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Abstract. In this paper, we established the strong convergence of Browder type iteration {xt} for
the multivalued nonexpansive nonself-mapping T satisfying the weakly inwardness condition in
a reflexive and strictly convex Banach space E with a uniformly Gâteaux differentiable norm or
in a reflexive Banach space with weakly sequentially continuous duality mapping. Furthermore,
we also obtained the strong convergent results for the Halpern type iteration {xn} for multivalued
nonexpansive nonself-mapping T .

1. Introduction

Let E be a Banach space and K a nonempty subset of E . We shall denote by
2E the family of all subsets of E , CB(E) the family of nonempty closed and bounded
subsets of E and denote C(E) by the family of nonempty compact subsets of E and
CC(E) stands for the family of nonempty compact convex subsets of E . Let H be the
extended Hausdorff metric on the nonempty closed subsets of E , that is,

H(A, B) = max{ρ � 0 : A ⊆ Nρ(B) and B ⊆ Nρ(A)},

where Nρ(S) = {u ∈ E : inf
x∈S

‖u − x‖ � ρ}. It is well known that, if A, B ∈ CB(E) ,

then H is the Hausdorff metric as usual. For more detail, see Kirk[8] and Xu[25].
A mapping T : K → 2E is called nonexpansive (resp., contractive) if, for any

x, y ∈ K ,

H(Tx, Ty)‖ � ‖x − y‖,
(resp., H(Tx, Ty) � k‖x − y‖ for some k ∈ (0, 1)).

Since Banach’s Contraction Mapping Principle was extended nicely to multivalued
mappings by Nadler [13] in 1969, many authors have studied the fixed point theory for
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multivalued mappings (e.g., see [1–3, 6, 8–11, 16, 25, 27]). For example, Downing and
Kirk [3] proved the following result in 1977.

THEOREM DK. ([3]) Let K be a nonempty closed convex subset of a Banach space
E and T : K → C(E) be a contraction. If T(x) ∈ cl(IK(x)) for each x ∈ K , then T
has a fixed point.

Recently, another results for multivalued contractive mappings were obtained by
Kirk [8] via the transfinite induction arguments and the extended Hausdorff metric on
the nonempty closed subsets of E .

THEOREM K. ([8]) Let D be a nonempty closed subset of a Banach space E and
T : D → 2X \∅ be a multivalued contraction with closed values which is weakly inward
on D . Then T has a fixed point.

The above result (Theorem K) was proved by Xu [25] in 2001 for the mapping T
satisfying the condition that each x ∈ E has a nearest point in Tx .

The following theorem for multivalued nonexpansive mappings was given by Xu
[25] also.

THEOREM X. If C is a compact convex subset of a Banach space E and T : C →
CC(E) is a nonexpansive mapping satisfying the boundary condition:

Tx ∩ IC(x) �= ∅, ∀x ∈ C,

then T has a fixed point.

Let K b e a nonempty closed convex subset of a Banach space E and, for all
u ∈ K and t ∈ (0, 1) , a nonexpansive mapping T : K → C(E) be weakly inward on
K . Then we can define a contraction Gt : K → C(E) by Gtx := (1− t)Tx + tu for all
x ∈ K . Theorem DK or Theorem K assures that there exists xt ∈ K (non-unique, in
general, see [13]) such that

xt ∈ (1 − t)Txt + tu. (1.1)

For a single valued nonexpansive self- or nonself- mapping T , the strong convergence
of {xt} as t → 0 was studied in Hilbert space or certain Banach spaces by many authors
(see [6, 11, 17, 21–24]). However, a simple example given by Pietramala [15] shows that
the sequence {xt} doesn’t converge strongly as t → 0 for multivalued nonexpansive
mappings even if E is Euclidean (also see [7]).

Now, a natural question arises whether the strongly convergent results of {xt} or
{xn} defined by (1.2) for single valued nonexpansive mapping T can be extended to
the multivalued case:

xn+1 ∈ (1 − αn)Txn + αnu. (1.2)

In 1995, G. Acedo and Xu [1] gave the strong convergence of {xt} under the
restriction F(T) = z in Hilbert space. Recently, Sahu [16] also studied the multivalued
case in a uniformly convex Banach space with a uniformly Gáteaux differentiable norm.
Very recently, Jung [7] obtained strong convergence theorems for {xt} of multivalued
nonexpansive nonself-mappings in the frame of uniformly convex Banach spaces with
a uniformly Gáteaux differentiable norm.
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In this paper, we establish the strong convergence of {xt} defined by (1.1) for the
multivalued nonexpansive nonself-mapping T satisfying the inwardness condition in a
reflexive and strictly convex Banach space E with a uniformly Gáteaux differentiable
norm. We also study the strong convergence of {xt} in a reflexive Banach space
with weakly sequentially continuous duality mapping. Our results improve and extend
the results in [6, 11, 17, 21–24] to the multivalued case and give the extensions and
complements of the results of Jung [7], Acedo and Xu [1] and other existent literatures.
Furthermore, we obtain the strong convergent results for the explicit iteration {xn}
defined by (1.2) for multivalued nonexpansive nonself-mapping T .

2. Preliminaries

Let E be a real Banach space and J denote the normalized duality mapping from
E into 2E∗

given by

J(x) = {f ∈ E∗ : 〈 x, f 〉 = ‖x‖‖f ‖, ‖x‖ = ‖f ‖}, ∀x ∈ E,

where E∗ is the dual space of E and 〈 ·, ·〉 denotes the generalized duality pairing. In
the sequel, we denote the single-valued duality mapping by j and denote F(T) = {x ∈
D(T) : x ∈ Tx} , the fixed point set of T , where D(T) is domain of T . If K ⊂ E ,
then cl(K) , int(K) and ∂(K) will stand for the closure, interior and boundary of K ,
respectively. We denote the weak convergence of the sequence {xn} to x as xn ⇀ x
and the strong convergence of the sequence xn as xn → x , respectively.

For all x ∈ K , we define the inward set IK(x) as follows ([8, 15, 16, 21, 22, 25]):

IK(x) = {y ∈ E : y = x + λ (z − x), z ∈ K, λ � 0}.

We say that a mapping T : K → 2E satisfies the inward condition if Tx ⊂ IC(x)
for all x ∈ K and the mapping T satisfies the weakly inward condition if, for each
x ∈ K , Tx ⊂ cl(IK(x)) . Clearly, K ⊂ IK(x) and it is not hard to show that IK(x) is a
convex set as K does.

If Banach space E admits sequentially continuous duality mapping J from weak
topology to weak star topology, then, by [5, Lemma 1], we know that the duality
mapping J is single-valued. In this case, the duality mapping J is also said to be
weakly sequentially continuous, that is, if {xn} is a subset of E with xn ⇀ x , then
J(xn)

∗
⇀ J(x) .

A Banach space E is said to be satisfy Opial’s condition [14] if, for any sequence
{xn} in E , xn ⇀ x (n → ∞ ) implies

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀y ∈ E (x �= y).

We know that Hilbert spaces and lp(l < p < ∞) satisfy Opial’s condition and
Banach spaces with weakly sequentially continuous duality mappings satisfy Opial’s
condition [5, 27].
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Recall that the norm of a Banach space E is said to be Gâteaux differentiable (or
E is said to be smooth) if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.1)

exists for all x, y on the unit sphere S(E) of E . Moreover, if, for all y ∈ S(E) , the limit
defined by (2.1) is uniformly attained for each x ∈ S(E) , then we say that the norm of E
is uniformly Gâteaux differentiable. The norm of E is said to be Fréchet differentiable
if, for all x ∈ S(E) , the limit (2.1) is attained uniformly for each y ∈ S(E) . The norm
of E is said to be uniformly Fréchet differentiable (or E is said to be uniformly smooth)
if the limit (2.1) is attained uniformly for all (x, y) ∈ S(E)× S(E) .

A Banach space E is said to strictly convex if

‖x‖ = ‖y‖ = 1, x �= y implies
‖x + y‖

2
< 1.

A Banach space E is said to uniformly convex if δE(ε) > 0 for all ε > 0 , where δE(ε)
is modulus of convexity of E defined by

δE(ε) = inf{1 − ‖x + y‖
2

: ‖x‖ � 1, ‖y‖ � 1, ‖x − y‖ � ε}, ∀ε ∈ [0, 2].

The following results are well known (see [12, 20]):
(i) The duality mapping J in a smooth Banach space E is single valued and strong-

weak ∗ continuous ([20, Lemma 4.3.3]).
(ii) If E is a Banach space with a uniformly Gâteaux differentiable norm, then

the mapping J : E −→ E∗ is single-valued and norm to weak star uniformly
continuous on bounded sets of E ([20, Theorem 4.3.6]).

(iii) A uniformly convex Banach space E is reflexive and strictly convex ([20, Theo-
rem 4.1.6, Theorem 4.1.2]).

If C and D are nonempty subsets of a Banach space E such that C is nonempty
closed convex and D ⊂ C , then a mapping P : C → D is called a retraction from C
to D if P is continuous with F(P) = D . A mapping P : C → D is said to be sunny if

P(Px + t(x − Px)) = Px, ∀x ∈ C,

whenever Px + t(x − Px) ∈ C and t > 0 . A subset D of C is called a sunny
nonexpansive retract of C if there exists a sunny nonexpansive retraction of C onto
D . For some more details, see [5, 20].

The following lemma is well known [5, 7, 20]:

LEMMA 2.1. Let C be a nonempty convex subset of a smooth Banach space E ,
D ⊂ C , J : E → E∗ be the (normalized) duality mapping of E and P : C → D be a
retraction. Then the following are equivalent:

(1) 〈 x − Px, j(y − Px)〉 � 0 for all x ∈ C and y ∈ D.
(2) P is both sunny and nonexpansive.

In the sequel, we also need the following lemma that can be found in the existing
literature [23, 24]:
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LEMMA 2.2. Let {an} be a sequence of nonnegative real numbers satisfying the
property:

an+1 � (1 − γn)an + γnβn, ∀n � 0,

where {γn} ⊂ (0, 1) and {βn} ⊂ R such that

(i)
∞∑
n=0

γn = ∞ ,

(ii) lim sup
n→∞

βn � 0 or
∞∑
n=1

|γnβn| < +∞.

Then {an} converges to zero as n → ∞ .

Let μ be a continuous linear functional on l∞ satisfying ‖μ‖ = 1 = μ(1). Then
we know that μ is a mean on N if and only if

inf{an : n ∈ N} � μ(a) � sup{an : n ∈ N}
for all a = (a1, a2, · · · ) ∈ l∞. Sometime, we use μn(an) instead of μ(a) . A mean μ
on N is called a Banach limit if

μn(an) = μn(an+1)

for all a = (a1, a2, · · · ) ∈ l∞.
Furthermore, we know the following result [19, Lemma 1] and [20, Lemma 4.5.4]:

LEMMA 2.3. ([19, Lemma 1]) Let C be a nonempty closed convex subset of a
Banach space E with a uniformly Gâteaux differentiable norm. Let {xn} be a bounded
sequence of E and μ be a mean on N . let z ∈ C . Then

μn‖xn − z‖2 = min
y∈C

μn‖xn − y‖2

if and only if
μn〈 y − z, j(xn − z)〉 � 0, ∀y ∈ C.

3. The strongly convergent theorems of {xt}

PROPOSITION 3.1. Let K be a nonempty convex subset of a Banach space E .
Suppose that T : K → 2E \ ∅ is a nonexpansive mapping with closed values which is
weakly inward on K . Then we have the following:

(1) For any t ∈ (0, 1) and u ∈ K , there exists xt ∈ K such that

xt ∈ tu + (1 − t)Txt. (3.1)

In addition, suppose that F(T) �= ∅ satisfying T(y) = {y} for any y ∈ F(T) .
(2) For any fixed y ∈ F(T) , ‖xt − y‖2 � 〈 u − y, j(xt − y)〉 .

(3) {xt} is bounded and, moreover, lim
t→0

d(xt, Txt) = 0 .

(4) For any y ∈ F(T) , 〈 xt − u, j(xt − y)〉 � 0.
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Proof. For any given t ∈ (0, 1) , we can define a multivalued contraction Gt :
K → 2E \ ∅ by Gt = tu + (1 − t)T for u ∈ K . It is easily proved by the weak
inwardness of T and the convexity of K that Gt is weak inward on K . An application
of Theorem K yields a fixed point xt of Gt for each t ∈ (0, 1) , that is, there exists
xt ∈ K such that xt ∈ tu + (1 − t)Txt. Thus (1) is proved.

Notice that the assumptions that F(T) �= ∅ and T(y) = {y} for any fixed point
y ∈ F(T) guarantee (2) and (3). In fact, for any given xt , there exists yt ∈ Txt such
that

xt = tu + (1 − t)yt. (3.2)

For any given y ∈ F(T) , we have

‖xt − y‖2 =t〈 u − y, j(xt − y)〉 + (1 − t)〈 yt − y, j(xt − y)〉
�t〈 u − y, j(xt − y)〉 + (1 − t)d(yt, Ty)‖j(xt − y)‖
�t〈 u − y, j(xt − y)〉 + (1 − t)H(Txt, Ty)‖xt − y‖
�t〈 u − y, j(xt − y)〉 + (1 − t)‖xt − y‖2

and so
‖xt − y‖2 � 〈 u − y, j(xt − y)〉 � ‖u − y‖‖xt − y‖. (3.3)

If ‖xt − y‖ = 0, then the result is obvious. Let ‖xt − y‖ > 0 . Then it follows
from (3.3) that

‖xt − y‖ � ‖u − y‖.
This shows the boundedness of the net {xt} . From (3.2), we obtain

‖yt‖ =
‖xt − tu‖

1 − t
� ‖xt‖ + t‖u‖

1 − t
.

Therefore, yt is also bounded (as t → 0 ). Hence, as t → 0 ,

d(xt, Txt) � ‖xt − yt‖ = t‖u − yt‖ → 0,

that is,
lim
t→0

d(xt, Txt) = 0. (3.4)

This shows (2) and (3).
Finally, we prove (4). It follows from (2) that

〈 xt − u, j(xt − y)〉 =〈 xt − y, j(xt − y)〉 + 〈 y− u, j(xt − y)〉
=‖xt − y‖2 − 〈 u − y, j(xt − y)〉 � 0.

This completes the proof. �

Subsequently, we show the strongly convergent theorems of xt as t → 0. Recall
that a set A of M is a Chebyshev set if, for all x ∈ M , there exists a unique
element y ∈ A such that d(x, y) = d(x, A) , where (M, d) is a metric space and
d(x, A) = infy∈A d(x, y) .
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THEOREM 3.2. Let E be a reflexive and strictly convex Banach space with a
uniformly Gâteaux differentiable norm, K be a nonempty closed convex subset of E
and T : K → C(E) be a nonexpansivemappingwhich is weakly inward on K . Suppose
that F(T) �= ∅ satisfying T(y) = {y} for any fixed point y ∈ F(T) . Then, as t → 0 ,
the net {xt} defined by (3.1) converges strongly to a fixed point of T .

Proof. It follows from Proposition 3.1 (3) that the net {xt} is bounded. We claim
that the set {xt : t ∈ (0, 1)} is sequentially compact. As the matter of fact, suppose that
xn := xtn and

g(x) = μn‖xn − x‖2, ∀x ∈ K,

where {tn} be a sequence in (0, 1) that converges to 0 (n → ∞) and μn is a Banach
limit. Define the set

K1 = {x ∈ K; g(x) = inf
y∈K

g(y)}.
Since E be a reflexive Banach space, K1 is a nonempty bounded closed convex subset
of K ⊂ E (see [20, Theorem 1.3.11]). For all x ∈ K1 , the compactness of Tx implies
that there exists zn ∈ Tx such that ‖xn − zn‖ = d(xn, Tx) and zn → z ∈ Tx . Since
lim

n→∞ d(xn, Txn) = 0 by Proposition 3.1 (3), we have

g(z) = μn‖xn − z‖2 � μn(‖xn − zn‖ + ‖zn − z‖)2

= μnd(xn, Tx)2 � μn(d(xn, Txn) + H(Txn, Tx))2

� μn‖xn − x‖2 = g(x).

Hence z ∈ Tx∩K1 , that is, Tx∩K1 �= ∅ for all x ∈ K1 . Since F(T) �= ∅ , let y ∈ F(T) .
Since every nonempty closed convex subset of a strictly convex and reflexive Banach
space E is a Chebyshev set (see [12, Corollary 5.1.19]), there exists a unique element
q ∈ K1 such that

‖y − q‖ = inf
x∈K1

‖y − x‖.
By Tq ∩ K1 �= ∅ , taking z∗ ∈ Tq ∩ K1 and using Ty = {y} , then we have

‖y − z∗‖ = d(Ty, z∗) � H(Ty, Tq) � ‖y − q‖.
Hence q = z∗ ∈ Tq by the uniqueness of q in K1 . Using Lemma 2.3 and the definition
of K1 , we get

μn〈 x − q, j(xn − q)〉 � 0, ∀x ∈ K.

By Proposition 3.1 (2), taking x = u ∈ K , then we have

μn‖xn − q‖2 � μn〈 u − q, j(xn − q)〉 � 0,

that is,
μn‖xn − q‖2 = 0.

Therefore, {xn} exists a subsequence which still denotes {xn} strongly converge to
q ∈ F(T) .

Next, we show that xt → q as t → 0 . Since the net {xt} is boundedand the duality
mapping J is single-valued and norm to weak ∗ uniformly continuous on bounded sets
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of a Banach space E with uniformly Gâteaux differentiable norm, we have that, for any
y ∈ F(T) , as xn → q and n → ∞ ,

|〈 xn − u, j(xn − y)〉 − 〈 q − u, j(q − y)〉 |
= |〈 xn − q, j(xn − y)〉 + 〈 q − u, j(xn − y) − j(q − y)〉 |
� ‖xn − q‖‖xn − y‖ + |〈 q − u, j(xn − y) − j(q − y)〉 | → 0.

(3.5)

Therefore, from Proposition 3.1 (4), for any y ∈ F(T) ,

〈 q − u, j(q − y)〉 = lim
n→∞〈 xn − u, j(xn − y)〉 � 0.

To prove that the entire net {xt} converges to q , suppose that there exists another
sequence {xsk} ⊂ {xt} such that xsk → p as sk → 0 . Then we also have p ∈ F(T)
and 〈 q − u, j(q − y)〉 � 0 . Now, interchanging y and p or q , then we obtain

〈 q − u, j(q − p)〉 � 0, 〈 p − u, j(p − q)〉 � 0.

Thus we have
‖p − q‖2 = 〈 p − q, j(p − q)〉 � 0.

That is, p = q. Therefore, we have proved that the set {xt} is sequentially compact
and each cluster point of {xt} (as t → 0 ) equals q ∈ F(T) . Therefore, xt → q as
t → 0. This completes the proof. �

COROLLARY 3.3. Let E be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm, K be a nonempty closed convex subset of E and T :
K → C(E) be a nonexpansive mapping which is weakly inward on K . Suppose that
F(T) �= ∅ satisfying T(y) = {y} for any fixed point y ∈ F(T) . Then, as t → 0 , the
net {xt} defined by (3.1) converges strongly to a fixed point of T .

REMARK 3.1. (1) Both Theorem 3.2 and Corollary 3.3 can be considered as an
extension of Theorem 1 in [7] from uniformly convex Banach spaces to reflexive and
strictly convex Banach spaces. At the same time, Theorem 3.2 also doesn’t use the
hypothesis for K as a nonexpansive retract of E .

(2) Theorem 3.2 extends Theorem 3.1 in [18] to the multivalued version and
Corollary 3.3 extend also the main results of [6, 11, 21–24] to the multivalued version.

(3) Corollary 3.3 can be apply to all Lp spaces or lp spaces for 1 < p < ∞ .

THEOREM 3.4. Let E be a reflexive Banach space with weakly sequentially contin-
uous duality mapping, K be a nonempty closed convex subset of E and T : K → C(E)
be a nonexpansive mapping which is weakly inward on K . Suppose that F(T) �= ∅ sat-
isfying T(y) = {y} for any fixed point y ∈ F(T) . Then, as t → 0 , the net {xt} defined
by (3.1) converges strongly to a fixed point of T . In this case, letting Pu = lim

t→0
xt ,

then P is unique sunny nonexpansive retraction from K to F(T) .

Proof. Similarly to Theorem 3.2, we firstly show that the set {xt : t ∈ (0, 1)} is
sequentially compact. Indeed, since E is reflexive, the boundedness of the net {xt}
implies that {xt} is weakly sequentially compact (see [20, Theorem 1.2.14]). Namely,
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there exists a weakly convergence subsequence {xtn} ⊆ {xt} , where {tn} is a sequence
in (0, 1) that converges to 0 as n → ∞ .

Now, we suppose xn := xtn and xn ⇀ p ∈ K . For this p , the compactness of Tp
implies that there exists zn ∈ Tp such that

‖xn − zn‖ = d(xn, Tp), zn → z ∈ Tp.

Assume that z �= p . Since lim
n→∞ d(xn, Txn) = 0 by Proposition 3.1 (3), in Banach spaces

with weakly sequentially continuous duality mappings satisfying Opial’s condition (see
[5, Theorem 5]), then we have

lim sup
n→∞

‖xn − z‖ � lim sup
n→∞

(‖xn − zn‖ + ‖zn − z‖)
= lim sup

n→∞
d(xn, Tp)

� lim sup
n→∞

(d(xn, Txn) + H(Txn, Tp))

� lim sup
n→∞

‖xn − p‖
< lim sup

n→∞
‖xn − z‖,

(3.6)

which is a contradiction. Hence p = z ∈ Tp . From Proposition 3.1 (2), interchanging
p and y , then we obtain

‖xn − p‖2 � 〈 u − p, j(xn − p)〉 .

Using the fact that j is weakly sequentially continuous, we get

xn → p (n → ∞).

Thus we have proved that there exists a subsequence {xtn} of {xt : t ∈ (0.1)} that
converges to a fixed point p of T .

To prove that the entire net {xt} converges to p , suppose that there exists another
subsequence {xsk} ⊂ {xt} such that xsk → q as sk → 0 . Then we also have q ∈ F(T) .

Since the set {xt} is bounded and the duality map J is single-valued and weakly
sequentially continuous from E to E∗ , using the same argument as in (3.5), for any
y ∈ F(T) , we get

〈 q − u, j(q − y)〉 = lim
sk→0

〈 xsk − u, j(xsk − y)〉 � 0

and
〈 p − u, j(p − y)〉 = lim

n→∞〈 xtn − u, j(xtn − y)〉 � 0.

Using similar methods to Theorem 3.2, we have p = q and xt → p as t → 0 .
Furthermore, p is the unique solution in F(T) satisfying the following variational
inequality:

〈 p − u, j(p − y)〉 � 0, ∀y ∈ F(T).
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Let Pu = lim
t→0

xt for any u ∈ K . Then we have

〈Pu − u, j(Pu − y)〉 � 0, ∀y ∈ F(T).

It follows from Lemma 2.1 that P is unique sunny nonexpansive retraction from K to
F(T) . This complete the proof. �

REMARK 3.2. Theorem 3.4 can be considered as the multivalued version of [26,
Theorem 3.1] and [17, Theorem 2.2 ].

COROLLARY 3.5. Let E be a reflexive Banach space with weakly sequentially
continuous duality mapping, K be a nonempty closed convex subset of E and T : K →
C(K) be a nonexpansive mapping. Suppose that F(T) �= ∅ satisfying T(y) = {y} for
any fixed point y ∈ F(T) . Then F(T) is a sunny nonexpansive retract of K . In this
case, if xt is defined by (3.1) and Pu = lim

t→0
xt , then P is unique sunny nonexpansive

retraction from K to F(T) .

4. The strongly convergent theorems of {xn}

LEMMA 4.1. ([13]) Let X be a complete metric space and A, B ∈ C(X) . Then,
for any a ∈ A , there exists b ∈ B such that

d(a, b) � H(A, B).

Let K be a nonempty closed convex subset of Banach space E and T : K → C(K)
be a multivalued nonexpansive mapping. Let αn ∈ (0, 1) and x0 ∈ K . For any given
u ∈ K , let y0 ∈ Tx0 such that

x1 = α0u + (1 − α0)y0.

By Lemma 4.1, we can choose y1 ∈ Tx1 such that

‖y0 − y1‖ � H(Tx0, Tx1).

For the point y1 , let
x2 = α1u + (1 − α1)y1.

Inductively, we can get the sequence {xn} as follows:

xn+1 = αnu + (1 − αn)yn, ∀n ∈ N, (4.1)

where, for each n ∈ N , yn ∈ Txn is such that

‖yn − yn−1‖ � H(Txn, Txn−1).

Subsequently, we show the strong convergence of {xn} .
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THEOREM 4.2. Let E be a reflexive Banach space with weakly sequentially contin-
uous duality mapping, K be a nonempty closed convex subset of E and T : K → C(K)
be a nonexpansive mapping. Suppose that F(T) �= ∅ satisfying T(y) = {y} for any
fixed point y ∈ F(T) , {xn} is defined by (4.1) and αn ∈ (0, 1) satisfy the following
conditions:

(i) αn → 0 as n → ∞,

(ii)
∞∑
n=0

αn = ∞,

(iii) either
∞∑

n=0
|αn+1 − αn| < +∞ or lim

n→∞
αn

αn+1
= 1 .

Then, as n → ∞ , the sequence {xn} converges strongly to Pu , where P is unique
sunny nonexpansive retraction from K to F(T) .

Proof. First, we show that {xn} is bounded. Taking a point p ∈ F(T) (noting
Tp = {p} ), then we have

‖xn+1 − p‖ �(1 − αn)‖yn − p‖ + αn‖u − p‖
=(1 − αn)d(yn, Tp) + αn‖u − p‖
�(1 − αn)H(Txn, Tp) + αn‖u − p‖
�(1 − αn)‖xn − p‖ + αn‖u − p‖
� max{‖xn − p‖, ‖u − p‖}
...

� max{‖x0 − p‖, ‖u − p‖}.
Thus {xn} is bounded and so is {yn} by (4.1) and the condition (i). Then we have

lim
n→∞ ‖xn+1 − yn‖ = lim

n→∞αn‖u − yn‖ = 0. (4.2)

Now, we claim that
lim

n→∞ ‖xn+1 − xn‖ = 0. (4.3)

Indeed, for some appropriate constant M > 0 , we have

‖xn+1 − xn‖ = ‖αnu + (1 − αn)yn − (αn−1u + (1 − αn−1)yn−1)‖
� (1 − αn)‖yn − yn−1‖ + ‖(αn − αn−1)(u − yn−1)‖
� (1 − αn)H(Txn, Txn−1) + |αn − αn−1|‖u − yn−1‖
= (1 − αn)‖xn − xn−1‖ + M|αn − αn−1|.

By the conditions (ii) and (iii), we have

∞∑

n=0

αn = ∞,

∞∑

n=0

M|αn − αn−1| < +∞,
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or

lim
n→∞M

∣∣∣∣1 − αn−1

αn

∣∣∣∣ = 0.

Therefore, it follows from Lemma 2.2 that (4.3) follows. Combining (4.2) and (4.3),
we get

d(xn, Txn) � ‖xn − yn‖ → 0,

that is,
lim

n→∞ d(xn, Txn) = 0. (4.4)

From Corollary 3.5, we know that F(T) is a sunny nonexpansive retract of K and P
is the unique sunny nonexpansive retraction of K onto F(T) .

Next, We show that

lim sup
n→∞

〈 u − Pu, j(xn+1 − Pu)〉 � 0. (4.5)

Indeed, we can take a subsequence {xnk+1} of {xn+1} such that

lim sup
n→∞

〈 u − Pu, j(xn+1 − Pu)〉 = lim
nk→∞〈 u − Pu, j(xnk+1 − Pu)〉 .

We may assume that xnk ⇀ x∗ by the reflexivity of E and the boundedness of {xn} .
Using the same technique as in (3.6) of Theorem 3.4 and (4.4), then we obtain that
x∗ ∈ F(T) . Hence, by Lemma 2.1 and the fact that the duality mapping J is weakly
sequentially continuous from E to E∗ , we obtain

lim sup
n→∞

〈 u − Pu, j(xn+1 − Pu)〉 = 〈 u − Pu, j(x∗ − Pu)〉 � 0.

Finally, we show that xn → Pu as n → ∞ . In fact, since

‖yn − Pu‖ = d(yn, T(Pu)) � H(Txn, T(Pu)) � ‖xn − Pu‖,
we have

‖xn+1 − Pu‖2

= (1 − αn)〈 yn − Pu, j(xn+1 − Pu)〉 + αn〈 u − Pu, j(xn+1 − Pu)〉

� (1 − αn)
‖yn − Pu‖2 + ‖j(xn+1 − Pu)‖2

2
+ αn〈 u − Pu, j(xn+1 − Pu)〉

� (1 − αn)
‖xn − Pu‖2

2
+

‖xn+1 − Pu‖2

2
+ αn〈 u − Pu, j(xn+1 − Pu)〉 .

Therefore, it follows that

‖xn+1 − Pu‖2 � (1 − αn)‖xn − Pu‖2 + 2αn〈 u − Pu, j(xn+1 − Pu)〉 . (4.6)

By the condition (ii) and the inequality (4.5), if we apply Lemma 2.2 to (4.6), then we
have

lim
n→∞ ‖xn − Pu‖ = 0.

This completes the proof. �
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REMARK 4.1. (1) Theorem 4.2 can be taken for the multivalued version of Theorem
2.4 in [17].

(2) The strong convergence of explicit iterates of multivalued nonexpansive map-
pings is attained in Theorem 4.2, which complements and develops some existence
results. In particular, the implicit iterates in the literatures (see [7, 10, 15, 26]) are
evolved to the explicit iterates. We don’t know whether Theorem 4.2 still holds in a
reflexive strictly convex and smooth Banach space or uniformly smooth Banach space.
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