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on the occasion of his 60th birthday

Abstract. We summarize the conditions characterizing the Hardy and reverse Hardy inequalities
for the case p, q ∈ R\{0}, and extend in some cases the number of equivalent conditions.

1. Introduction and preliminaries

We will deal with scales of (equivalent) necessary and sufficient conditions for the
validity of the Hardy inequality
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and the reverse Hardy inequality
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for different values of the parameters p and q ( p,q ∈ R\ {0} ). Here, it is −∞ � a <
b � ∞, u and v are weight functions on (a,b), i.e. measurable and positive a.e..

We denote

U(x) :=
∫ b

x
u(t)dt, V (x) :=

∫ x

a
v1−p′(t)dt, p′ =

p
p−1

, p �= 1,

and

Ũ(x) :=
∫ x

a
u(t)dt, Ṽ (x) :=

∫ b

x
v1−p′(t)dt,

and assume that in any particular situation, the functions U,V,Ũ and Ṽ are finite.
Furthermore, we denote, for α,β ∈ R,

A0(x;α,β ) := Uα(x)V β (x),

B0(x;α,β ) := Ũα(x)V β (x).
(1.3)
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It is well-known that in the triangular domain

1 < p � q < ∞,

the Hardy inequality (1.1) holds for all f � 0 if and only if the function

AM(x) := A0

(
x;

1
q
,

1
p′

)
(1.4)

(the so-called Muckenhoupt function) is bounded, i.e.

A0 := sup
a<x<b

AM(x) < ∞, (1.5)

and for the best constant C in (1.1), we have C ≈ A0.
Recently, it was shown (see [3, Theorem 3.1] and also [4]) that there is a number

of equivalent criteria of the validity of inequality (1.1): If we denote

A1(s) := sup
a<x<b

(∫ b

x
u(t)Vq( 1

p′ −s)(t)dt

) 1
q

V s(x), s > 0;

A2(s) := sup
a<x<b

(∫ x

a
v1−p′(t)U p′( 1

q−s)(t)dt

) 1
p′

Us(x), s > 0;

A3(s) := sup
a<x<b

(∫ x

a
u(t)Vq( 1

p′ +s)(t)dt

) 1
q

V−s(x), s > 0;

A4(s) := sup
a<x<b

(∫ b

x
v1−p′(t)U p′( 1

q +s)(t)dt

) 1
p′

U−s(x), s > 0;

A5(s) := sup
a<x<b

(∫ b

x
u(t)V

q
p′(1+sq) (t)dt

) 1+sq
q

U−s(x), s > 0;

A6(s) := sup
a<x<b

(∫ b

x
v1−p′(t)U

p′
q(1+sp′) (t)dt

) 1+sp′
p′

V−s(x), s > 0;

A7(s) := sup
a<x<b

(∫ x

a
u(t)V

q
p′(1−sq) (t)dt

) 1−sq
q

Us(x), 0 < s <
1
q
;

A8(s) := sup
a<x<b

(∫ b

x
u(t)V

q
p′(1−sq) (t)dt

) 1−sq
q

Us(x), s >
1
q
;

A9(s) := sup
a<x<b

(∫ b

x
v1−p′(t)U

p′
q(1−sp′) (t)dt

) 1−sp′
p′

Vs(x), 0 < s <
1
p′

;

A10(s) := sup
a<x<b

(∫ x

a
v1−p′(t)U

p′
q(1−sp′) (t)dt

) 1−sp′
p′

Vs(x), s >
1
p′

;

A11(s) := inf
h>0

sup
a<x<b

(∫ b

x
u(t)h(t)q( 1

p′ −s)(t)dt

) 1
q

(h(x)+V(x))s, s >
1
p′

;

(1.6)
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A12(s) := inf
h>0

sup
a<x<b

(∫ x

0
v1−p′(t)h(t)p′( 1

q−s)(t)dt

) 1
p′

(h(x)+U(x))s, s >
1
q
;

A13(s) := inf
h>0

sup
a<x<b

(∫ x

0
u(t)(h(t)+V(t))q( 1

p′ +s)(t)dt

) 1
q

h(x)−s, s > 0;

A14(s) := inf
h>0

sup
a<x<b

(∫ b

x
v1−p′(t)(h(t)+U(t))p′( 1

q +s)(t)dt

) 1
p′

h(x)−s, s > 0,

then Ai(s) ≈ A0 for i = 1,2, ...,14 and consequently, (1.1) holds (with 1 < p � q <∞)
if and only if any of the numbers Ai(s) is finite.

The aim of this paper is to use some recent results to obtain similar scales of
conditions to characterize (1.1) or (1.2) for some other parameters and also to give an
overview of this problem for all parameters p, q, p �= 0, q �= 0. We note that it is
natural to study (1.1) for p � 1 and (1.2) for p < 1.

Basic information about problems connected with the Hardy inequality can be
found in the books [KP] and [KMP].

2. The second quadrant

Now, we assume that p < 0, q > 0. Recently, it was shown (see [6]) that the
reverse Hardy inequality (1.2) holds if and only if the function AM(x) from (1.4) is
bounded, i.e. (1.5) holds. Consequently, using Theorem 2.1 in [3] (where we put
α = 1

q , β = 1
p′ and f = u , g = v1−p′ ) we have immediately the following result:

THEOREM 2.1. The reverse Hardy inequality (1.2) with p < 0 and q > 0 holds
for all functions f > 0 if and only if any of the numbers Ai = Ai(s) from (1.6) is finite.
It is Ai ≈ Aj for i, j = 0,1,2, ...,14 and the best constant C in (1.2) satisfies C ≈ Ai.

3. The fourth quadrant

Now, we assume that
p > 0, q < 0. (3.1)

(i) First, we consider the strip 0 < p < 1, q < 0. As it was shown in [6], the reverse
Hardy inequality (1.2) holds if and only if

A∗ := inf
a<x<b

AM(x) > 0 (3.2)

and the best constant in (1.2) satisfies C ≈ A∗. Here, according to (1.3), AM(x) =
A0(x; 1

q , 1
p′ ) where both parameters 1

q , 1
p′ are negative. But if we denote

ÃM(x) =
1

AM(x)
= A0

(
x;−1

q
,− 1

p′

)
,

then we can rewrite condition (3.2) as

A∗
0 := sup

a<x<b
ÃM(x) < ∞, (3.3)



696 A. KUFNER, K. KULIEV, AND G. KULIEVA

where the parameters − 1
q , − 1

p′ in ÃM(x) are positive. Using now, analogously as

in Section 2, Theorem 2.1 in [3] where we choose α = − 1
q , β = − 1

p′ and f = u ,

g = v1−p′ we obtain the following result:

THEOREM 3.1. The reverse Hardy inequality (1.2) with 0 < p < 1 and q < 0
holds for all functions f > 0 if and only if any of the following numbers is finite:

A∗
1(s) := sup

a<x<b

(∫ b

x
u(t)Vq( 1

p′ +s)(t)dt

)− 1
q

V s(x), s > 0;

A∗
2(s) := sup

a<x<b

(∫ x

a
v1−p′(t)U p′( 1

q+s)(t)dt

)− 1
p′

Us(x), s > 0;

A∗
3(s) := sup

a<x<b

(∫ x

a
u(t)Vq( 1

p′ −s)(t)dt

)− 1
q

V−s(x), s > 0;

A∗
4(s) := sup

a<x<b

(∫ b

x
v1−p′(t)U p′( 1

q−s)(t)dt

)− 1
p′

U−s(x), s > 0;

A∗
5(s) := sup

a<x<b

(∫ b

x
u(t)V

q
p′(1−sq) (t)dt

) sq−1
q

U−s(x), s > 0;

A∗
6(s) := sup

a<x<b

(∫ b

x
v1−p′(t)U

p′
q(1−sp′) (t)dt

) sp′−1
p′

V−s(x), s > 0;

A∗
7(s) := sup

a<x<b

(∫ x

a
u(t)V

q
p′(1+sq) (t)dt

)− 1+sq
q

Us(x), 0 < s < −1
q
; (3.4)

A∗
8(s) := sup

a<x<b

(∫ b

x
u(t)V

q
p′(1+sq) (t)dt

)− 1+sq
q

Us(x), s > −1
q
;

A∗
9(s) := sup

a<x<b

(∫ b

x
v1−p′(t)U

p′
q(1+sp′) (t)dt

)− 1+sp′
p′

Vs(x), 0 < s < − 1
p′

;

A∗
10(s) := sup

a<x<b

(∫ x

a
v1−p′(t)U

p′
q(1+sp′) (t)dt

)− 1+sp′
p′

Vs(x), s > − 1
p′

;

A∗
11(s) := inf

h>0
sup

a<x<b

(∫ b

x
u(t)h(t)q( 1

p′ +s)(t)dt

)− 1
q

(h(x)+V(x))s, s > − 1
p′

;

A∗
12(s) := inf

h>0
sup

a<x<b

(∫ x

a
v1−p′(t)h(t)p′( 1

q +s)(t)dt

)− 1
p′

(h(x)+U(x))s, s > −1
q
;

A∗
13(s) := inf

h>0
sup

a<x<b

(∫ x

a
u(t)(h(t)+V(t))q( 1

p′ −s)(t)dt

)− 1
q

h(x)−s, s > 0;
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A∗
14(s) := inf

h>0
sup

a<x<b

(∫ b

x
v1−p′(t)(h(t)+U(t))p′( 1

q−s)(t)dt

)− 1
p′

h(x)−s, s > 0.

There is A∗
i (s) ≈ A∗

0 for i = 1,2, ...,14 and C ≈ 1
A∗

i
.

(ii) Now, let us consider the remaining part of the quadrant (3.1), i.e. the domain

p � 1, q < 0.

• If p > 1, then it was shown in [6], that the Hardy inequality (1.1) holds if and only if

B := inf
a<x<b

B0

(
x;

1
q
,

1
p′

)
> 0 (3.5)

where B0(x; ·, ·) is defined by (1.3). This condition is equivalent to the condition

B∗
0 := sup

a<x<b
B0

(
x;−1

q
,− 1

p′

)
< ∞. (3.6)

This type of conditions was investigated in [5], [6] and [9], and Theorem 2.1 in [5]
leads to the following result:

THEOREM 3.2. Let p > 1, q < 0. Let s, θ and ν be real parameters such that
ν > 0, s, θ � 0, and s+θ > 0.

Define

B1(x;s,θ ,ν) :=Ũ
s
q (x)

(∫ x

a
u(t)Ũ− s+1

νq −1(t)V
θ−1
ν p′ (t)dt

)ν
V

− θ
p′ (x),

B2(x;s,θ ,ν) :=Ũ− s
q (x)

(∫ b

x
u(t)Ũ

s−1
νq −1(t)V− θ+1

ν p′ (t)dt

)ν
V

θ
p′ (x).

(3.7)

Then the Hardy inequality (1.1) holds for all measurable functions f � 0 if and only if
any of the quantities Bi(s,θ ,ν) = sup

a<x<b
Bi(x;s,θ ,ν) ( i = 1,2 ) is finite. Moreover, for

the best constant C in (1.1) we have C ≈ 1
Bi

, i = 1,2.

Let us note that for some special choice of the parameters s, θ and ν, we obtain
expressions similar to those of Section 1 and Section 2:

B∗
1(s) := sup

a<x<b
B1

(
x;−sq,0,− s+1

q

)

= sup
a<x<b

Ũ−s(x)
(∫ x

a
u(t)V

q
(1+s)p′ (t)dt

)− s+1
q

, s > 0;

B∗
2(s) := sup

a<x<b
B1

(
x;0,s,−1

q

)

= sup
a<x<b

(∫ x

a
u(t)V

(1−sp′)q
p′ (t)dt

)− 1
q

V−s(x), s > 0;
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B∗
3(s) := sup

a<x<b
B2

(
x;s,0,− sq+1

q

)
(3.8)

= sup
a<x<b

Ũs(x)
(∫ b

x
u(t)V

q
(1+sq)p′ (t)dt

)− sq+1
q

, s > 0;

B∗
4(s) := sup

a<x<b
B2

(
x;0,s,− sq+1

q

)

= sup
a<x<b

(∫ b

x
u(t)V

(1+sp′)q
p′ (t)dt

)− 1
q

V s(x), s > 0.

Notice that B∗
0 from (3.6) is a special case of B∗

2(s) : it is

B∗
0 = B∗

2

(
1
p′

)
.

• Let p = 1. If we replace in B0(x; 1
q , 1

p′ ) the term V
1
p′ (x) by supess

a<t<x
v(t), then (3.4)

(i.e., (3.6)) is this time necessary and sufficient for the Hardy inequality (1.1) to hold.
For details see again [6]. Also in this case, we can obtain equivalent conditions as in

Theorem 3.2, replacing in (3.7) the term V
1
p′ (x) by supess

a<t<x
v(t).

4. Concluding remarks

(i) For completeness, let us mention that for the third quadrant, i.e., for

p < 0, q < 0, (4.1)

the problem was investigated in [1] and [9]. More precisely, for the case

−∞< q � p < 0,

the necessary and sufficient condition for the reverse Hardy inequality to hold reads

B := sup
a<x<b

B0

(
x;−1

q
,− 1

p′

)
< ∞ (4.2)

while for −∞< p < q < ∞, the corresponding condition reads

B :=
(∫ b

a
Ũ

r
p (x)V

r
p′ (x)u(x)dx

) 1
r

< ∞ (4.3)

where 1
r := 1

q − 1
p . For details see [9].

Condition (4.2) was extended in [7] to

B(s) := sup
a<x<b

(∫ x

a
u(t)V

p−s
p (t)dt

)− 1
q

V
1−s
p (x) < ∞, p < s < 1, (4.4)
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and in [5] results similar to that of Theorem 3.2 are presented.

(ii) The case
0 < p < 1, 0 < q < 1

can be handled via duality, using the results mentioned in (i). For details see again [1]
and [9].

(iii) The case
1 < q < p <∞ and 0 < q < 1, p > 1

is also well known and the corresponding necessary and sufficient condition for the
Hardy inequality (1.1) to hold reads

BM :=
(∫ b

a
U

r
q (x)V

r
q′ (x)v1−p′(x)dx

) 1
r

< ∞ (4.5)

where 1
r := 1

q − 1
p .

An equivalent condition was obtained by L.-E. Persson and V. Stepanov; it reads

BPS :=

(∫ ∞

0

[∫ x

0
u(t)Vq(t)dt

] r
q

V− r
q (x)v1−p′(x)dx

) 1
r

< ∞ (4.6)

(see [KP, Theorem 1.2]). Both conditions, (4.5) and (4.6), have been extended to scales
of conditions; for details see [8].

(iv) As far as concerns the remaining part of the (p,q)−plane, namely the strip

0 < p < 1, q > 1,

this case is investigated in [2]. The corresponding condition looks like:

A =
(∫ b

a
Ṽ

r
p′ (t)dU

r
q (t)
) 1

r

+
Ṽ

1
p′ (a)

U
1
q (a)

< ∞, (4.7)

where 1
r := 1

p − 1
q .

(v) Obviously, all results mentioned can be formulated via duality arguments for the
case when the term

∫ x
a f (t)dt in (1.1) and (1.2) is replaced by

∫ b
x f (t)dt.
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