin = {j, j + 1}, 0 � j � n − 1 .

Similarly, by Theorem 2, the only dual feasible basis of the maximization problem,
designated by Bmax , is obtained as

Bmax = {0, n}.
Since Bmax is the only dual feasible basis it must also be primal feasible (see, e.g.:
[18]).

Bmin is primal feasible if j satisfies the following condition:∑k
t=j zt

k − j + 1
� μ1 �

∑k
t=j+1 zt

k − j
if j � k − 1 ; (3.4)

∑j
t=k+1 zt

j − k
� μ1 �

∑j+1
t=k+1 zt

j − k + 1
if j � k + 1 ; (3.5)

zk � μ1 � zk+1 if j = k . (3.6)
Let us introduce the notations:

α2
i,j = (n − j)

j∑
t=i

z2
t − (j − i + 1)

n∑
t=j+1

z2
t , αi,j = (n − j)

j∑
t=i

zt − (j − i + 1)
n∑

t=j+1

zt ,

Σ2
i,j = i

j∑
t=i

z2
t − (j − i + 1)

i−1∑
t=0

z2
t , Σi,j = i

j∑
t=i

zt − (j − i + 1)
i−1∑
t=0

zt ,

σ2
i,j =

j∑
t=i

z2
t − (j − i + 1)z2

i−1 , σi,j =
j∑

t=i

zt − (j − i + 1)zi−1 , (3.7)

γ 2
i,j =

j∑
t=i

zt − (j − i + 1)z2
j+1 , γi,j =

j∑
t=i

zt − (j − i + 1)zj+1 .

The lower bound for E[f (ξ)] is given as follows:
• If j � k − 1 and (3.4) is satisfied, then we have∑k

t=j+1(f jzt − zjf t) − μ1

[
(k − j)f j −

∑k
t=j+1 f t

]
σj+1,k

� E[f (ξ)] ; (3.8)
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• if j � k + 1 and (3.5) is satisfied, then we have∑j
t=k+1(f j+1zt − zj+1f t) − μ1

[∑j
t=k+1 f t − (k − j)f j+1

]
γk+1,j

� E[f (ξ)] ; (3.9)

• if j = k and (3.6) is satisfied, then we have

zk+1 − μ1

zk+1 − zk
f k +

μ1 − zk

zk+1 − zk
f k+1 � E[f (ξ)] . (3.10)

The upper bound for E[f (ξ)] is the following:

E[f (ξ)] �
∑n

t=k+1 zt − (n − k)μ1

Σk+1,n

k∑
t=0

f t +
(k + 1)μ1 −

∑k
t=0 zt

Σk+1,n

n∑
t=k+1

f t . (3.11)

Here σi,j, γi,j, Σi,j are the values in (3.7).
Below we present the closed form bounds for the case of m = 2 .

Case 2. Let m = 2 . In this case we assume that the third order divided differences of f
are positive. The bounds for E[f (ξ)] are based on the knowledge of μ1 and μ2 . Since
m + 1 is odd, by the use of Theorem 2, any dual feasible basis for the minimization or
maximization problem, respectively, in (3.2), without the additional constraint (3.2a),
is of the form

Bmin = {0, i, i + 1} and Bmax = {j, j + 1, n},
where 1 � i � n − 1, 0 � j � n − 2 .

The basis Bmin is primal feasible if i satisfies the following condition:
• If i � k − 1 , then

Σ2
i,k

Σi,k
� (k + 1)μ2 −

∑k
t=0 z2

t

(k + 1)μ1 −
∑k

t=0 zt

�
Σ2

i+1,k

Σi+1,k
,

[
(k−i+1)Σ2

i+1,k−(k−i)Σ2
i,k

] [
(k+1)μ1−

k∑
t=0

zt

]

− [(k−i+1)Σi+1,k−(k−i)Σi,k]

[
(k + 1)μ2−

k∑
t=0

z2
t

]
� Σi,kΣ2

i+1,k − Σ2
i,kΣi+1,k ;

(3.12)

• if i � k + 1 , then

Σ2
k+1,i

Σk+1,i
� (k + 1)μ2 −

∑k
t=0 z2

t

(k + 1)μ1 −
∑k

t=0 zt

�
Σ2

k+1,i+1

Σk+1,i+1
,

[
(i − k)Σ2

k+1,i+1 − (i − k + 1)Σ2
k+1,i

] [
(k + 1)μ1 −

k∑
t=0

zt

]

− [(i − k)Σk+1,i+1 − (i − k + 1)Σk+1,i]

[
(k + 1)μ2 −

k∑
t=0

z2
t

]

� Σk+1,iΣ2
k+1,i+1 − Σ2

k+1,iΣk+1,i+1 ;

(3.13)
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• if i = k , then

γ 2
0,k−1

γ0,k−1
� (k + 1)μ2 −

∑k
t=0 z2

t

(k + 1)μ1 −
∑k

t=0 zt

�
γ 2
0,k

γ0,k
,

(
γ 2
0,k − γ 2

0,k−1

) [
(k + 1)μ1 −

k∑
t=0

zt

]
− (γ0,k − γ0,k−1)

[
(k + 1)μ2 −

k∑
t=0

z2
t

]

� γ0,k−1γ 2
0,k − γ 2

0,k−1γ0,k ,

(3.14)

where Σi,j, Σ2
i,j, γi,j, γ 2

i,j are defined as in (3.7).
The basis Bmax is primal feasible if j satisfies the following condition:

• If j � k − 1 , then

α2
j,k

αj,k
�

(n − k)μ2 −
∑n

t=k+1 z2
t

(n − k)μ1 −
∑n

t=k+1 zt
�

α2
j+1,k

αj+1,k
,

[
(k − j + 1)α2

j+1,k − (k − j)α2
j,k

] [
(n − k)μ1 −

n∑
t=k+1

zt

]

− [(k − j + 1)αj+1,k − (k − j)αj,k]

[
(n − k)μ2 −

n∑
t=k+1

z2
t

]

� αj,kα2
j+1,k − α2

j,kαj+1,k ;

(3.15)

• if j � k + 1 , then

α2
k+1,j

αk+1,j
�

(n − k)μ2 −
∑n

t=k+1 z2
t

(n − k)μ1 −
∑n

t=k+1 zt
�

α2
k+1,j+1

αk+1,j+1
,

[
(j − k)α2

k+1,j+1 − (j − k + 1)α2
k+1,j

] [
(n − k)μ1 −

n∑
t=k+1

zt

]

− [(j − k)αk+1,j+1 − (j − k + 1)αk+1,j]

[
(n − k)μ2 −

n∑
t=k+1

z2
t

]

� αk+1,jα2
k+1,j+1 − α2

k+1,jαk+1,j+1 ;

(3.16)

• if j = k , then

σ2
k+1,n

σk+1,n
�

(n − k)μ2 −
∑n

t=k+1 z2
t

(n − k)μ1 −
∑n

t=k+1 zt
�

σ2
k+2,n

σk+2,n
,

(
σ2

k+2,n−σ2
k+1,n

) [
(n−k)μ1−

n∑
t=k+1

zt

]
− (σk+2,n−σk+1,n)

[
(n−k)μ2−

n∑
t=k+1

z2
t

]

� σk+1,nσ2
k+2,n−σ2

k+1,nσk+2,n ,

(3.17)

where σi,j, σ2
i,j, αi,j, α2

i,j are defined as in (3.7).
We have the following lower bound for E[f (ξ)] :
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• If i � k − 1 and conditions (3.12) are satisfied, then

1
k+1

∑k
t=0 f t +

Σ2
i+1,k [(k+1)μ1−

∑k
t=0

zt ]−Σi+1,k [(k+1)μ2−
∑k

t=0
z2
t ]

Σi,kΣ2
i+1,k−Σi+1,kΣ2

i,k

[∑k
t=i f t −

∑k
t=0

f t
k+1

]

+
Σi,k [(k+1)μ2−

∑k
t=0

z2
t ]−Σ2

i,k [(k+1)μ1−
∑k

t=0
zt ]

Σi,kΣ2
i+1,k−Σi+1,kΣ2

i,k

[∑k
t=i+1 f t −

∑k
t=0

f t
k+1

]
;

(3.18)

• if i � k + 1 and conditions (3.13) are satisfied, then

1
k+1

∑k
t=0 f t+

Σ2
k+1,i+1[(k+1)μ1−

∑k
t=0

zt ]−Σk+1,i+1[(k+1)μ2−
∑k

t=0
z2
t ]

Σk+1,iΣ2
k+1,i+1

−Σ2
k+1,iΣk+1,i+1

[∑i
t=k+1 f t− (i−k)

∑k
t=0

f t
k+1

]

+
Σk+1,i[(k+1)μ2−

∑k
t=0

z2
t ]−Σ2

k+1,i+1[(k+1)μ1−
∑k

t=0
zt]

Σk+1,iΣ2
k+1,i+1

−Σ2
k+1,iΣk+1,i+1

[∑i+1
t=k+1 f t − (i−k+1)

∑k
t=0

f t
k

]
;

(3.19)

• if i = k and conditions (3.14) are satisfied, then

1
k+1

∑k
t=0 f t +

γ 2
0,k [(k+1)μ1−

∑k
t=0

zt]−γ0,k [(k+1)μ2−
∑k

t=0
z2
t ]

γ0,k−1γ 2
0,k−γ0,kγ 2

0,k−1

[
f k −

∑k
t=0

f t
k+1

]

+
γ0,k−1[(k+1)μ2−

∑k
t=0

z2
t ]−γ 2

0,k−1[(k+1)μ1−
∑k

t=0
zt]

γ0,k−1γ 2
0,k−γ0,kγ 2

0,k−1

[
f k+1 −

∑k
t=0

f t
k+1

]
.

(3.20)

The upper bound for E[f (ξ)] is given as follows:
• If j � k − 1 and conditions (3.15) are satisfied, then

1
n−k

∑n
t=k+1 f t

+
α2

j+1,k[(n−k)μ1−
∑n

t=k+1
zt ]−αj+1,k[(n−k)μ2−

∑n
t=k+1

z2
t ]

αj,kα2
j+1,k−αj+1,kα2

j,k

[∑k
t=j f t − (k−j+1)

∑n
t=k+1

n−k

]

+
αj,k[(n−k)μ2−

∑n
t=k+1

z2
t ]−α2

j,k [(n−k)μ1−
∑n

t=k+1
zt ]

αj,kα2
j+1,k

−αj+1,kα2
j,k

[∑k
t=j+1 f t − (k−j)

∑n
t=k+1

n−k

]
;

(3.21)

• if j � k + 1 and conditions (3.16) are satisfied, then
1

n−k

∑n
t=k+1 f t

+
α2

k+1,j+1[(n−k)μ1−
∑n

t=k+1
zt]−αk+1,j+1[(n−k)μ2−

∑n
t=k+1

z2
t ]

αk+1,jα2
k+1,j+1

−αk+1,j+1α2
k+1,j

[∑j
t=k+1 f t− (j−k)

∑n
t=k+1

n−k

]

+
αk+1,j[(n−k)μ2−

∑n
t=k+1

z2
t ]−α2

k+1,j[(n−k)μ1−
∑n

t=k+1
zt]

αk+1,jα2
k+1,j+1

−αk+1,j+1α2
k+1,j

[∑j+1
t=k+1 f t−

(j−k+1)
∑n

t=k+1
n−k

]
;

(3.22)

• if j = k and conditions (3.17) are satisfied, then

1
n−k

∑n
t=k+1 f t +

σ2
k+2,n[(n−k)μ1−

∑n
t=k+1

zt]−σk+2,n[(n−k)μ2−
∑n

t=k+1
z2
t ]

σk+1,nσ2
k+2,n−σ2

k+1,nσk+2,n

[
f k −

∑n
t=k+1

f t

n−k

]
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+
σk+1,n[(n−k)μ2−

∑n
t=k+1

z2
t ]−σ2

k+1,n[(n−k)μ1−
∑n

t=k+1
zt]

σk+1,nσ2
k+2,n−σ2

k+1,nσk+2,n

[
f k+1 −

∑n
t=k+1

f t

n−k

]
,

(3.23)

where Σi,j , Σ2
i,j , σi,j , σ2

i,j , γi,j , γ 2
i,j , αi,j and α2

i,j are defined as in (3.7).
If we replace k by k − 1 in all formulas given above, we obtain the primal feasibility
conditions and the bounds in case of the second relaxed problem.

REMARK. The monotonic cases are also unimodal cases. However, they can be
handled without additional constraint (3.2a) (or (3.3a)). Since the reasoning and the
formulas are considerably simpler than the ones in the general case, belowwe present the
sharp bound formulas separately for the case of increasing and decreasing distributions.

3.2. TYPE 2: The Case of an Increasing Distribution

In this section we assume that the probability distribution is increasing, i.e., p0 �
... � pn and f has positive divided differences of order m+1 . If we introduce variables
vi, i = 0, 1..., n as follows:

v0 = p0, v1 = p1 − p0, ..., vn = pn − pn−1 ,

then problem (1.1), with the additional information regarding p0, ..., pn , can be written
as

min(max){(f 0 + ... + f n)v0 + (f 1 + ... + f n)v1 + ... + f nvn}
subject to

(a0 + ... + an)v0 + (a1 + ... + an)v1 + ... + anvn = b (3.24)

vi � 0 , i = 0, 1, ..., n

where ai = (1, zi, ..., zm
i )T , i = 0, ..., n and b = (1,μ1, ...,μm)T .

If we use the same reasoning that we have used in the proof of Theorem 3, we can
show that all minors of order m + 1 from the matrix of the equality constraints and
all minors of order m + 2 from the matrix with the objective function coefficients in
the last row, are positive. So, we can use Theorem 2 to obtain dual feasible bases for
problem (3.24).

If m is small, then the optimum values of (3.24) can be given in closed forms,
otherwise the dual method of linear programming, presented in [16, Section 4], can be
used. Below we present the sharp bounds for E[f (ξ)] for the case of m = 1, 2 .
Case 1. Let m = 1 . If we take k = n in (3.4) and (3.8), then we can obtain the primal
feasibility condition for the dual feasible basis Bmin and lower bound for E[f (ξ)] ,
respectively.

The basis Bmax is the only dual feasible basis, hence it must also be primal feasible.
In this case we get the following upper bound for E[f (ξ)] :

E[f (ξ)] � μ1 − zn

γ0,n−1

n∑
t=0

f t +
(n + 1)μ1 −

∑n
t=0 zt

γ0,n−1
f n . (3.25)
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Case 2. Let m = 2 . If we take k = n in formulas (3.12) and (3.18), then we can
obtain the primal feasibility conditions for Bmin and the sharp lower bound for E[f (ξ)] ,
respectively.
The basis Bmax is primal feasible if the following relations hold:

γ 2
j,n−1

γj,n−1
� μ2 − z2

n

μ1 − zn
�

γ 2
j+1,n−1

γj+1,n−1
,

[
(n−j+1)γ 2

j+1,n−1−(n−j)γ 2
j,n−1

]
(μ1−zn)− [(n−j+1)γj+1,n−1−(n−j)γj,n−1] (μ2−z2

n)

� γj,n−1γ 2
j+1,n−1 − γ 2

j,n−1γj+1,n−1.
(3.26)

In this case we have the following sharp upper bound for E[f (ξ)] :

E[f (ξ)] �
(μ1 − zn)γ 2

j+1,n−1 − (μ2 − z2
n)γj+1,n−1

γj,n−1γ 2
j+1,n−1 − γj+1,n−1γ 2

j,n−1

[
n∑

s=j

f s − (n − j + 1)f n

]

+
(μ2 − z2

n)γj,n−1 − (μ1 − zn)γ 2
j,n−1

γj,n−1γ 2
j+1,n−1 − γj+1,n−1γ 2

j,n−1

⎡
⎣ n∑

s=j+1

f s − (n − j)f n

⎤
⎦ ,

(3.27)

where Σi,j, Σ2
i,j, γi,j, γ 2

i,j are defined as in (3.7).

3.3. TYPE 3: The Case of a Decreasing Distribution

Now, we assume that the probabilities p0, ..., pn are unknown, but satisfy the
inequalities: p0 � ... � pn . Let us introduce the variables vi, i = 0, 1, ..., n as follows:

v0 = p0 − p1, ..., vn−1 = pn−1 − pn, vn = pn.

If wewrite up problem (1.1),with the additional shape constraint,by the use of v0, ..., vn ,
then we obtain

min(max){f 0v0 + (f 0 + f 1)v1 + ... + (f 0 + ... + f n)vn}
subject to

a0v0 + (a0 + a1)v1 + ... + (a0 + ... + an)vn = b (3.28)

vi � 0 , i = 0, 1, ..., n

where ai = (1, zi, ..., zm
i )T , i = 0, ..., n and b = (1,μ1, ...,μm)T .

If we use the same reasoning that we have used in the proof of Theorem 3, we can
show that problem (3.28) satisfies the conditions of Theorem 2. For small m values
the optimum values of problem (3.28) can be given in closed forms, otherwise the dual
method of linear programming, presented in [16, Section 4], can be applied.

Below we present the sharp bounds for E[f (ξ)] for the case of m = 1, 2 .
Case 1. Let m = 1 . If we take k + 1 = 0 in (3.5) and (3.9), then we obtain the primal
feasibility condition for Bmin and the sharp lower bound for E[f (ξ)] , respectively.
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Since Bmax is the only dual feasible basis, it follows that it is optimal. In this case
we obtain the following upper bound for E[f (ξ)] :

(n + 1)μ1 −
∑n

t=0 zt

(n + 1)z0 −
∑n

t=0 zt
f 0 +

μ1 − z0

(n + 1)z0 −
∑n

t=0 zt

n∑
t=0

f t . (3.29)

Case 2. Let m = 2 . The basis Bmin is primal feasible if i is determined by the
inequalities:

σ2
1,i

σ1,i
� μ2 − z2

0

μ1 − z0
�

σ2
1,i+1

σ1,i+1
,

(
(i + 1)σ2

1,i+1 − (i + 2)σ2
1,i

)
(μ1 − z0) − ((i + 1)σ1,i+1 − (i + 2)σ1,i) (μ2 − z2

0)

� σ1,iσ2
1,i+1 − σ1,iσ1,i+1. (3.30)

In this case the sharp lower bound for E[f (ξ)] is:

(μ1 − z0)σ2
1,i+1 − (μ2 − z2

0)σ1,i+1

σ2
1,i+1σ1,i − σ1,i+1σ2

1,i

[
i∑

t=1

f t − if 0

]

+
(μ2 − z2

0)σ1,i − (μ1 − z0)σ2
1,i

σ2
1,i+1σ1,i − σ1,i+1σ2

1,i

[
i+1∑
t=1

f t − (i + 1)f 0

]
. (3.31)

The primal feasibility conditions for Bmax and the sharp upper bound for E[f (ξ)]
can be obtained by taking k + 1 = 0 in (3.16) and (3.22), respectively.

4. The Case of the Binomial Moment Problem

In case of the binomial moment problem (1.2) we look at the special case, where

zi = i, i = 0, ..., n , f 0 = 0, f 1 = ... = f n = 1 .

We give lower and upper bounds for the probability that at least one out of n events
occurs for the case of m = 2 . We look at problem (1.2), but the constraints are
supplemented by shape constraints of the unknown probability distribution p0, ..., pn .

In the following three subsections we use the same shape constraints that we have
used in Section 3.1-3.3.

4.1. TYPE 1: The Case of a Unimodal Distribution

We assume that the distribution is unimodal with a known mode, i.e., we consider
the following problem:

min(max)
n∑

i=1

pi
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subject to
n∑

i=0

(
i
j

)
pi = Sj , j = 0, 1, ..., m (4.1)

p0 � ... � pk−1 � pk � pk+1 � ... � pn

pi � 0 , i = 0, 1, .., n

where 1 < k < n and Sj, j = 0, 1..., m are defined as in Section 1.
As in case of the power moment problem, here too there are two representations

of problem (4.1). The forward representation is the following:

min(max)

{
kv0 +

k∑
i=1

(k − i + 1)vi +
n∑

i=k+1

(i − k)vi

}

subject to
k∑

i=0

(k − i + 1)vi +
n∑

i=k+1

(i − k)vi = 1 (4.2)

k∑
i=0

[(
i

j

)
+ ... +

(
k

j

)]
vi +

n∑
i=k+1

[(
k + 1

j

)
+ ... +

(
i

j

)]
vi = Sj , j = 1, ..., m

v0 + ... + vk − vk+1 − ... − vn � 0 (4.2a)
vi � 0 , i = 0, ..., n .

The backward representation of problem (4.1) is given as:

min(max) {(k − 1)v0 +
k−1∑
i=1

(k − i)vi +
n∑

i=k

(i − k + 1)vi}

subject to
k−1∑
i=0

(k − i)vi +
n∑

i=k

(i − k + 1)vi = 1 (4.3)

k−1∑
i=0

[(
i

j

)
+ ... +

(
k − 1

j

)]
vi +

n∑
i=k

[(
k

j

)
+ ... +

(
i

j

)]
vi = Sj , j = 1, ..., m

vk + ... + vn − v0 − ... − vk−1 � 0 (4.3a)
vi � 0 , i = 0, ..., n .

If m is small, then the optimum values of (4.2) and (4.3), without the additional
constraints (4.2a) and (4.3a), can be given in closed forms, otherwise dual method of
linear programming, presented in [16, Section 4], can be used as we have discussed it
in Section 3.1.

We look at the relaxed version of problems (4.2), (4.3) and create bounds for the
probability of the union of events. We present a dual feasible basis structure theorem
that allows for obtaining closed form bounds for the case of m = 2 .

THEOREM 4. Any dual feasible basis in any of the relaxed problems has the fol-
lowing structures (in terms of the subscripts of the basic vectors):
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min problem max problem

Bmin = {0, i, i + 1} , 1 � i � n − 1 Bmax =
{ {0, 1, n}

{s, t, u} , 1 � s < t < u � n
The basis {s, t, u}, 1 � s < t < u � n , is dual degenerate and all other bases are dual
nondegenerate.

Proof. Let A = (a0, ..., an) designate the matrix of the equality constraints in
problem (4.2) or (4.3). A basis B in the minimization problem (4.2) is dual feasible if
the following inequalities hold:

cT
BB−1ap � cp for any nonbasic p ,

where c is the coefficient vector of the objective function. For the maximization
problem the dual feasibility of a basis is defined by the reversed inequalities. A basis
B is dual degenerate if there is at least one nonbasic p such that cp − cT

BB−1ap = 0 .
Since we have (

1 cT
B

0 B

)(
cp − cT

BB−1ap

B−1ap

)
=
(

cp

ap

)
,

the first component of the solution of this equation can be expressed as

cp − cT
BB−1ap =

1
|B|
∣∣∣∣ cp cT

B
ap B

∣∣∣∣ .

If we look at problems (4.2), (4.3), we can easily check that for any basis B we have
|B| > 0 .

Assume that a0 is not basic. Then for any nonbasic p �= 0 the determinant∣∣∣∣∣ cp cTB
ap B

∣∣∣∣∣ is 0, hence cp − cT
BB−1ap = 0 . For the case of p = 0 , however, we can see

that
∣∣∣∣∣ cp cTB

ap B

∣∣∣∣∣ = −|B| < 0 , hence c0 − cT
BB−1a0 < 0 . Thus, B is dual feasible in the

maximization problem.

If a0 is basic, then
∣∣∣∣∣ cp cTB

ap B

∣∣∣∣∣ �= 0 and its sign is (−1)s+1 , where s is the number

of those basic vectors that have subscripts smaller than p . In fact, if we interchange

columns of the determinant so that
(

cp

ap

)
is put in its "right place" (the column

subscripts are in increasing order) and then subtract the second row from the first one,

we can see that
∣∣∣∣∣ cp cTB

ap B

∣∣∣∣∣ = (−1)s+1|B1| , where the columns of B1 are those of B , except

for a0 that is replaced by ap . It follows that |B1| > 0 .
If we look at the minimization problem, then for the dual feasibility of B we need

(−1)s+1|B1| > 0 for any nonbasic p that means s must be odd. This implies that the
basic subscript set must be of the form {0, i, i + 1} .

Similarly, in case of the maximization problem the dual feasible basis must have
the subscript set {0, 1, n} . �
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If we take into account the equations:(
j + 1

2

)
−
(

i
2

)
=

(j − i + 1)(i + j)
2

, 2 � i � j � n (4.4)

(
i
2

)
+ ... +

(
j
2

)
=

(j − i + 1)(j2 + ij + i2 − 2i − j)
6

, 2 � i � j � n (4.5)

then we can write the relaxed version of problem (4.2) as follows:

min(max) {kv0 +
k∑

i=1

(k − i + 1)vi +
n∑

i=k+1

(i − k)vi}

subject to

k∑
i=0

(k − i + 1)vi +
n∑

i=k+1

(i − k)vi = 1

k∑
i=0

(k − i + 1)(k + i)vi +
n∑

i=k+1

(i − k)(i + k + 1)vi = 2S1 (4.6)

k∑
i=0

(k − i + 1)(k2 + ik + i2 − 2i − k)vi +
n∑

i=k+1

(i − k)(i2 + ik + k2 − 1)vi = 6S2

vi � 0 , i = 0, ..., n .

The optimumvalues of (4.6) provide uswith lower and upper bounds for P(ξ � 1) ,
where the probability distribution is unimodal.

Replacing k by k − 1 in problem (4.6), we obtain problem (4.3) without the
additional constraint (4.3a), in another form.
The bounds for P(ξ � 1) in case of problem (4.6)

In the following we consider problem (4.6) and give conditions that ensure the
primal feasibility of a dual feasible basis Bmin = {0, i, i + 1}, 1 � i � n− 1 as well as
the corresponding lower bound formulas for P(ξ � 1) .
Case 1. Let 1 � i � k − 1 . Bmin = {0, i, i + 1} is primal feasible if

2(k + i − 1)S1 − 6S2 � ki ,

2(k + i − 2)S1 − 6S2 � k(i − 1) ,

2(k + 2i − 1)S1 − 6S2 � i(2k + i + 1) .

(4.7)

In this case the lower bound, i.e, the optimum value of (4.6) is obtained as follows:

k(i − 1)
(i + 1)(k + 1)

+
2(k + 2i − 1)S1 − 6S2

i(i + 1)(k + 1)
� P(ξ � 1) . (4.8)

Case 2. Let k + 1 � i � n − 1 . Then the primal feasibility conditions are

2(i + k)S1 − 6S2 � k(i + 1) ,

2(i + k − 1)S1 − 6S2 � ik ,

2(2i + k + 1)S1 − 6S2 � (i + 2k + 2)(i + 1) ,

(4.9)
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and the lower bound formula is the following:

i(k − 1)
k(i + 2)

+
2(2i + k)S1 − 6S2

k(i + 1)(i + 2)
� P(ξ � 1) . (4.10)

Case 3. Let i = k . Then Bmin = {0, k, k + 1} is primal feasible if the conditions

4kS1 − 6S2 � k(k + 1) ,

4(k − 1)S1 − 6S2 � (k − 1)k ,

6kS1 − 6S2 � 3k(k + 1)
(4.11)

are satisfied. In this case the lower bound formula is obtained as:

k − 1
k + 2

+
6kS1 − 6S2

(k − 1)k(k + 1)
� P(ξ � 1) . (4.12)

In order to obtain upper bound formula we consider the basis Bmax = {0, 1, n}
which is primal feasible if the following conditions are satisfied:

2(n + k)S1 − 6S2 � (k + 1)(n + 1) ,

2(n + k − 1)S1 − 6S2 � nk ,

(k − 1)S1 � 3S2 .

(4.13)

In this case the upper bound is obtained as:

P(ξ � 1) � 2(n + k)S1 − 6S2

(k + 1)(n + 1)
. (4.14)

It is easy to see that if Bmax = {s, t, u} , 1 � s < t < u � n is optimal, then the upper
bound is equal to 1.

REMARK 1. The bounds for P(ξ � 1) in case of the relaxed version of problem
(4.3) can be obtained by taking k = k − 1 in all above formulas.

REMARK 2. Problem (4.6) provides us with a better upper bound than the one
obtained by the use of the relaxed version of problem (4.3) if the following condition is
satisfied:

3S2 � (n − 1)S1 . (4.15)

Note that the inequality 2S2 � (n − 1)S1 always holds (see, e.g., [17], p. 186).

4.2. TYPE 2: The Case of an Increasing Distribution

Now we assume that the probability distribution is increasing, i.e., p0 � ... � pn .
Let us introduce the variables vi , i = 0, ..., n : v0 = p0, v1 = p1 − p0, ..., vn =
pn−pn−1 . Taking into account equations (4.4) and (4.5), problem (1.2), with the shape
constraint, can be written as

min(max) {nv0 +
n∑

i=1

(n − i + 1)vi}
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subject to
n∑

i=0

(n − i + 1)vi = 1

n∑
i=0

(n − i + 1)(n + i)vi = 2S1

n∑
i=0

(n − i + 1)(n2 + in + i2 − 2i − n)vi = 6S2

vi � 0 , i = 0, 1, ..., n . (4.16)

If we use the same reasoning that we have used in the proof of Theorem 4, we can show
that the dual feasible bases for problem (4.16) are the same as those in Theorem 4.

We can obtain the primal feasibility conditions for the basis Bmin = {0, i, i + 1}
and the sharp lower bound for P(ξ � 1) by taking k = n in formulas (4.7) and (4.8),
respectively.

The basis Bmax = {0, 1, n} is primal feasible if the following relations hold:

2(2n − 1)S1 − 6S2 � n(n + 1) ,

4(n − 1)S1 − 6S2 � n(n − 1) and (n − 1)S1 � 3S2 .

If the above inequalities are satisfied, we have the following sharp upper bound:

P(ξ � 1) � min

{
1,

2(2n − 1)S1 − 6S2

n(n + 1)

}
. (4.17)

4.3. TYPE 3: The Case of a Decreasing Distribution

In this section we assume that the probability distribution is decreasing, i.e., p0 �
... � pn . Introducing the variables vi , i = 0, ..., n : v0 = p0 − p1, ... , vn−1 =
pn−1 − pn, vn = pn, and taking into account the equation (4.4), problem (1.2), with the
shape constraint, can be written as

min(max)
n∑

i=1

ivi

subject to
n∑

i=0

(i + 1)vi = 1

n∑
i=1

(i + 1)ivi = 2S1 (4.18)

n∑
i=2

(i + 1)i(i − 1)vi = 6S2

v0, ..., vn � 0 .
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We can see that for problem (4.18) the conditions of Theorem 2 are satisfied, thus
the dual feasible bases of the problem have the same structures as those mentioned in
Theorem 2.

Since

(
ν

1

)
= ν and

(
ν

2

)
= ν(ν−1)

2 = ν2−ν
2 , substituting μ1 = S1 and μ2 =

2S2 + S1 in the closed bound formulas presented in Section 3.3 for the case of m = 2 ,
we obtain the following sharp bounds for P(ξ � 1) :

2(2i + 1)S1 − 6S2

(i + 1)(i + 2)
� P(ξ � 1) � nj

(n + 1)(j + 2)
+

2(2j + n + 1)S1 − 6S2

(n + 1)(j + 1)(j + 2)
, (4.19)

where i and j are determined by the following inequalities:

i − 1 � 3S2

S1
� i ,

2(n + j)S1 − 6S2 � n(j + 1) , 2(n + j − 1)S1 − 6S2 � nj

4jS1 − 6S2 � j(j + 1) ,

where 1 � i � n − 1 and 0 � j � n − 2 .

5. Numerical Examples

We present numerical examples to show that if the distribution is unimodal and its
mode is known, then by the use of our bounding methodology, we can obtain tighter
bounds for P(ξ � 1) than the second order binomial bounds.

EXAMPLE 1. In order to create example for S1 and S2 we take the following
probability distribution p∗0 = 0.4, p∗1 = 0.3, p∗2 = 0.25, p∗3 = 0.03, p∗4 = 0.02 . With
these probabilities the binomial moments are

S1 =
4∑

i=1

ip∗i = 0.97 and S2 =
4∑

i=2

(
i
2

)
p∗i = 0.46 .

In this case the S1, S2 bounds for P(ξ � 1) are given by the inequalities:

0.51 � P(ξ � 1) � 0.74 .

Now we assume that the probability distribution is decreasing, i.e., p0 � ... � p4 . The
optimal bases are Bmin = (0, 2, 5) and Bmax = (1, 2, 4) .

The following are the improved lower and upper bounds obtained from (4.19):

0.5783 � P(ξ � 1) � 0.6273 .

EXAMPLE 2. Let n = 5, S1 = 3.95, S2 = 7 . Based on S1, S2 we obtain the
bounds

0.88 � P(ξ � 1) � 1 .

If the distribution is increasing, the optimal bases are Bmin = (0, 4, 5) and Bmax =
(0, 2, 5) . By the use of the formulas given in (4.17), the improved sharp lower and
upper bounds for P(ξ � 1) are as follows:

0.94 � P(ξ � 1) � 0.97 .
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EXAMPLE 3. Let n = 10, S1 = 8.393, S2 = 34.625 . The sharp S1, S2 bounds
for P(ξ � 1) are:

0.909 � P(ξ � 1) � 1 .

Now, assume that the distribution is increasing. The optimal basis for the minimum
problem is Bmin = (0, 9, 10) . Note that Bmax = (0, 1, 10) is not primal feasible. Thus,
the optimum value corresponding to a basis that does not contain a0 and the upper
bound for P(ξ � 1) is 1. By the use of formula (4.17), the improved sharp lower and
upper bounds for P(ξ � 1) are as follows:

0.975 � P(ξ � 1) � 1 .

EXAMPLE 4. In the following table we present bounds for P(ξ � 1) with and
without the unimodality condition as well as bounds for the case of relaxed versions of
problems (4.2), (4.3).

Here LB and UB stand for the lower and upper bounds, respectively. Relaxed
problem 1 and 2 are the relaxed versions of problems (4.2) and (4.3), respectively.

In two cases relaxed version of problem (4.3) provides us with better upper bounds
than the relaxed version of problem (4.2), as we can see it in lines 3 and 4. In all cases
the lower bounds, corresponding to relaxed version of problem (4.3), are better than the
ones obtained by the other relaxed problem.

EXAMPLE 5. In order to give an illustration of the reoptimization technique with
the dual method that we have discussed in Section 3.1 and 4.1 we consider the example
in the first line of the table presented in Example 4: n = 10 , k = 6 , S1 = 5.556 ,
S2 = 16.779 .

We consider the relaxed version of problem (4.2) and take Bmin = {0, 5, 6} which
is dual feasible by Theorem 4, as the initial basis. We apply the dual method of linear
programming to obtain the optimal solution. The bases (in terms of subscripts) and
the corresponding objective function values at each iteration are given in the following
table:

Iteration Basis Objective function value

0 {0, 5, 6} 0.88574
1 {0, 6, 7} 0.92066
2 {0, 7, 8} 0.92992
3 {0, 8, 9} 0.93159
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The optimum value of the relaxed problem is obtained at the end of the third iteration.
If we calculate the values of p6 and p7 from the optimal solution, then we obtain
p6 = v0 = 0.0684 , p7 = v8 + v9 = 0.1903 and we see that p6 < p7 . In order to ensure
that the mode of the distribution is 6, we prescribe (4.2a) as additional constraint:

v0 + ... + v5 − v6 − ... − v10 � 0 .

Let us rewrite the constraint in the form

v0 + ... + v5 − v6 − ... − v10 − v11 = 0 ,

where v11 � 0 is slack variable and use the dual method to reoptimize the problem
(see, e.g.: [18]). The bases and the objective function values are given in the following
table:

Iteration Basis Objective function value

4 {0, 8, 9, 11} 0.93159
5 {0, 6, 8, 9} 0.93294
6 {0, 6, 9, 10} 0.93335

The optimum value of the problem with unimodality at k = 6 is 0.93335 .

6. Applications

We present two examples for the application of our bounding technique, where
shape information about the unknown probability distribution can be used.

Example 1. Application in PERT

In PERT we are frequently concerned with the problem to approximate the expec-
tation or the values of the probability distribution of the length of the critical path.

In the paper by Prékopa et al. [20] a bounding technique is presented for the c.d.f.
of the critical, i.e., the longest path under moment information. In that paper first an
enumeration algorithm finds those paths that are candidates to become critical. Then
the joint probability distribution of the path lengths is approximated by a multivariate
normal distribution that serves a basis for the bounding procedure.

In the present example we look at only one path and assume that the random length
of each arc follows beta distribution, as it is usually assumed in PERT. Arc lengths are
assumed to be independent, thus the probability distribution of the path length is the
convolution of beta distributions with different parameters.

The p.d.f. of the beta distribution in the interval (0, 1) is defined as

f (x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1, 0 < x < 1, (6.1)

where Γ(.) is the gamma function, Γ(p) =
∫∞

0 xp−1e−xdx, p > 0 . The kth moment
of this distribution can easily be obtained by the use of the equation∫ 1

0

Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1dx = 1 .
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In fact, ∫ 1

0
xkf (x)dx =

Γ(α + β)
Γ(α)Γ(β)

∫ 1

0
xk+α−1(1 − x)β−1dx

=
Γ(α + β)
Γ(α)Γ(β)

Γ(k + α)Γ(β)
Γ(k + α + β)

=
Γ(α + k)Γ(α + k − 1)...Γ(α + 1)

Γ(α + β + k)Γ(α + β + k − 1)...Γ(α + β + 1)
.

If α, β are integers, then, using the relation: Γ(m) = (m− 1)! , the above expression
takes a simple form.

The beta distribution in PERT is defined over a more general interval (a, b) and
we define its p.d.f. as the p.d.f. of a + (b − a)X , where X has p.d.f. given by (6.1).
In practical problems the values a, b, α, β are obtained by the expert estimations of
the shortest, largest and most probable times to accomplish the job represented by the
arc (see, e.g., [1]).

Let n be the number of arcs in a path and assume that each arc length ξi has
beta distribution with known parameters ai, bi, αi, βi, i = 1, ..., n . Assume that
αi � 1, βi � 1, i = 1, ..., n . We are interested to approximate the values of the c.d.f.
of the path length, i.e., ξ = ξ1 + ... + ξn .

The analytic form of the c.d.f. cannot be obtained in closed form, but we know
that the p.d.f. of ξ is unimodal. In fact, each ξi has logconcave p.d.f., hence the sum
ξ also has logconcave p.d.f. (for the proof of this assertion see, e.g., [17]) and any
logconcave function is also unimodal.

In order to apply our bounding methodology we discretize the distribution of ξ ,
by subdividing the interval

(∑n
i=1 ai,

∑n
i=1 bi

)
and handle the corresponding discrete

distribution as unknown, but unimodal such that some of its first m moments are also
known. In principle any order moment of ξ is known but for practical calculation it is
enough to use the first fewmoments,at least inmany cases, to obtain good approximation
to the values of the c.d.f. of ξ .

The probability functions obtained by the discretizations, using equal length subin-
tervals, are logconcave sequences. In fact, by a theorem of Fekete [6], the convolution
of logconcave sequences are also logconcave (see, also Prékopa, [17], p.108) and any
logconcave sequence is unimodal in the sense of Section 3.1.

In order to apply our methodology we need to know the mode of the distribution
of ξ . A heuristic method to obtain it is the following. We take the sum of the modi of
the terms in ξ = ξ1 + ... + ξn and then compute a few probabilities around it.

Example 2. Application in Reliability

Let A1, ..., An be independent events and define the random variables X1, ..., Xn

as the characteristic variables corresponding to the above events, respectively, i.e.,

Xi =
{

1 if Ai occurs ,
0 otherwise .
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Let pi = P(Xi = 1), i = 1, ..., n . The random variables X1, ..., Xn have logconcave
discrete distributions on the nonnegative integers, consequently the distribution of X =
X1 + ... + Xn is also logconcave on the same set.

In many applications it is an important problem to compute, or at least approximate,
e.g., by the use of bounds, the probability

X1 + ... + Xn � 1 . (6.2)

If I1, ..., IC(n,k) designate the k-element subsets of the set {1, ..., n} and Jl = {1, ..., n}\Il ,
l = 1, ..., C(n, k) , then we have the equation

P(X1 + ... + Xn � 1) =
n∑

k=1

C(n,k)∑
l=1

∏
i∈Il

pi

∏
j∈Jl

(1 − pj) , (6.3)

where C(n, k) =
(

n

k

)
.

If n is large, then the calculation of the probabilities on the right hand side of (6.3)
may be hard, even impossible. However, we can calculate lower and upper bounds for
the probability on the left hand side of (6.3) by the use of the sums:

Sk =
∑

1�i1<...<ik�n

pi1 ...pik =
C(n,k)∑
l=1

∏
i∈Il

pi , k = 1, ..., m , (6.4)

where m may be much smaller than n . Since the random variable X1 + ... + Xn has
logconcave, hence unimodal distribution, we can impose the unimodality condition on
the probability distribution:

P(X1 + ... + Xn = k) , k = 0, ..., n . (6.5)

Then we solve both the minimization and maximization problems presented in Section
4.1, to obtain the bounds for the probability (6.2). If m is small, then the bounds
can be obtained by the formulas of Section 4.1. Note that the largest probability (6.5)
corresponds to

kmax =
⌊
(n + 1)

p1 + ... + pn

n

⌋
.

The inclusion-exclusion formula provides us with the probability (6.2), in terms
of the binomial moments S1, ..., Sn :

P(X1 + ... + Xn � 1) =
n∑

k=1

(−1)k−1Sk . (6.6)

However, to compute higher order binomial moments may be extremely difficult, some-
times impossible. The advantage of our approach is that we use the first few binomial
moments S1, ..., Sm , where m is relatively small and in many cases we can obtain very
good bounds.
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