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A BEST POSSIBLE INEQUALITY FOR

CURVATURE–LIKE TENSOR FIELDS

JOHN BOLTON, FRANKI DILLEN, JOHAN FASTENAKELS AND LUC VRANCKEN

(Communicated by S. Varošanec)

Abstract. We give an inequality for curvature-like tensor fields and apply this to Lagrangian
submanifolds of complex space forms and to centroaffine hypersurfaces. In both settings we
investigate the equality case and give a classification theorem if equality is attained at every point
of the submanifold. We also provide an example showing that this inequality is best possible, in
a sense explained in the paper.

1. Introduction

In differential geometry of submanifolds theorems which relate intrinsic and ex-
trinsic curvatures play an important role. A major achievement in this research area
was obtained by B.Y. Chen in [3] in 1993. In this paper he introduced a new curvature
invariant, which was thereafter named the δ curvature of Chen, given by the following
definition

δ (p) = τ(p)− (infK)(p), (1)

where τ is the scalar curvature and (infK)(p) is the infimum of the sectional curvatures
at the point p . In this paper he also proved an inequality relating δ and the mean cur-
vature H for submanifolds in real space forms. Immersions of submanifolds for which
equality is attained at every point in this inequality were later called ideal immersions
and they were intensively studied by many geometers. For an overview we refer to [4].

Similar inequalities were obtained for Lagrangian submanifolds of complex space
forms and for centroaffine hypersurfaces in R

n+1 , see for instance [6], [12], [13], [10]
and [7]. Recently this inequality for the Lagrangian case was improved by T. Oprea
in [15] using optimization techniques. In this article we prove a similar inequality for
curvature-like tensor fields and give at the same time an alternative algebraic proof
for Oprea’s result. From this general inequality we can find Oprea’s inequality in the
Lagrangian case and an inequality for centroaffine hypersurfaces in Rn+1 which im-
proves an inequality from [12]. The inequality of Chen and this improvement reduce to
the same inequality if the mean curvature of the Lagrangian submanifold, respectively
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the Tchebychev form of the centroaffine hypersurface, vanishes. We also show that if
equality is attained in the improved inequality then these quantities do indeed vanish if
the dimension is greater than or equal to 4. For the case that the dimension is 3, we give
some classification theorems.

2. Preliminaries

Let (M,g) be any Riemannian n -manifold and let T be a (0,4)-tensor field on
M . We say that T is curvature-like if T satisfies the following symmetry properties

T (X ,Y,Z,W ) = −T (Y,X ,Z,W ),
T (X ,Y,Z,W ) = −T (X ,Y,W,Z),
T (X ,Y,Z,W ) + T (X ,Z,W,Y )+T (X ,W,Y,Z) = 0,

for all tangent vector fields X ,Y,Z and W of M . If T is a curvature-like tensor field,
then we can talk about the sectional curvature KT (π) = T (X ,Y,Y,X) associated with a
2-plane section π ⊂ TpM , p ∈ M spanned by the orthonormal vectors X and Y , and
about the scalar curvature

τT (p) =∑
i< j

T (ei,e j,e j,ei), (2)

where {e1,e2, . . . ,en} is an orthonormal basis of TpM .
As in [7], we can define for every curvature-like tensor field T the curvature in-

variant δT by
δT (p) = τT (p)− inf

π⊂TpM
{KT (π)}. (3)

Now let (B,g) be any Riemannian vector bundle over M and let μ be a B-valued
symmetric (1,2)-tensor field. If T is a (0,4)-tensor field on M such that

T (X ,Y,Z,W ) = g(μ(Y,Z),μ(X ,W ))−g(μ(X ,Z),μ(Y,W )) , (4)

for all tangent vector fields X ,Y,Z,W, then one easily checks that T is curvature-like.
Equation (4) is said to be an algebraic Gauss equation. A typical example is given
for a submanifold M of Euclidean space, if B is the normal bundle, μ the second
fundamental form and T the curvature tensor.

For the rest of the article we take the vector bundle B to be the tangent bundle TM
of M and we suppose that g(μ(X ,Y ),Z) is totally symmetric.

3. An inequality for δ

In [15] Oprea gave a proof for an improved inequality for the δ -invariant of B.Y.
Chen for Lagrangian submanifolds of complex space forms using optimization tech-
niques on Riemannian submanifolds. We generalize this to curvature-like tensor fields
and give an algebraic proof.
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THEOREM 1. Let (Mn,g) be a Riemannian manifold of dimension n � 3 , T a
curvature-like tensor field and μ a symmetric (1,2)-tensor field which takes values
in TM . Suppose that T and μ are related by (4) and that g(μ(X ,Y ),Z) is totally
symmetric. Then we have

δT (p) � 2n−3
2(2n+3)

g(trace μ , trace μ), (5)

where trace μ = ∑n
i=1 μ(ei,ei) .

The equality case of inequality (5) holds at a point p∈M if and only if there exists
an orthonormal basis {e1,e2, . . . ,en} at p such that with respect to this basis, μ takes
the following form

μ(e1,e1) = ae1 +3λe3, μ(e1,e3) = 3λe1, μ(e3,e j) = 4λe j,
μ(e2,e2) = −ae1 +3λe3, μ(e2,e3) = 3λe2, μ(e j,ek) = 4λe3δ jk,
μ(e1,e2) = −ae2, μ(e3,e3) = 12λe3, μ(e1,e j) = μ(e2,e j) = 0,

for some numbers a and λ and j,k ∈ {4, . . . ,n} .

The inequality (5) is best possible, in the sense that the constant 2n−3
2(2n+3) cannot be

improved. We will prove this by constructing an example where equality is attained at
one point and traceμ �= 0 at that point.

REMARK 1. In [7] an inequality similar to (5) is proved with constant n−2
2(n−1) . In

fact, the second author wants to point out a misprint in the more general inequality (3.6)
in Theorem 1 of [7]: the factor n2 should be removed.

Proof. Take a point p ∈ M and an orthonormal frame {e1, . . . ,en} in TpM such
that the plane spanned by e1 and e2 minimizes the sectional curvature at the point p .
Then we have from (4) that

τT (p) =
n

∑
r=1

∑
1�i< j�n

μ r
iiμ r

j j −
n

∑
r=1

∑
1�i< j�n

(μ r
i j)

2, (6)

T (e1,e2,e2,e1) =
n

∑
r=1

μ r
11μ

r
22−

n

∑
r=1

(μ r
12)

2, (7)

where μ r
i j = g(μ(ei,e j),er) . Thus we find that

δT (p) =
n

∑
r=1

(
∑

3� j�n

(μ r
11 + μ r

22)μ
r
j j + ∑

3�i< j�n

μ r
iiμ

r
j j − ∑

3� j�n

(μ r
1 j)

2− ∑
2�i< j�n

(μ r
i j)

2

)
.

Using now that g(μ(X ,Y ),Z) is totally symmetric, we have the following inequality

δT (p) �
n

∑
r=1

(
∑

3� j�n

(μ r
11 + μ r

22)μ
r
j j + ∑

3�i< j�n

μ r
iiμ

r
j j

)
− ∑

3� j�n

(μ j
11)

2 − ∑
3� j�n

(μ1
j j)

2 − ∑
i, j∈{2,3,...,n},i�= j

(μ i
j j)

2. (8)



666 J. BOLTON, F. DILLEN, J. FASTENAKELS AND L. VRANCKEN

We first show that for r ∈ {1,2} we have

∑
3� j�n

(μ r
11 + μ r

22)μ
r
j j + ∑

3�i< j�r

μ r
iiμ

r
j j − ∑

3� j�n

(μ r
j j)

2

� 1
2

n−2
n+1

(μ r
11 + μ r

22 + · · ·+ μ r
nn)

2 . (9)

This is equivalent to

−
n

∑
j=3

(
(μ r

11 + μ r
22)−3μ r

j j

)2−3 ∑
3�i< j�n

(μ r
ii − μ r

j j)
2 � 0. (10)

Evidently we have that this inequality holds, moreover we see that we have equality if
and only if μ r

11 + μ r
22 = 3μ r

j j for every j in {3, . . . ,n} .

Since n−2
n+1 < 2n−3

2n+3 for n � 3 we also have that

∑
3� j�n

(μ r
11 + μ r

22)μ
r
j j + ∑

3�i< j�r

μ r
iiμ

r
j j − ∑

3� j�n

(μ r
j j)

2

� 1
2

2n−3
2n+3

(μ r
11 + μ r

22 + · · ·+ μ r
nn)

2 , (11)

with equality if and only if μ r
11 + μ r

22 = 0 and μ r
j j = 0 for every j ∈ {3, . . . ,n} .

Finally we prove that for r ∈ {3, . . . ,n} , we have

∑
3� j�n

(μ r
11 + μ r

22)μ
r
j j + ∑

3�i< j�n

μ r
iiμ

r
j j − ∑

1� j�n, j �=r

(μ r
j j)

2

� 1
2

2n−3
2n+3

(μ r
11 + μ r

22 + · · ·+ μ r
nn)

2 . (12)

This is equivalent to

12 ∑
3� j�n

(μ r
11 + μ r

22)μ r
j j +12 ∑

3�i< j�n

μ r
iiμ r

j j

−3(n+1) ∑
3� j�n, j �=r

(μ r
j j)

2 −3(2n+1)(μ r
11)

2−3(2n+1)(μ r
22)

2

− (2n−3)(μ r
rr)

2 −2(2n−3)μ r
11μ

r
22 � 0. (13)

Now remark that

−2 ∑
3� j�n, j �=r

(μ r
rr −3μ r

j j)
2 −3(μ r

rr −2(μ r
11 + μ r

22))
2

= −(2n−3)(μ r
rr)

2 +12μ r
rr(μ r

11 + μ r
22)+12 ∑

3� j�n, j �=r

μ r
rrμ r

j j

−18 ∑
3� j�n, j �=r

(μ r
j j)

2−12(μ r
11 + μ r

22)
2 . (14)
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Using (14), inequality (13) becomes

12 ∑
3� j�n, j �=r

(μ r
11 + μ r

22)μ r
j j +12 ∑

3�i< j�n, i, j �=r

μ r
iiμ r

j j −3(2n−5) ∑
3� j�n, j �=r

(μ r
j j)

2

−3(2n−3)(μ r
11)

2−3(2n−3)(μ r
22)

2 −2(2n−15)μ r
11μ

r
22

−2 ∑
3� j�n, j �=r

(μ r
rr −3μ r

j j)
2−3(μ r

rr −2(μ r
11 + μ r

22))
2 � 0. (15)

We also note that

− ∑
3� j�n, j �=r

(
2(μ r

11 + μ r
22)−3μ r

j j

)2 = −4(n−3)(μ r
11 + μ r

22)
2

+12 ∑
3� j�n, j �=r

(μ r
11 + μ r

22)μ
r
j j −4 ∑

3� j�n, j �=r

(μ r
j j)

2. (16)

Finally from (16) we find that (15) is equivalent with

− ∑
3� j�n, j �=r

(
2(μ r

11 + μ r
22)−3μ r

j j

)2− (2n+3)(μ r
11− μ r

22)
2

−6

(
∑

3�i< j�n, i, j �=r

(μ r
ii − μ r

j j)
2

)
−2 ∑

3� j�n, j �=r

(
μ r

rr −3μ r
j j

)2
−3(μ r

rr −2(μ r
11 + μ r

22))
2 � 0. (17)

This proves inequality (12). Moreover we see from (17) that we have equality if
and only if

μ r
11 = μ r

22 = 3λ r, (18)

μ r
j j = 4λ r for j ∈ {3, . . . ,n}, j �= r, (19)

μ r
rr = 12λ r, (20)

for a number λ r .
From (9) and (12) we get inequality (5). Combining the two equality cases de-

scribed above with the fact that g(μ(X ,Y ),Z) is totally symmetric, by choosing e1 and
e2 such that μ1

12 = 0 and e3 such that trace μ is parallel with e3 , we get the equality
case of the theorem.

�

4. Lagrangian submanifolds of complex space forms

For the rest of this section we denote by M̃n(4c) a complex space form of constant
holomorphic sectional curvature 4c and real dimension 2n . Recall that for M̃n(4c) the
Riemann curvature tensor R̃ is given by

R̃(X ,Y )Z = c(g(X ,Z)Y −g(Y,Z)X +g(JX ,Z)JY −g(JY,Z)JX +2g(JX ,Y)JZ) (21)
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for all vector fields X ,Y and Z on M̃ .
We call an n -dimensional submanifold M of M̃n(4c) a Lagrangian submanifold

if J(TpM) = T⊥
p M for every p ∈ M .

Now we can use the setting of the previous sections by taking

T (X ,Y,Z,W ) = g(R(X ,Y )Z,W )+ c(g(Y,Z)g(X ,W)−g(X ,Z)g(Y,W)) (22)

with R the Riemannian curvature tensor on M , and μ(X ,Y ) = Jh(X ,Y ) with h the
second fundamental form of the immersion of M into M̃n(4c) . Then we see that

δT = δ − (n−2)(n+1)
2

c,

where δ = δR is defined as in (1). Thus we immediately get the following inequality
for Lagrangian submanifolds in complex space forms.

THEOREM 2. Let (Mn,g) be a Lagrangian submanifold of a complex space form
M̃n(4c) . Then we have

δ (p) � (n−2)(n+1)
2

c+
n2(2n−3)
2(2n+3)

‖H‖2, (23)

where H = 1
n trace h is the mean curvature vector.

The equality case of inequality (23) holds at a point p ∈ M if and only if there
exists an orthonormal basis {e1,e2, . . . ,en} at p such that with respect to this basis, h
takes the following form

h(e1,e1) = aJe1 +3λJe3, h(e1,e3) = 3λJe1, h(e3,e j) = 4λJe j,
h(e2,e2) = −aJe1 +3λJe3, h(e2,e3) = 3λJe2, h(e j,ek) = 4λJe3δ jk,
h(e1,e2) = −aJe2, h(e3,e3) = 12λJe3, h(e1,e j) = h(e2,e j) = 0,

for some numbers a and λ and j,k ∈ {4, . . . ,n} .

This inequality generalizes an inequality of B. Y. Chen in [6] and was proven in a
different way in [15].

We now investigate the equality case. Remark that if the submanifold is minimal,
then the inequality reduces to the inequality of Chen and submanifolds attaining equal-
ity in this inequality were already intensively studied in for instance [8] and [9]. We
first show that this is always the case if n � 4.

THEOREM 3. Let Mn be a Lagrangian submanifold of a complex space form
M̃n(4c) attaining equality in (23) at every point. If n � 4 , then M is minimal.

REMARK 2. This theorem was already proven in [1] for c > 0.

To prove this theorem, we take the same approach as in [1] with a slightly different
argument for c � 0. So now assume that n � 4 and that M has no minimal points, i.e.
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λ is nowhere zero. In this case Je3 is a multiple of the mean curvature vector implying
that λ is a globally defined differentiable function. In accordance to [1] we denote by
T the vector field corresponding to e3 , which is also a globally defined differentiable
vector field, and by D1 the distribution spanned by T .

At every point, the linear symmetric operator AJT has three distinct eigenvalues
of multiplicity respectively 1, 2 and n− 3 (where the first eigenspace is spanned by
T ). Again, in accordance with [1] we let D2 be the 2-dimensional distribution and
D3 the orthogonal (n− 3)-dimensional distribution corresponding to the two other
eigenspaces.

Let {V1,V2} and {W1,W2, . . . ,Wn−3} be a smooth orthonormal basis of D2 re-
spectively D3 .

As we now suppose that M attains equality in (23), it follows that there exist
smooth local functions b and c such that the second fundamental form has the follow-
ing form:

h(V1,V1) = 3λJT +bJV1 + cJV2, h(Vi,T ) = 3λJVi,
h(V2,V2) = 3λJT −bJV1− cJV2, h(T,Wp) = 4λJWp,
h(V1,V2) = cJV1−bJV2, h(Vi,Wp) = 0,
h(T,T ) = 12λJT h(Wp,Wq) = δpq4λJT.

From [1] with λ1 = 12λ , λ2 = 3λ and λ3 = 4λ we get the following lemma where for
the rest of this section V,Ṽ ,V ∗ and W,W̃ ,W ∗ are vector fields belonging to D2 respec-
tively D3 and σ denotes cyclic summation over respectively V,Ṽ ,V ∗ and W,W̃ ,W ∗ .

LEMMA 1. We have

2V(λ ) = λ 〈∇T T,V 〉, (24)

6λ 〈∇VṼ ,T 〉+3T(λ )〈V,Ṽ 〉− 〈h(V,Ṽ),J∇T T 〉 = 0, (25)

4λ 〈∇VW,T 〉−λ 〈∇TV,W 〉 = 0, (26)

3W(λ ) = λ 〈∇T T,W 〉, (27)

4λ 〈∇WW̃ ,T 〉+4T(λ )〈W,W̃ 〉− 〈h(W,W̃),J∇T T 〉 = 0, (28)

6λ 〈∇WV,T 〉−λ 〈∇TV,W〉 = 0, (29)

λ 〈∇VṼ ,W 〉 = 〈h(V,Ṽ ),J∇TW 〉, (30)

λ 〈∇VṼ ,W 〉 = −3W (λ )〈V,Ṽ 〉+ 〈h(V,Ṽ),J∇W T 〉, (31)

−λ 〈∇WW̃ ,V 〉 = 〈h(W,W̃ ),J∇TV 〉, (32)

−λ 〈∇WW̃ ,V 〉 = −3V(λ )〈W,W̃ 〉+ 〈h(W,W̃),J∇VT 〉, (33)

T
(
〈h(V,Ṽ ),JV ∗〉

)
−3V(λ )〈Ṽ ,V ∗〉 (34)

= σ
(
〈h(V,Ṽ ),J∇TV ∗〉

)
−〈h(Ṽ ,V ∗),J∇VT 〉,

T
(
〈h(W,W̃ ),JW ∗〉

)
−4W(λ )〈W̃ ,W ∗〉 (35)

= σ
(
〈h(W,W̃ ),J∇TW ∗〉

)
−〈h(W̃ ,W ∗),J∇W T 〉,
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〈h(V,V1),J∇WW1〉 = 〈h(W,W1),J∇VV1〉. (36)

We now determine the connection coefficients of M as in [1]. We introduce the
following notations in which i, j,k ∈ {1,2} and p,q,r ∈ {1, . . . ,n−3} . We let

(i) Ti denote the D3 component of ∇TVi ,

(ii) V denote the D2 component of grad(12λ ) ,

(iii) W denote the D3 component of grad(12λ ) .

Then we have

∇T T =
1

6λ
V +

1
4λ

W , (37)

〈∇ViVj,T 〉 = −T (λ )
2λ

δi j +
1

36λ 2 〈h(Vi,Vj),JV 〉, (38)

〈∇ViVj,Wp〉 = − 9
λ

Wp(λ )δi j − 1
λ

2

∑
k=1

〈Tk,Wp〉〈h(Vi,Vj)JVk〉, (39)

〈∇WpWq,T 〉 = −T (λ )
λ

δpq +
1

16λ 2 〈h(Wp,Wq),JW 〉, (40)

〈∇WpWq,Vi〉 =
8
λ

Vi(λ )δpq− 1
λ

n−3

∑
k=1

〈Ti,Wr〉〈h(Wp,Wq)JWr〉, (41)

〈∇ViWp,T 〉 =
1
4
〈Ti,Wp〉, (42)

〈∇WpVi,T 〉 =
1
6
〈Ti,Wp〉. (43)

From this we have also the following lemma.

LEMMA 2. We have

3Wp(λ )δi j = δi j9Wp(λ )−
2

∑
k=1

5
6
〈Tk,Wp〉〈h(Vi,Vj),JVk〉, (44)

4Vi(λ )δpq = δpq8Vi(λ )−
n−3

∑
r=1

5
4
〈Ti,Wr〉〈h(Wp,Wq),JWr〉, (45)

δi jδpqT (λ )− 15
16λ

δi j〈h(Wp,Wq),JW 〉− 5
9λ

δpq〈h(Vi,Vj),JV 〉 = 0. (46)

With all this we are able to prove Theorem 3.

Proof of Theorem 3. Assume that there exists a point x and hence a neighbour-
hood of x on which M is not minimal. We construct a smooth local orthonormal frame
{T,V1,V2,W1, . . . ,Wn} , on a (possibly smaller) neighbourhood of x as described above.
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We first show, as in [1], that λ has to be a constant. First note that it follows from
(34) by taking first Ṽ =V ∗ =V1 and then Ṽ =V ∗ =V2 and adding these two equations
that

6V (λ ) = −6λ 〈T,∇TV 〉−2〈h(V,V1),J∇TV1〉−2〈h(V,V2),J∇TV2〉
= 12V (λ )−2〈h(V,V1),JT 〉〈T,∇TV1〉−2〈h(V,V2),JT 〉〈T,∇TV2〉

−2〈h(V,V1),JV2〉(〈V2,∇TV1〉+ 〈∇TV2,V1〉)
= 12V (λ )+6λ 〈∇TT,V 〉 = 24V(λ ).

Hence V (λ ) = 0. Similarly if follows from (35) that W (λ ) = 0. Consequently,
using (37), we have V = W = ∇T T = 0. The third equation of Lemma 2 then implies
that T (λ ) = 0.

Suppose that b2 + c2 �= 0. As λ is a constant and ∇T T = 0, the first equation
of Lemma 2 implies that 〈h(Vi,Vj),J∇TWp〉 = 0. As b2 + c2 �= 0, the above equation
implies that ∇TWp has no D2 component. Consequently for all i , Ti vanishes. From
(38), (39), (40) and (41) we then find that

∇D2D2 ⊂ D2, ∇D3D3 ⊂ D3. (47)

Note that from (38), (39), (40) and (41) we get the same conclusion if b2 + c2 = 0
on an open set. Therefore continuity shows that we have the above condition every-
where.

Using (26), (29) and (47) we get that

〈R(V,W )W,V 〉 = 〈∇V∇WW,V 〉− 〈∇W∇VW,V 〉− 〈∇∇VW−∇WVW,V 〉
= −〈∇VW,T 〉〈∇W T,V〉−∇VW,T 〉〈∇TW,V 〉+ 〈∇WV,T 〉〈∇TW,V 〉
=
(

1
4
· 1
6

+
1
4
− 1

6

)
〈∇TV,W 〉2

=
1
8
〈∇TV,W 〉2.

On the other hand by the Gauss equation we have

〈R(V,W )W,V 〉 = c+12λ 2. (48)

In view of the dimensions we can always find a W ∈ D3 and a V ∈ D2 such that
〈∇TV,W 〉 = 0. Hence we must have

c+12λ 2 = 0 (49)

〈∇TV,W 〉 = 0 for arbitrary V and W . (50)

If c > 0 we immediately get a contradiction from (49).
If c = 0, we also get a contradiction by remarking that H = 0 is equivalent to

λ = 0.
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For the case that c < 0 we need an extra argument. From (49) we get that c =
−12λ 2 . Using this and the equation of Gauss we also find that

〈R(T,V )V,T 〉 = 15λ 2. (51)

We also see that from (50) it follows that ∇TV ∈ D2 . Together with (47) and
∇T T = 0 we have with the definition of the curvature tensor that

〈R(T,V )V,T 〉 = 0. (52)

Thus again we find that λ = 0 which gives a contradiction. �

For the case n = 3 and c > 0 we have the following classification theorem from
[2].

THEOREM 4. Let M be a 3-dimensional non-minimal Lagrangian submanifold of
CP3 which attains equality at every point in (23). Then there is a minimal Lagrangian
surface W in CP2 such that M can be locally written as [E0] where

E0 =
e

it
3√

1+b2
1 +9λ 2

(0,W )+
−b1 +3iλ√
1+b2

1 +9λ 2
(eit ,0,0,0), (53)

where b1 and λ are solutions of the following system of ordinary differential equations:

db1

dt
= −1+27λ 2 +b2

1

9λ
, 3

dλ
dt

=
2
3
b1. (54)

Conversely any 3-dimensional Lagrangian submanifold obtained in this way is non-
minimal and attains equality at each point in (23).

5. Centroaffine hypersurfaces

First we recall some basic facts about centroaffine hypersurfaces. For more details
see for instance [14].

Let Mn be an n -dimensional C∞ -manifold and let f : M → Rn+1 be a non-
degenerate hypersurface whose position vector is nowhere tangent to M . Then f is
a transversal field along itself and we call ξ = − f the centroaffine normal. Following
Nomizu, we call f together with this normalization a centroaffine hypersurface.

The centroaffine structure equations are given by

DX f∗(Y ) = f∗(∇XY )+h(X ,Y)ξ , (55)

DXξ = − f∗(X), (56)

where D denotes the canonical flat connection of Rn+1 , ∇ is a torsion-free connection
on M , called the induced centroaffine connection, and h is a non-degenerate symmetric
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(0,2)-tensor field, called the centroaffine metric. The corresponding equations of Gauss
and Codazzi are given by

R(X ,Y )Z = h(Y,Z)X −h(X ,Z)Y, (57)

(∇Xh)(Y,Z) = (∇Y h)(X ,Z). (58)

We will assume that the centroaffine hypersurface is definite, i.e., h is definite. If
h is negative definite, we shall replace ξ = − f by ξ = f for the affine normal. In this
way, the second fundamental form h is always positive definite. In both cases, (55)
and (58) hold whereas (56) and (57) change sign. In case ξ = − f , we call M positive
definite; in case ξ = f , we call M negative definite.

Denote by ∇̂ the Levi-Civita connection of h and by R̂ and τ̂ the curvature tensor
and the scalar curvature of h , respectively. The difference tensor K is then defined by

KXY = K(X ,Y ) = ∇XY − ∇̂XY, (59)

which is a symmetric (1,2)-tensor field. Furthermore we have

(∇Xh)(Y,Z) = −2h(KXY,Z). (60)

Thus, for each X , KX is self-adjoint with respect to h .
The Tchebychev form T and the Tchebychev vector field T � of M are defined by

T (X) =
1
n
trace KX , (61)

h(T �,X) = T (X). (62)

If T = 0 and if we consider M as a hypersurface of the equiaffine space, then M is
a so-called proper affine hypersphere centered at the origin, in the sense of [14]. If the
difference tensor K vanishes, then M is a quadric, centered at the origin, in particular
an ellipsoid if M is positive definite and a two-sheeted hyperboloid if M is negative
definite.

It is well known in centroaffine geometry that

h(KXY,Z) = h(Y,KXZ), (63)

R̂(X ,Y )Z = KY KXZ−KXKY Z + ε(h(Y,Z)X −h(X ,Z)Y ), (64)

(∇̂K)(X ,Y,Z) = (∇̂K)(Y,Z,X) = (∇̂K)(Z,X ,Y ), (65)

where ε = 1 or −1 according to M being positive definite or negative definite.
Now let us take μ = K and

T (X ,Y,Z,W ) = −R̂(X ,Y,Z,W )+ ε (h(Y,Z)h(X ,W )−h(X ,Z)h(Y,W)) .

In order to formulate everything in terms of the curvature tensor R̂ , we take

δ �(p) = τ̂− sup
π⊂TpM

{K̂(π)}, (66)

where K̂(π) is the sectional curvature of the plane π . Then we get the following
inequality from Theorem 1.
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THEOREM 5. Let M be a definite centroaffine hypersurface in Rn+1 . Then we
have

δ �(p) � 1
2
ε(n2−n−2)+

n2

2
2n−3
2n+3

h(T �,T �), (67)

where ε = 1 or -1, according to M being positive or negative definite.
The equality case of inequality (67) holds at a point p ∈ M if and only if there

exists an h-orthonormal basis {e1,e2, . . . ,en} at p such that with respect to this basis,
K takes the following form

K(e1,e1) = ae1 +3λe3, K(e1,e3) = 3λe1, K(e3,e j) = 4λe j,
K(e2,e2) = −ae1 +3λe3, K(e2,e3) = 3λe2, K(e j,ek) = 4λe3δ jk,
K(e1,e2) = −ae2, K(e3,e3) = 12λe3, K(e1,e j) = K(e2,e j) = 0,

for some numbers a and λ , and j,k ∈ {4, . . . ,n} .

In order to show that the inequality (5) is the best possible, we give the following
example. Consider the graph hypersurface F given by

F : R
n → R

n+1 : (x1, . . . ,xn) �→ (x1, . . . ,xn, f (x1, . . . ,xn)), (68)

where

f (x1, . . . ,xn) = 1+
ε
2

n

∑
i=1

x2
i −

εa
3

x3
1−3ελ (x2

1 + x2
2)x3 +aεx1x

2
2−4ελx3

3−4ελx3

n

∑
j=4

x2
j ,

with a and λ �= 0 real numbers.
We can easily compute that at the origin we have

(∇h)
(
∂F
∂xi

,
∂F
∂x j

,
∂F
∂xk

)
(0,0, . . . ,0) =

∂ 3 f
∂xi∂x j∂xk

(0,0, . . . ,0). (69)

By computing the difference tensor K with (60), we see that Theorem 5 implies
that F is attaining equality in (67). Thus this is an example of a centroaffine hypersur-
face attaining equality in (67) and for which the Tchebychev vector field doesn’t vanish.
Hence the constant in the inequality (5) cannot be improved.

We have the following theorem.

THEOREM 6. Let Mn be a centroaffine hypersurface of Rn+1 attaining equality
in (67) at every point. If n � 4 , then the Tchebychev vector field T vanishes.

The proof of this theorem is analogous to the proof of Theorem 3.
For the case n = 3, with T �= 0, we have a classification theorem.

THEOREM 7. Let M3 be a centroaffine hypersurface of R4 which attains equality
at every point in (67). Then M is locally given by one of the following immersions
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(1)

f =
(−b1 +3λ )e−3t√
−9λ 2 +b2

1 + ε
V +

e−t√
−9λ 2 +b2

1 + ε
W,

where V is a constant vector along the hypersurface, W is a proper affine sphere
in a 3-dimensional totally geodesic subspace of R4 not containing V , and λ and
b1 are solutions of the following system of ordinary differential equations

dλ
dt

= −2
3
b1, (70)

db1

dt
=

ε +b2
1−27λ 2

3λ
, (71)

and −9λ 2 +b2
1 + ε �= 0 .

(2)
f (t,u,v) = (tu,tv,tg(u,v)+ γ2(t), t) ,

where

γ2(t) =
(∫ t

t0
−1

u

√
c

2u2 +d du

)
t, (72)

for c and d in R , and where (u,v) �→ (u,v,g(u,v)) defines an improper affine
sphere with affine normal (0,0,1) .

Proof. Since we have equality in (67) in a neighborhood of p , we can take an
orthonormal basis {e1,e2,e3} such that

K(e1,e1) = 12λe1, K(e2,e2) = 3λe1 +ae2,
K(e1,e2) = 3λe2, K(e2,e3) = −ae3,
K(e1,e3) = 3λe3, K(e3,e3) = 3λe1−ae2

with a and λ functions on a neighborhood of p . Here we used e1,e2 respectively e3

instead of e3,e1 and e2 in Theorem 5 in order to get the same notations as in [11]. Now
we define the functions a1,a2,a3,b1,b2,b3,c1,c2 and c3 by the Levi-Civita connection
∇̂ in the following way

∇̂e1e1 = a1e2 +a2e3, ∇̂e1e2 = −a1e1 +a3e3, ∇̂e1e3 = −a2e1 −a3e2,

∇̂e2e1 = b1e2 +b2e3, ∇̂e2e2 = −b1e1 +b3e3, ∇̂e2e3 = −b2e1 −b3e2,

∇̂e3e1 = c1e2 + c2e3, ∇̂e3e2 = −c1e1 + c3e3, ∇̂e3e3 = −c2e1− c3e2.

Now using the Codazzi equation (65) we find analogously as in [11] the following
equations

λ (c1−b2) = 4λ (c1−b2) = 0, (73)

a(b2 + c1) = 6a2λ = −2a(3a3−b2), (74)

a(b1− c2) = −6a1λ , (75)



676 J. BOLTON, F. DILLEN, J. FASTENAKELS AND L. VRANCKEN

6b2λ = aa2, (76)

6λ (c2−b1) = 2aa1, (77)

2e2(λ ) = a1λ , (78)

2e3(λ ) = a2λ , (79)

3e1(λ ) = 6b1λ +aa1, (80)

3e2(λ ) = a(c2−b1), (81)

3e3(λ ) = a(b2 + c1), (82)

e1(a) = 3a1λ − c2a, (83)

e2(a) = 3(b1− c2)λ −3c3a, (84)

e3(a) = 3(c1−3b2)λ +3b3a. (85)

If we take λ1 and λ2 in [11] equal to 12λ and 3λ , we find from [11] that a1 =
a2 = 0, c1 = b2 = 0 and b1 = c2 since λ �= 0 because we suppose that T �= 0.

Using this, (73)–(85) and the Gauss equation we get the following equations.

aa3 = 0, (86)

e2(λ ) = e3(λ ) = 0, (87)

e1(λ ) = 2b1λ , (88)

e1(a) = −b1a, (89)

e2(a) = −3ac3, (90)

e3(a) = 3ab3, (91)

e1(b1) = −b2
1 +27λ 2− ε, (92)

e1(b3)− e2(a3)−a3c3 +b1b3 = 0, (93)

−e1(c3)+ e3(a3)−a3b3−b1c3 = 0, (94)

e2(b1) = 0, (95)

−b2
1− e2(c3)+ e3(b3)−b2

3− c2
3 = 2a2−9λ 2 + ε, (96)

e3(b1) = 0. (97)

We divide the proof into two cases.

Case 1: ε +b2
1−9λ 2 �= 0.

First consider the following system of differential equations.⎧⎨⎩
e1(θ ) = −3λ ,
e2(θ ) = 0,
e3(θ ) = 0.

(98)

From (87) we see that the compatibility equations for this system are satisfied.
Thus we can find a solution θ of (98).

Now consider the maps into R
4 given by
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V =
e3θ√

ε +b2
1−9λ 2

(−(b1 +3λ ) f + e1) , (99)

W =
eθ√

ε +b2
1−9λ 2

(ε f − (−b1 +3λ )e1) . (100)

It is easy to see that De1V = De2V = De3V = 0. Thus V is a constant vector along
the hypersurface.

For W we have that De1W = 0. Thus W describes a surface. Moreover we have

W∗(e2) = De2W = eθ
√
ε+b2

1−9λ 2e2, (101)

W∗(e3) = De3W = eθ
√
ε+b2

1−9λ 2e3, (102)

and

De2(De2W ) = −(ε +b2
1−9λ 2)W +aDe2W +b3De3W, (103)

De2(De3W ) = −b3De2W −aDe3W, (104)

De3(De2W ) = (c3 −a)De3W, (105)

De3(De3W ) = −(ε +b2
1−9λ 2)W − (a+ c3)De2W. (106)

From this we can easily compute that W is an immersion of a surface with cen-
troaffine metric h̃ given by

h̃(e2,e2) = ε +b2
1−9λ 2, (107)

h̃(e2,e3) = 0, (108)

h̃(e3,e3) = ε +b2
1−9λ 2. (109)

Together with (60) we find that

h̃(tr K,e2) = h̃(tr K,e3) = 0. (110)

Thus the Tchebychev form of W vanishes and W is a proper affine sphere. Re-
mark also that V and W,W∗(e2),W∗(e3) are linearly independent.

Moreover the immersion f is given by

f =
(−b1 +3λ )e−3θ√
−9λ 2 +b2

1 + ε
V +

e−θ√
−9λ 2 +b2

1 + ε
W. (111)

By choosing a coordinate t in the direction of e1 such that e1(t) = −3λ , we may
assume, after applying a translation if necessary, that θ = t . From (87), (88), (92),
(95) and (97) we now get the ordinary differential equations (70) and (71) relating the
functions λ and b1 .This proves the first part of the theorem.
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Case 2: ε +b2
1−9λ 2 = 0.

In this case consider the following system of differential equations.⎧⎨⎩
e1(β ) = −β (−b1 +3λ ),
e2(β ) = 0,
e3(β ) = 0.

(112)

From (87), (95) and (97) we see that the compatibility equations for this system
are satisfied. Thus we can find a non-zero solution β of (112).

Now consider the map into R4 defined by

W = β (ε f − (−b1 +3λ )e1) . (113)

Then it is easy to see that De1W = De2W = De3W = 0 and thus W is a constant
vector along the hypersurface.

Now remark that

De2e2 = − 1
β

W +ae2 +b3e3, (114)

De2e3 = −b3e2−ae3, (115)

De3e2 = (c3 −a)e3, (116)

De3e3 = − 1
β

W −ae2− c3e3. (117)

From this and the fact that W is a constant vector along the hypersurface, we see
that an integral manifold of the distribution spanned by e2 and e3 is contained as an
improper affine sphere (i.e. a hypersurface for which the affine normal is constant) in a
3-dimensional affine subspace of R4 with affine normal a multiple of W .

Choosing now a coordinate t in the direction of e1 and using that ε+b2
1−9λ 2 = 0

we can rewrite (113) as

∂
∂ t

f = (b1 +3λ ) f − ε(b1 +3λ )
β

W. (118)

With an appropriate affine transformation we can assume that W = (0,0,1,0) .
Then we can assume also that for an initial value t0 we have

f (t0,u,v) = (u,v,g(u,v),1) (119)

where (u,v) �→ (u,v,g(u,v)) defines an improper affine sphere with affine normal
(0,0,1) . Remark that we can take the last component 1 by applying an affine trans-
formation since it cannot be 0. Otherwise (118) would imply that the hypersurface
f lies in an R3 through the origin and this contradicts with the assumption that the
hypersurface is non-degenerate.

From (118) and (119) it follows that there is a curve γ = (γ1,γ2) such that the
immersion f is given by

f (t,u,v) = (γ1(t)u,γ1(t)v,γ1(t)g(u,v)+ γ2(t),γ1(t)) . (120)
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After a suitable reparametrization we can suppose that

f (t,u,v) = (tu,tv,tg(u,v)+ γ2(t),t) . (121)

Then we can calculate that

ft = (u,v,g+ γ2 ′,1), (122)

fu = (t,0,tgu,0), (123)

fv = (0,t,tgv,0), (124)

and
fuu = tguu(0,0,1,0), fut = 1

t fu,

fvv = tgvv(0,0,1,0), fvt = 1
t fv,

fuv = tguv(0,0,1,0), ftt = γ2 ′′(0,0,1,0).

Since (0,0,1,0) = f−t ft
γ2−tγ2 ′ we get

fuu = tguu
γ2−tγ2 ′ f − t2guu

γ2−tγ2 ′ ft , fut = 1
t fu,

fvv = tgvv
γ2−tγ2 ′ f − t2gvv

γ2−tγ2 ′ ft , fvt = 1
t fv,

fuv = tguv
γ2−tγ2 ′ f − t2guv

γ2−tγ2 ′ ft , ftt = γ2 ′′
γ2−tγ2 ′ f − tγ2 ′′

γ2−tγ2 ′ ft .

So we find that

h( ∂
∂u , ∂

∂u ) = −ε tguu
γ2−tγ2 ′ , h( ∂

∂u , ∂
∂ t ) = 0,

h( ∂
∂v ,

∂
∂v ) = −ε tgvv

γ2−tγ2 ′ , h( ∂
∂v ,

∂
∂ t ) = 0,

h( ∂
∂u , ∂

∂v ) = −ε tguv
γ2−tγ2 ′ , h( ∂

∂ t ,
∂
∂ t ) = −ε γ2 ′′

γ2−tγ2 ′ .

Now we must check that there exists a function λ on M such that

h
(
K
(

∂
∂ t ,

∂
∂ t

)
, ∂
∂ t

)
‖ ∂
∂ t ‖3

= 12λ , (125)

h
(
K
(

∂
∂ t ,

∂
∂u

)
, ∂
∂u

)
‖ ∂
∂ t ‖‖ ∂

∂u‖
= 3λ

h( ∂
∂u , ∂

∂u)

‖ ∂
∂u‖

, (126)

h
(
K
(

∂
∂ t ,

∂
∂v

)
, ∂
∂v

)
‖ ∂
∂ t ‖‖ ∂

∂v‖
= 3λ

h( ∂
∂v ,

∂
∂v )

‖ ∂
∂v‖

, (127)

h
(
K
(

∂
∂ t ,

∂
∂u

)
, ∂
∂v

)
‖ ∂
∂ t ‖‖ ∂

∂u‖
= 3λ

h( ∂
∂u , ∂

∂v )

‖ ∂
∂u‖

. (128)
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From equations (126), (127) and (128) we find the same expression for λ . Com-
bining this with equation (125) gives the following condition on the curve γ2

tγ2 ′′′γ2− t2γ2 ′′′γ2 ′ − t2(γ2 ′′)2 +4γ2 ′′γ2−4tγ2 ′γ2 ′′ = 0. (129)

By making the substitution φ(t) = γ2(t)− tγ2 ′(t) , equation (129) becomes

−t3φ ′(t)φ(t) = c, (130)

for some c ∈ R . Solving (130) gives φ(t) =
√

c
2t2

+d with d ∈ R . So we find that

γ2(t) =
(∫ t

t0
−1

u

√
c

2u2 +d du

)
t. (131)

This gives case (2) of the theorem. �
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