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Abstract. We prove two new reverse Cauchy—Schwarz inequalities of additive and multiplicative
types in a space equipped with a positive sesquilinear form with values in a C*-algebra. We
apply our results to get some norm and integral inequalities. As a consequence, we improve a
celebrated reverse Cauchy—Schwarz inequality due to G. Pélya and G. Szego.

1. Introduction

The probably first reverse Cauchy—Schwarz inequality for positive real numbers
ai,---,ay is the following one (see [15, p. 57 and 213-214] and [16, p. 71-72 and
253-255]):

THEOREM. [G. Pélya and G. Szegd (1925)] Let ay,---,a, and by,---,b, be
positive real numbers. If

0<a<a <A<, 0<b<b;<B<o

for some constants a,b,A,B and all 1 <i< n, then

2
(ab —|—AB !

Z‘ Z‘ " 4abAB Z“b : (1.1)

The inequality is sharp in the sense that 1/4 is the best possible constant.

We remark that (1.1) can be obviously rewritten in the following equivalent form

2 2
L d i (AB—ab)” ab)? [ &
Na; Y b - i;aibi < AR Zab . (1.2)

i=1 i=1

We say that (1.1) is the multiplicative form of the Pélya—Szego inequality and that (1.2)
is the additive form.
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There exist a lot of generalizations of this classical inequality. For example, Chap-
ter 5 in [1] (36 pages) is devoted only to such reversed discrete Cauchy—Schwarz in-
equalities. Also similar results for integrals, isotone functionals as well as generaliza-
tions in the setting of inner product spaces are today well-studied and understood; see
the books [3] and [4]. Moreover, C.P. Niculescu [13] and M. Joita [9] have proved some
reverse Cauchy—Schwarz inequalities in the framework of C*-algebras. We also refer
to another interesting even newer paper by D. Ilisevi¢ and S. Varosanec [8] of this type;
see also the book of T. Furuta, J.M. Hot, J.E. Pecari¢ and Y. Seo [6] and references
therein.

In this paper we continue and complement this research by proving some new
generalizations of both (1.1) and (1.2) in a similar framework (see Theorem 3.1 and
Theorem 3.3). We also apply our results to get some norm and integral inequalities. As
a consequence, we improve inequality (1.2).

2. Preliminaries

A C*-algebra is a Banach *-algebra (2, | - ||) such that ||a*a| = ||a||® for each
a € 2. Recall that a € A is called positive (we write a > 0) if a = b*b for some b € 2.
If a € 2 is positive, then there is a unique positive » € 2 such that a = b?; such an
element b is called the positive square root of a and denoted by a'/?. For every a € 2,
the positive square root of a*a is denoted by |a|. For two self-adjoint elements a,b
one can define a partial order < by

a<beb—-—a=0.
For a € A, by Re a we denote atd”

Let 2 be a C*-algebra and let X be an algebraic right 2-module which is a
complex linear space with (Ax)a = x(Aa) = A(xa) forall x€e X, ac A, A € C.
The space X is called a (right) semi-inner product 2 -module (or semi-inner product
C* -module over the C*-algebra ) if there exists an 2 -valued inner product, i.e., a
mapping (-,-): X x X — 2 satisfying

(i) (x,x) >
(i) (x,Ay+z)=Ax,y)+ (x,2),
(iil) (x,ya) = (x,y)a,
(iv) (yx) = (x,»)",
forall x,y,z€ X, ae 2, A € C. Moreover, if

x,
{
{
(

(v) x=0 whenever (x,x) =0,

then X is called an inner product A -module (inner product C*-module over the C*-
algebra 20). In this case ||x|| := +/]|(x,x)|| gives a norm on X making it into a normed
space, where the latter norm denotes that in the C*-algebra 2(. If this normed space
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is complete, then X is called a Hilbert A-module (Hilbert C*-module over the C*-
algebra ). A left inner product 2A-module can be defined analogously. Any inner
product (resp. Hilbert) space is a left inner product (resp. Hilbert) C-module and any
C*-algebra 2 is a right Hilbert C* -module over itself via (a,b) = a*b, forall a,b € 2.
For more details on inner product C* -modules see [10] and [11].

The Cauchy—Schwarz inequality asserts that (x,y)(y,x) < ||y||* (x,x) in a semi-
inner product module X over a C*-algebra 2; see [10, Proposition 1.1] as well as [5].
This is a generalization of the classical Cauchy—Schwarz inequality stating that if x
and y are elements of a semi-inner product space, then |(x,y)|*> < (x,x)(y,y). There are
mainly two types of reverse Cauchy—Schwarz inequality. In the additive approach (ini-
tiated by N. Ozeki [14]) we look for an inequality of the form & + | {x,y)|? > (x,x)(y,y)
for some suitable positive constant k (see also (1.2)). In the multiplicative approach
(initiated by G. Polya and G. Szegé [15]) we seek for an appropriate positive constant
k such that |(x,y)|? > k(x,x){y,y) (see also (1.1)).

In the next section we prove and discuss some reverse Cauchy—Schwarz inequal-
ities of additive and multiplicative types in a linear space equipped with a positive
sesquilinear form with values in a C* -algebra. For a comprehensive account on Cauchy—
Schwarz inequality and its various inverses we refer the reader to books [3] and [4].

3. The main results

Let 20 be a C*-algebra and let X be a linear space. By an 2-valued positive
sesquilinear form we mean a mapping (-,-) : X X ¥ — 2 which is linear in the first
variable and conjugate linear in the second and fulfills (x,x) >0 (x€ X).

Our first result of this section is the following additive reverse Cauchy—Schwarz
inequality:

THEOREM 3.1. Let A be a C*-algebra and let X be a linear space equipped
with an U -valued positive sesquilinear form {-,-) : ¥ x X — 2. Suppose that x,y € X
are such that

()" = (nx) (3.1)
)2, y) = () )2 (3.2)
Re (Qy—x,x—wy) >0 (3.3)
for some @,Q € C. Then
) 2 2~ P < %IQ— o (y,y)?. (3.4)

REMARK 3.2. The constant 1/4 in (3.4) can not in general be replaced by some
smaller numbers (see the proof for the special case considered in Proposition 3.4).

Proof. Set

Dy = Re[(Q(y,y) — (¢, ) ((yx) — 0(y,))]
= —Re(Q®)(y,y)* — (x,y) (3,x) + Re[Q(y,y) (y,x) + @ (x,) (y, )]
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It follows from (3.3) that
Dy = (3,)'*Re (Qy—x,x— wy)(y,»)'* > 0.
Hence, by also using (3.2), we find that
D = —Re(Qw)(3,y)* = (r.3) " (x,x) (1) '/
+(n3)!PRe[Q(y.x) + @(x, 7)) (ny) /2

= —Re(Q)(y,y)* — (3, 3)"/*(x,x) (y, )/
+Re[Q(y,y) (v, x) + @ (x,y) (y,)] -

Therefore D; — D, < D; and we conclude that

)2 ) = (2,3) (%) < Re[(Q,y) — (6,3)) (%) — D (y,y))]
I, = _ 2
< zl@-@))
The last inequality is obtained by applying (3.1) and the elementary inequality Re(u*v)

< Hu+v[* (u,v €A) for u=Q(y,y) — (y,x) and v = (y,x) — @(y,y). The proof is
complete. [

Our multiplicative reverse Cauchy—Schwarz inequality reads as follows:
THEOREM 3.3. Let 2 be a C*-algebra and let X be a linear space equipped
with an U -valued positive sesquilinear form {-,-) : ¥ x X — 2. Suppose that x,y € X

are such that (3.1) holds, (x,y) is normal and (3.3) holds for some ®,Q € C with
Re(wQ) > 0. Then

Q|+ |0

() )+ ) Pl < 2 Tee

|G- (3.5)

Proof. Tt follows from (3.3) that
Re(Q(x,y)" + @(x,y)) — (x,x) — [Re(0Q)](y,y) > 0.

Moreover, since (x,y) is normal, Re({x,y)) < |(x,y)| so that

1 _ Re(Q(x,y)* + d(x,y))
Refaa 2 ) RO < g
Qo] wl @)

~ [Re(0Q)]'/?

Furthermore, the trivial estimate

2
(gt~ Rel@@] ) ) >0
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implies that

o) 2 ()2 () 12

s W<x’x> +[Re(0Q)]'(y,y). 3.7)

By combining (3.6) and (3.7) we obtain (3.5) and the proof is complete. [

PROPOSITION 3.4. Let ¢ be a positive linear functional on a C*-algebra 2 and
let x,y € A be such that

Re@((x—y)"(Qy—x)) >0

Sfor some @,Q € C.
(a) Then

1
P x) (v y) — [o(yx)|* < ;e wl*o(y*y)*. (3.8)

(b) Moreover, if for each y € 2 there exists an element z € 2 such that ¢(z"y) =0,
then the constant % is sharp in (3.8).
(c) Furthermore, if Re(0Q) > 0, then

1 Q[+ |a]
k 1/2 * 1/2 g _ * . 39
REMARK 3.5. Proposition 3.4 (a) and (b) is related to Theorem 1 of [2], where
the case with inner product spaces was considered.

Proof. (a) By defining (u,v) := ¢(v*u) one obtains a positive sesquilinear form
from A x 2 into C. Equality (3.1) holds by [12, p. 88] and equality (3.2) is trivially
fulfilled. Thus Theorem 3.1 gives the additive type reverse Cauchy—Schwarz inequality
(3.8) and Theorem 3.3 yields the multiplicative type reverse Cauchy—Schwarz inequal-
ity (3.9). It remains to prove the sharpness assertion in (b). In fact, let y € 2 with
o(y*y) = 1. Choose z € A with ¢(z"z) =1 and ¢(z*y) =0. Put x = QJFT“’y—F Qg—wz.
Then

o(te—ovr - = o ((252+ 22%) (252,222

2
o'y —2"2)

_Q-w

2

=0.
Hence Re¢((x — wy)*(Qy —x)) > 0 holds. If

P x)p(y*y) — [o(y'x)|* < CIQ— w[*0(v*y)?,
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for some C > 0, then

o

= o(x"x) —[o(y'x)[
g C‘Q_ (D‘2,

2

Q+w «
o(y'y)

2

2

‘Q—a)

2*+Q—w
2

2* |Q+o
7z >

from which we conclude that 1/4 < C. The proof is complete. [

REMARK 3.6. Let @ be a positive linear functional on a C*-algebra 2, x,y be
self-adjoint elements of 2 such that wy < x < Qy for some scalars @w,Q > 0. Then

¢((x—wy)"(Qy—x)) >0
if xy = yx (in particular, when 2l is commutative), since
((x— 0y)(Qy—x)) = 9((Qy—x)'*(x— wy)(Qy—x)'?) > 0.

In particular, if x and y are commuting strictly positive elements of a unital C* -algebra
2, one may consider @ = % and Q = jﬂ?g((\x)) , where o(a) denotes the spectrum
of a e A;cf. [13].

We can apply Proposition 3.4 and Remark 3.6 to derive some new inequalities as
well as some well-known ones. We only give the following such results:

COROLLARY 3.7. Let S be a Hilbert space and T,S € B() be strictly posi-
tive operators such that TS = ST . Then

supo(T)supo(S) —info(T)inf o (S) ) 2
2

TIPS = (T2, S92 < (

s |7
supo(S)2info(S)2 supo(T)%info(T)?

and

relisd < | ( \/infG(T)infG(S) .\ \/squ(T)squ(S)> (Tx.55)

supo(T)supo(S) info(T)info(S)

forall x € 57 .

Proof. 1tis sufficient to set A =B(77), to consider @(R) := (Rx,x) (ReB(¢))
and to apply Proposition 3.4 and Remark 3.6. [
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COROLLARY 3.8. Let (X,Z,u) be a probability space and f,g € L(u) with
0<a<f<A 0<b<g<B.Then

2
/X Fdu /X Fdu— ( /X fgdu> (3.10)
(AB—ab)? . 1 2 2
< 4a rn]n{sz2 (/ngd‘u> V) (/};de‘u)

172 2 1( [ab [AB
2 2
(/Xf du) (/Xg du) < 5( BT —ab> /ngdu- (3.11)

Proof. Tt is enough to assume 2 to be the commutative C* -algebra L*(X, u), to
consider @(h) := [yhdu (h € L”(u)) , use Proposition 3.4 and Remark 3.6 and an
obvious symmetry argument. [J

and

REMARK 3.9. The second inequality of Corollary 3.8 is due to C.N. Niculescu
[13].

By applying (3.11) with a weighted counting measure 4 = Y, w;0;, where w;’s
are positive numbers and &;’s are the Dirac delta functions, we obtain with change
of notation that if ay,---,a, and by,---,b, satisfy the conditions in the Pélya—Szego
theorem, then

2
AB+ab
Zawle2 < “AABab (Zabw),

which is the Greub—Rheinboldt inequality [7]. In the same way, from (3.10) it follows
that

2
2 Lll-2Wi 2 bl-2Wi — (2 aib,-wi) (312)
i=1 i=1 i=1

2 2
(AB—ab)* . 1 5o, L
< g ming o lzzl byw; A2a2 ;

In particular, by using this inequality with w; =1 (i =1,---,n), we get the following
strict improvement of the Pélya—Szeg6 inequality (1.2).

COROLLARY 3.10. Suppose that ay,---,a, and by,---,b, are positive real num-
bers such that 0 < a < a; <A <o,0<b < b <B < for some constants a,b,A,B
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andall 1 <i<n. Then

n n n 2

Nai Yo - <2aibi> (3.13)
i=1 =l i=1

2 2 ?
(AB _ ab)2 ' 1 n 5 1 n ) 1 n

_ : , b

< 2 ming =53 l; 4 | g2 l; bir| abAB l; aibi

Any of the constants in the bracket above can be the strictly least one.

Proof. The inequality (3.13) follows by just combining (1.2) with (3.12). More-
over, the proof of the final statement is as follows: By choosing n > l,a=1,a; =A =
n,bij=b=B=1/n(1 <i<n) we find that the second constant is strictly less than
the first one and the third one. Analogously, by choosing n > l,a=a;=A=1/n,b=
1,bj =B =n (1 <i<n) we find that the first constant is strictly less than the second
and the third one. We also note that by the Schwarz inequality,

2
1 n n n
5 (i}%aibi) abABZa?Zb? (3.14)

and obviously

1 n 2 n 2 . 1 n ) 2 1 n ) 2
abap 2% Db sming on { La | g | 20

1 i=1 i=1 i=1

if and only if

— N 3.15
Aa;a’ Bbl.zzi l G-

We conclude that the third term is strictly less than the first two whenever (3.15) holds
and we have strict inequality in the Schwarz inequality (3.14). Hence our claim is
proved. O

REMARK 3.11. By combining (3.12) with the Greub—Rheinboldt inequality we
can in a similar way derive also a weighted version of Corollary 3.10 (and, thus, also
strictly improve the Greub—Rheinboldt inequality).
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