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on the occasion of his 60th birthday

Abstract. We prove two new reverse Cauchy–Schwarz inequalities of additive and multiplicative
types in a space equipped with a positive sesquilinear form with values in a C∗ -algebra. We
apply our results to get some norm and integral inequalities. As a consequence, we improve a
celebrated reverse Cauchy–Schwarz inequality due to G. Pólya and G. Szegö.

1. Introduction

The probably first reverse Cauchy–Schwarz inequality for positive real numbers
a1, · · · ,an is the following one (see [15, p. 57 and 213–214] and [16, p. 71–72 and
253–255]):

THEOREM. [G. Pólya and G. Szegö (1925)] Let a1, · · · ,an and b1, · · · ,bn be
positive real numbers. If

0 < a � ai � A <∞ , 0 < b � bi � B < ∞

for some constants a,b,A,B and all 1 � i � n, then

n

∑
i=1

a2
i

n

∑
i=1

b2
i � (ab+AB)2

4abAB

(
n

∑
i=1

aibi

)2

. (1.1)

The inequality is sharp in the sense that 1/4 is the best possible constant.

We remark that (1.1) can be obviously rewritten in the following equivalent form

n

∑
i=1

a2
i

n

∑
i=1

b2
i −
(

n

∑
i=1

aibi

)2

� (AB−ab)2

4abAB

(
n

∑
i=1

aibi

)2

. (1.2)

We say that (1.1) is the multiplicative form of the Pólya–Szegö inequality and that (1.2)
is the additive form.
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There exist a lot of generalizations of this classical inequality. For example, Chap-
ter 5 in [1] (36 pages) is devoted only to such reversed discrete Cauchy–Schwarz in-
equalities. Also similar results for integrals, isotone functionals as well as generaliza-
tions in the setting of inner product spaces are today well-studied and understood; see
the books [3] and [4]. Moreover, C.P. Niculescu [13] and M. Joita [9] have proved some
reverse Cauchy–Schwarz inequalities in the framework of C∗ -algebras. We also refer
to another interesting even newer paper by D. Ilisević and S. Varosanec [8] of this type;
see also the book of T. Furuta, J.M. Hot, J.E. Pečarić and Y. Seo [6] and references
therein.

In this paper we continue and complement this research by proving some new
generalizations of both (1.1) and (1.2) in a similar framework (see Theorem 3.1 and
Theorem 3.3). We also apply our results to get some norm and integral inequalities. As
a consequence, we improve inequality (1.2).

2. Preliminaries

A C∗ -algebra is a Banach ∗ -algebra (A,‖ · ‖) such that ‖a∗a‖ = ‖a‖2 for each
a∈A . Recall that a∈A is called positive (we write a � 0) if a = b∗b for some b∈A .
If a ∈ A is positive, then there is a unique positive b ∈ A such that a = b2 ; such an
element b is called the positive square root of a and denoted by a1/2 . For every a∈A ,
the positive square root of a∗a is denoted by |a| . For two self-adjoint elements a,b
one can define a partial order � by

a � b ⇔ b−a � 0.

For a ∈ A , by Re a we denote a+a∗
2 .

Let A be a C∗ -algebra and let X be an algebraic right A -module which is a
complex linear space with (λx)a = x(λa) = λ (xa) for all x ∈ X , a ∈ A , λ ∈ C .
The space X is called a (right) semi-inner product A -module (or semi-inner product
C∗ -module over the C∗ -algebra A ) if there exists an A -valued inner product, i.e., a
mapping 〈·, ·〉 : X×X→ A satisfying

(i) 〈x,x〉 � 0,

(ii) 〈x,λy+ z〉= λ 〈x,y〉+ 〈x,z〉 ,
(iii) 〈x,ya〉 = 〈x,y〉a ,

(iv) 〈y,x〉 = 〈x,y〉∗ ,

for all x,y,z ∈ X , a ∈ A , λ ∈ C . Moreover, if

(v) x = 0 whenever 〈x,x〉 = 0,

then X is called an inner product A -module (inner product C∗ -module over the C∗ -
algebra A ). In this case ‖x‖ :=

√‖〈x,x〉‖ gives a norm on X making it into a normed
space, where the latter norm denotes that in the C∗ -algebra A . If this normed space
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is complete, then X is called a Hilbert A -module (Hilbert C∗ -module over the C∗ -
algebra A ). A left inner product A -module can be defined analogously. Any inner
product (resp. Hilbert) space is a left inner product (resp. Hilbert) C-module and any
C∗ -algebra A is a right Hilbert C∗ -module over itself via 〈a,b〉= a∗b , for all a,b∈A .
For more details on inner product C∗ -modules see [10] and [11].

The Cauchy–Schwarz inequality asserts that 〈x,y〉〈y,x〉 � ‖y‖2 〈x,x〉 in a semi-
inner product module X over a C∗ -algebra A ; see [10, Proposition 1.1] as well as [5].
This is a generalization of the classical Cauchy–Schwarz inequality stating that if x
and y are elements of a semi-inner product space, then |〈x,y〉|2 � 〈x,x〉〈y,y〉 . There are
mainly two types of reverse Cauchy–Schwarz inequality. In the additive approach (ini-
tiated by N. Ozeki [14]) we look for an inequality of the form k+ |〈x,y〉|2 � 〈x,x〉〈y,y〉
for some suitable positive constant k (see also (1.2)). In the multiplicative approach
(initiated by G. Polya and G. Szegö [15]) we seek for an appropriate positive constant
k such that |〈x,y〉|2 � k〈x,x〉〈y,y〉 (see also (1.1)).

In the next section we prove and discuss some reverse Cauchy–Schwarz inequal-
ities of additive and multiplicative types in a linear space equipped with a positive
sesquilinear form with values in a C∗ -algebra. For a comprehensive account on Cauchy–
Schwarz inequality and its various inverses we refer the reader to books [3] and [4].

3. The main results

Let A be a C∗ -algebra and let X be a linear space. By an A -valued positive
sesquilinear form we mean a mapping 〈·, ·〉 : X×X → A which is linear in the first
variable and conjugate linear in the second and fulfills 〈x,x〉 � 0 (x ∈ X) .

Our first result of this section is the following additive reverse Cauchy–Schwarz
inequality:

THEOREM 3.1. Let A be a C∗ -algebra and let X be a linear space equipped
with an A -valued positive sesquilinear form 〈·, ·〉 : X×X → A . Suppose that x,y ∈ X
are such that

〈x,y〉∗ = 〈y,x〉 (3.1)

〈y,y〉1/2〈x,y〉 = 〈x,y〉〈y,y〉1/2 (3.2)

Re〈Ωy− x,x−ωy〉� 0 (3.3)

for some ω ,Ω ∈ C . Then∣∣∣〈x,x〉1/2〈y,y〉1/2
∣∣∣2−|〈y,x〉|2 � 1

4
|Ω−ω |2〈y,y〉2 . (3.4)

REMARK 3.2. The constant 1/4 in (3.4) can not in general be replaced by some
smaller numbers (see the proof for the special case considered in Proposition 3.4).

Proof. Set

D1 := Re[(Ω〈y,y〉− 〈x,y〉)(〈y,x〉−ω〈y,y〉)]
= −Re(Ωω)〈y,y〉2 −〈x,y〉〈y,x〉+Re[Ω〈y,y〉〈y,x〉+ω〈x,y〉〈y,y〉] .
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It follows from (3.3) that

D2 := 〈y,y〉1/2Re〈Ωy− x,x−ωy〉〈y,y〉1/2 � 0 .

Hence, by also using (3.2), we find that

D2 = −Re(Ωω)〈y,y〉2 −〈y,y〉1/2〈x,x〉〈y,y〉1/2

+〈y,y〉1/2Re[Ω〈y,x〉+ω〈x,y〉]〈y,y〉1/2

= −Re(Ωω)〈y,y〉2 −〈y,y〉1/2〈x,x〉〈y,y〉1/2

+Re[Ω〈y,y〉〈y,x〉+ω〈x,y〉〈y,y〉] .

Therefore D1−D2 � D1 and we conclude that

〈y,y〉1/2〈x,x〉〈y,y〉1/2 −〈x,y〉〈y,x〉 � Re[(Ω〈y,y〉− 〈x,y〉)(〈y,x〉−ω〈y,y〉)]
� 1

4

∣∣(Ω−ω)〈y,y〉∣∣2 .

The last inequality is obtained by applying (3.1) and the elementary inequality Re(u∗v)
� 1

4 |u+ v|2 (u,v ∈ A) for u = Ω〈y,y〉− 〈y,x〉 and v = 〈y,x〉−ω〈y,y〉 . The proof is
complete. �

Our multiplicative reverse Cauchy–Schwarz inequality reads as follows:

THEOREM 3.3. Let A be a C∗ -algebra and let X be a linear space equipped
with an A -valued positive sesquilinear form 〈·, ·〉 : X×X → A . Suppose that x,y ∈ X
are such that (3.1) holds, 〈x,y〉 is normal and (3.3) holds for some ω ,Ω ∈ C with
Re(ωΩ) > 0 . Then

〈x,x〉1/2〈y,y〉1/2 + 〈y,y〉1/2〈x,x〉1/2 � |Ω|+ |ω |
[Re(ωΩ)]1/2

|〈x,y〉| . (3.5)

Proof. It follows from (3.3) that

Re(Ω〈x,y〉∗ +ω〈x,y〉)−〈x,x〉− [Re(ωΩ)]〈y,y〉 � 0 .

Moreover, since 〈x,y〉 is normal, Re(〈x,y〉) � |〈x,y〉| so that

1

[Re(ωΩ)]1/2
〈x,x〉+[Re(ωΩ)]1/2〈y,y〉 � Re(Ω〈x,y〉∗ +ω〈x,y〉)

[Re(ωΩ)]1/2

� |Ω|+ |ω |
[Re(ωΩ)]1/2

|〈x,y〉| . (3.6)

Furthermore, the trivial estimate(
1

[Re(ωΩ)]1/4
〈x,x〉1/2− [Re(ωΩ)]1/4〈y,y〉1/2

)2

� 0
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implies that

〈x,x〉1/2〈y,y〉1/2 + 〈y,y〉1/2〈x,x〉1/2

� 1

[Re(ωΩ)]1/2
〈x,x〉+[Re(ωΩ)]1/2〈y,y〉. (3.7)

By combining (3.6) and (3.7) we obtain (3.5) and the proof is complete. �

PROPOSITION 3.4. Let ϕ be a positive linear functional on a C∗ -algebra A and
let x,y ∈ A be such that

Reϕ((x−ωy)∗(Ωy− x)) � 0

for some ω ,Ω ∈ C .
(a) Then

ϕ(x∗x)ϕ(y∗y)−|ϕ(y∗x)|2 � 1
4
|Ω−ω |2ϕ(y∗y)2 . (3.8)

(b) Moreover, if for each y∈A there exists an element z∈A such that ϕ(z∗y) = 0 ,
then the constant 1

4 is sharp in (3.8).
(c) Furthermore, if Re(ωΩ) > 0 , then

ϕ(x∗x)1/2ϕ(y∗y)1/2 � 1
2

|Ω|+ |ω |
[Re(ωΩ)]1/2

|ϕ(y∗x)| . (3.9)

REMARK 3.5. Proposition 3.4 (a) and (b) is related to Theorem 1 of [2], where
the case with inner product spaces was considered.

Proof. (a) By defining 〈u,v〉 := ϕ(v∗u) one obtains a positive sesquilinear form
from A×A into C . Equality (3.1) holds by [12, p. 88] and equality (3.2) is trivially
fulfilled. Thus Theorem 3.1 gives the additive type reverse Cauchy–Schwarz inequality
(3.8) and Theorem 3.3 yields the multiplicative type reverse Cauchy–Schwarz inequal-
ity (3.9). It remains to prove the sharpness assertion in (b). In fact, let y ∈ A with
ϕ(y∗y) = 1. Choose z ∈ A with ϕ(z∗z) = 1 and ϕ(z∗y) = 0. Put x = Ω+ω

2 y+ Ω−ω
2 z .

Then

ϕ((x−ωy)∗(Ωy− x)) = ϕ
((

Ω−ω
2

y+
Ω−ω

2
z

)∗(Ω−ω
2

y− Ω−ω
2

z

))

=
∣∣∣∣Ω−ω

2

∣∣∣∣
2

ϕ(y∗y− z∗z)

= 0 .

Hence Reϕ((x−ωy)∗(Ωy− x)) � 0 holds. If

ϕ(x∗x)ϕ(y∗y)−|ϕ(y∗x)|2 � C|Ω−ω |2ϕ(y∗y)2 ,
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for some C � 0, then

∣∣∣∣Ω−ω
2

∣∣∣∣
2

= ϕ

(∣∣∣∣Ω+ω
2

∣∣∣∣
2

y∗y+
∣∣∣∣Ω−ω

2

∣∣∣∣
2

z∗z

)
−
∣∣∣∣Ω+ω

2

∣∣∣∣
2

ϕ(y∗y)

= ϕ(x∗x)−|ϕ(y∗x)|2
� C|Ω−ω |2 ,

from which we conclude that 1/4 � C . The proof is complete. �

REMARK 3.6. Let ϕ be a positive linear functional on a C∗ -algebra A , x,y be
self-adjoint elements of A such that ωy � x � Ωy for some scalars ω ,Ω> 0. Then

ϕ((x−ωy)∗(Ωy− x)) � 0

if xy = yx (in particular, when A is commutative), since

ϕ((x−ωy)(Ωy− x)) = ϕ((Ωy− x)1/2(x−ωy)(Ωy− x)1/2) � 0 .

In particular, if x and y are commuting strictly positive elements of a unital C∗ -algebra
A , one may consider ω = infσ(x)

supσ(y) and Ω= supσ(x)
infσ(y) , where σ(a) denotes the spectrum

of a ∈ A ; cf. [13].

We can apply Proposition 3.4 and Remark 3.6 to derive some new inequalities as
well as some well-known ones. We only give the following such results:

COROLLARY 3.7. Let H be a Hilbert space and T,S ∈ B(H ) be strictly posi-
tive operators such that TS = ST . Then

‖Tx‖2‖Sx‖2−|〈Tx,Sx〉|2 �
(

supσ(T )supσ(S)− infσ(T ) infσ(S)
2

)2

min

{ ‖Sx‖4

supσ(S)2 infσ(S)2 ,
‖Tx‖4

supσ(T )2 infσ(T )2

}

and

‖Tx‖‖Sx‖� 1
2

(√
infσ(T ) infσ(S)
supσ(T )supσ(S)

+

√
supσ(T )supσ(S)
infσ(T ) infσ(S)

)
|〈Tx,Sx〉|

for all x ∈ H .

Proof. It is sufficient to set A = B(H ) , to consider ϕ(R) := 〈Rx,x〉 (R∈B(H ))
and to apply Proposition 3.4 and Remark 3.6. �



REVERSE CAUCHY–SCHWARZ INEQUALITIES 707

COROLLARY 3.8. Let (X ,Σ,μ) be a probability space and f ,g ∈ L∞(μ) with
0 < a � f � A, 0 < b � g � B. Then

∫
X

f 2dμ
∫

X
g2dμ−

(∫
X

f gdμ
)2

(3.10)

� (AB−ab)2

4
min

{
1

B2b2

(∫
X

g2dμ
)2

,
1

A2a2

(∫
X

f 2dμ
)2
}

and

(∫
X

f 2dμ
)1/2(∫

X
g2dμ

)1/2

� 1
2

(√
ab
AB

+

√
AB
ab

) ∫
X

f gdμ . (3.11)

Proof. It is enough to assume A to be the commutative C∗ -algebra L∞(X ,μ) , to
consider ϕ(h) :=

∫
X hdμ (h ∈ L∞(μ)) , use Proposition 3.4 and Remark 3.6 and an

obvious symmetry argument. �

REMARK 3.9. The second inequality of Corollary 3.8 is due to C.N. Niculescu
[13].

By applying (3.11) with a weighted counting measure μ = ∑n
i=1 wiδi , where wi ’s

are positive numbers and δi ’s are the Dirac delta functions, we obtain with change
of notation that if a1, · · · ,an and b1, · · · ,bn satisfy the conditions in the Pólya–Szegö
theorem, then

n

∑
i=1

a2
i wi

n

∑
i=1

b2
i wi � (AB+ab)2

4ABab

(
n

∑
i=1

aibiwi

)2

,

which is the Greub–Rheinboldt inequality [7]. In the same way, from (3.10) it follows
that

n

∑
i=1

a2
i wi

n

∑
i=1

b2
i wi −

(
n

∑
i=1

aibiwi

)2

(3.12)

� (AB−ab)2

4
min

⎧⎨
⎩ 1

B2b2

(
n

∑
i=1

b2
i wi

)2

,
1

A2a2

(
n

∑
i=1

a2
i wi

)2
⎫⎬
⎭ .

In particular, by using this inequality with wi = 1 (i = 1, · · · ,n) , we get the following
strict improvement of the Pólya–Szegö inequality (1.2).

COROLLARY 3.10. Suppose that a1, · · · ,an and b1, · · · ,bn are positive real num-
bers such that 0 < a � ai � A < ∞ ,0 < b � bi � B < ∞ for some constants a,b,A,B
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and all 1 � i � n. Then

n

∑
i=1

a2
i

n

∑
i=1

b2
i −
(

n

∑
i=1

aibi

)2

(3.13)

� (AB−ab)2

4
min

⎧⎨
⎩ 1

A2a2

(
n

∑
i=1

a2
i

)2

,
1

B2b2

(
n

∑
i=1

b2
i

)2

,
1

abAB

(
n

∑
i=1

aibi

)2
⎫⎬
⎭ .

Any of the constants in the bracket above can be the strictly least one.

Proof. The inequality (3.13) follows by just combining (1.2) with (3.12). More-
over, the proof of the final statement is as follows: By choosing n > 1,a = 1,ai = A =
n,bi = b = B = 1/n (1 � i � n) we find that the second constant is strictly less than
the first one and the third one. Analogously, by choosing n > 1,a = ai = A = 1/n,b =
1,bi = B = n (1 � i � n) we find that the first constant is strictly less than the second
and the third one. We also note that by the Schwarz inequality,

1
abAB

(
n

∑
i=1

aibi

)2

� 1
abAB

n

∑
i=1

a2
i

n

∑
i=1

b2
i (3.14)

and obviously

1
abAB

n

∑
i=1

a2
i

n

∑
i=1

b2
i � min

⎧⎨
⎩ 1

A2a2

(
n

∑
i=1

a2
i

)2

,
1

B2b2

(
n

∑
i=1

b2
i

)2
⎫⎬
⎭

if and only if

1
Aa

n

∑
i=1

a2
i =

1
Bb

n

∑
i=1

b2
i . (3.15)

We conclude that the third term is strictly less than the first two whenever (3.15) holds
and we have strict inequality in the Schwarz inequality (3.14). Hence our claim is
proved. �

REMARK 3.11. By combining (3.12) with the Greub–Rheinboldt inequality we
can in a similar way derive also a weighted version of Corollary 3.10 (and, thus, also
strictly improve the Greub–Rheinboldt inequality).
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