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Abstract. In an arbitrary normed plane we study the relation between the length of a closed
curve and the length of its midpoint curve as well as the length of its image under the halving
pair transformation. We show that the image curve under the halving pair transformation is
convex provided the original curve is convex. We give a sufficient condition for the geometric
dilation of a closed convex curve to be larger than a quarter of the perimeter of the unit circle.
Moreover, we obtain several inequalities to show the relation between the halving distance and
other quantities well known in convex geometry.

1. Introduction

Let C be a simple planar closed curve. A pair of points p,q ∈ C is said to be a
halving pair of C if the length of each part of C connecting p and q is one half of the
perimeter of C . In the Euclidean plane, the property of halving pairs of simple planar
closed curves plays an important role in recent investigations of the geometric dilation
problem; see [3], [4], and [5]. Also, the relations between the halving distance (the dis-
tance between a halving pair) and some further important quantities of a closed curve
yield many interesting results; see [3] and [5, Chapter 4]. In [10], the first attempt was
made to extend the geometric dilation problem from the Euclidean plane to Minkowski
planes (i.e., to real two-dimensional normed linear spaces). General lower bounds on
the geometric dilation of closed planar curves in Minkowski planes were obtained by
applying basic properties of halving pairs and the so called halving pair transformation.
In the present paper we study further properties of halving pairs, the halving pair trans-
formation and the halving distance in arbitrary Minkowski planes, deriving also related
inequalities.

By X we denote a (normed or) Minkowski plane with origin o , norm ‖·‖ , unit
disc BX , unit circle SX , and a fixed orientation ω . We refer to [9], [7], [8], and [11] for
more information about the geometry of Minkowski planes and spaces. Any homothet
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of SX is said to be a circle in X . By [p,q] we denote the segment (possibly degenerate)
between two points p,q ∈ X , and by 〈p,q〉 the line passing through p and q . The
convex hull of a set S is denoted by conv(S) . Let x,y ∈ X . We say that x is Birkhoff
orthogonal to y if ‖x+ ty‖ � ‖x‖ holds for any real number t , and this situation is
denoted by x ⊥B y (cf. [2] and [6]).

By a curve C in X we mean the range of a continuous function φ that maps a
closed bounded interval [α,β ] into X . The curve C defined by φ : [α,β ] �→ X is
called closed if [α,β ] is replaced by a Euclidean circle, say, and it is simple if it has
no self-intersections. Furthermore, C is said to be rectifiable if the set of all Riemann
sums {

n

∑
i=1

‖φ(ti)−φ(ti−1)‖ : (t0,t1, · · · ,tn) is a partition of [α,β ]

}

with respect to the norm ‖·‖ of X is bounded from above. If C is a rectifiable curve,
then we denote by |C| the length of C , i.e.,

|C| := sup

{
n

∑
i=1

‖φ(ti)−φ(ti−1)‖ : (t0,t1, · · · ,tn) is a partition of [α,β ]

}
.

Throughout this paper we consider simple, rectifiable, closed curves in an arbitrary
Minkowski plane X . We shall frequently use the arc-length parametrization c : [0, |C|)
→C of a rectifiable closed curve C , which is continuous, bijective, and has the prop-
erty that ‖ċ(t)‖ = 1 whenever the derivative exists. Two points p = c(t) and p̂ =
c(t + |C|/2) on C that split C regarding its length into two equal parts form a halving
pair of C , and the segment [p, p̂] is said to be a halving chord. For any v ∈ SX , the v-
halving distance in direction v , denoted by hC(v) , is the length of the halving chord of
C having direction v (note that this quantity is defined only for convex curves); the v-
length, denoted by lC(v) , is the maximum distance between pairs of points on C whose
difference vector is of direction v . The minimum width w of a closed convex curve C is
the minimum distance between two parallel supporting lines of conv(C) . The diameter
of C , denoted by D(C) , is the maximum of all possible v-lengths. The inradius r and
circumradius R of C is the radius of the maximum inscribed circle and the minimum
circumscribed circle of C , respectively. The maximum halving distance and minimum
halving distance of C are defined by H = H(C) = maxt∈[0,|C|){‖c(t)− c(t + |C|/2)‖}
and h = h(C) = mint∈[0,|C|){‖c(t)− c(t + |C|/2)‖} , respectively. The midpoint curve
M of the curve C is formed by the midpoints of halving chords of C , and it is parame-
terized by

m(t) :=
1
2

(
c(t)+ c(t +

|C|
2

)
)

.

The image C∗ of C under the halving pair transformation is given by the parametriza-
tion

c∗(t) :=
1
2

(
c(t)− c(t +

|C|
2

)
)

.
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The geometric dilation (or detour) δX(C) of C is defined by

δX (C) := sup
p,q∈C,p 
=q

dC(p,q)
‖p−q‖ ,

where dC(p,q) is the minimum of the lengths of the two curve arcs of C connecting p
and q . If C is convex, then δX (C) = |C|/2h (see [10]).

2. The halving pair transformation

Let C be a simple rectifiable closed curve. By definition, the halving pair trans-
formation translates the midpoints of the halving chords to the origin, c∗(t) = −c∗(t +
|C|/2) , and hence C∗ is centrally symmetric. Moreover, h(C∗)= h(C)= h and H(C∗)=
H(C) = H .

First we would like to give an upper bound on |M| .

THEOREM 2.1. |C| � max{2|M|, |C∗|} .

Proof. We deal only with the case when C is piecewise continuously differen-
tiable, and the proof of this case can be extended to arbitrary rectifiable curves. By
definitions and the triangle inequality we have

2|M| =
|C|/2∫
0

∥∥∥∥ċ(t)+ ċ

(
t +

|C|
2

)∥∥∥∥dt �
|C|/2∫
0

(‖ċ(t)‖+
∥∥∥∥ċ

(
t +

|C|
2

)∥∥∥∥)dt = |C|

and

|C∗| =
|C|∫
0

1
2

∥∥∥∥ċ(t)− ċ

(
t +

|C|
2

)∥∥∥∥dt � 1
2

|C|/2∫
0

(‖ċ(t)‖+
∥∥∥∥ċ

(
t +

|C|
2

)∥∥∥∥)dt = |C|.

The proof is complete. �

REMARK 2.2. Dumitrescu et al. [3] showed that the inequality 4|M|2 + |C∗|2 �
|C|2 holds in the Euclidean plane, which means that the number 2|M| cannot be too
large since we have the inequality |C∗| � πh . However, this is not true in general
Minkowski planes.
Consider the closed curve C depicted in Figure 1, in the Minkowski plane R

2 with
norm ‖(α,β )‖ = |α|+ |β | . Calculations show that |C| = 6A + 8ε , h = A + 2ε , and
H = A+4ε , where A is a constant positive number. Note that |M| is not smaller than
the perimeter of the triangle formed by m1 , m2 , and m3 , that is, |M| � 3A . By the
symmetry of C∗ , any two points p and −p on C∗ form a halving pair of distance
2‖p‖ � h . Hence C∗ contains the disc (h/2)BX , and then |C∗| � (h/2)|SX | = 4h =
4(A+2ε) . Clearly, 2|M| tends to |C| as ε tends to zero while |C∗|> 4A , and therefore√
|C|2−|C∗|2/2 is not an upper bound on |M| in general Minkowski planes.
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y

O

(−ε, A + ε) (ε, A + ε)

(ε, ε) (A + ε, ε)

(A + ε,−ε)(−A − ε,−ε)

(−A − ε, ε) (−ε, ε)

m1 = (0, A
2
)

m2 = (A
2
, 0)m3 = (−A

2
, 0)

C

Figure 1: 2|M| can be arbitrarily close to |C| .

REMARK 2.3. It is also interesting to observe that |C|= 2|M| may hold for some
closed convex curves in a metric space on R

2 , where the metric is induced by a certain
convex distance function (gauge) as in the following example, i.e., the corresponding
metric is not centrally symmetric. Let C be a triangle in the metric space on R

2 with
unit circle SX (see Figure 2), where a point is moving on C clockwise. Then the point
on the midpoint curve M moves counter-clockwise, and simple calculations show that
|C| = 2|M| .

c(t2)

c(t1 + |C|
2

)

c(t1)

c(t2 + |C|
2

)

m(t1)

m(t2) C

M

o
1

SX

Figure 2: The case where |C| = 2|M| .

Ebbers-Baumann et al. [4] proved that, in the Euclidean plane, the image of a
closed convex curve under the halving pair transformation is also convex. We show
that this result still holds in general Minkowski planes.

LEMMA 2.4. For any u,v ∈ SX and λ ∈ [0,1) we have u 
⊥B (u+λv) and v 
⊥B

(v+λu) . Moreover, u ⊥B (u+ v) if and only if [u,−v]⊂ SX .
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Proof. The case u = ±v is trivial. Suppose that u 
= ±v and that there exists
a number λ0 ∈ [0,1) such that u ⊥B (u + λ0v) . Then, by the definition of Birkhoff
orthogonality, the inequality

‖u+ t(u+λ0v)‖ � ‖u‖ = 1

holds for any t ∈ R . By setting t = −1 we have |λ0| � 1, a contradiction.
Suppose that u ⊥B (u+ v) . Then∥∥∥∥u− 1

2
(u+ v)

∥∥∥∥ =
1
2
‖u− v‖� 1,

which implies that ‖u− v‖= 2. Thus [u,−v] ⊂ SX . �

LEMMA 2.5. Suppose that C ⊂ X is a continuously differentiable, closed, convex
curve, and p,q be two points on C such that a pair of parallel supporting lines of
conv(C) contains p and q, respectively. Then dC(p,q) > ‖p−q‖ .

Proof. Let C0 be that part of C connecting p and q which has minimum length,
and lp and lq be the supporting lines of conv(C) at p and q , respectively (see Fig-
ure 3). Since C is continuously differentiable, there exists a point q0 ∈C0 such that the
supporting line of conv(C) at q0 (which intersects lp and lq in p1 and q1 , respectively)
is parallel to the line 〈p,q〉 .

p q

p1 q1

pε

qε q′ε

q′′ε

q′1 q0

lp lq

Figure 3: Proof of Lemma 2.5.

For any number 0 < ε < dC(p,q0) , let qε ∈C0 be the point such that dC(p,qε) =
ε ; pε , q′′ε , and q′ε be the points where the line passing through qε parallel to 〈p,q〉
intersects lp , lq , and the arc on C0 between q0 and q , respectively. Since dC(p,qε) �
‖p−qε‖ , dC(qε ,q′ε) � ‖qε −q′ε‖ , and dC(q′ε ,q) � ‖q′ε −q‖ , it suffices to show that
‖p−qε‖+‖q′ε −q‖ > ‖pε −qε‖+‖q′ε −q′′ε‖ for some sufficiently small ε .

Suppose that the line 〈p,qε〉 intersects [p1,q1] in q′1 . Then

‖p− pε‖
‖pε −qε‖

=
‖p− p1‖∥∥p1−q′1

∥∥ .
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Since ‖p− p1‖ is fixed and C is differentiable at p , we have limε→0 ‖p1−q′1‖ = 0,
and therefore limε→0 ‖pε −qε‖/‖p− pε‖ = 0. Thus

lim
ε→0

‖p−qε‖
‖pε −qε‖

� lim
ε→0

‖p− pε‖−‖pε −qε‖
‖pε −qε‖

= lim
ε→0

‖p− pε‖
‖pε −qε‖

−1 = +∞,

and then limε→0 ‖pε −qε‖/‖p−qε‖ = 0, which implies ‖pε −qε‖ < ‖p−qε‖ for
sufficiently small ε . In a similar way we can prove that ‖q′ε −q‖ > ‖q′ε −q′′ε‖ when ε
is sufficiently small. �

THEOREM 2.6. If C is convex, then C∗ is convex.

Proof. First we assume that C is smooth. Then the derivative ċ(·) is a continuous
function mapping [0, |C|) into the unit circle SX . Due to convexity, the derivative
vectors ċ(t) and −ċ(t + |C|/2) always turn into the same direction, say ω0 .

Note that ċ(t)− ċ(t + |C|/2) = 0 cannot occur, since this would imply that ċ(τ) =
ċ(t) = ċ(t + |C|/2) holds for each τ in [t,t + |C|/2] or [t + |C|/2,t + |C|] , due to con-
vexity. Then C would contain a line segment of length |C|/2. On the other hand, it fol-
lows from the assumption that the supporting lines of conv(C) at c(t) and c(t + |C|/2)
are parallel to each other. By Lemma 2.5 we have ‖c(t)− c(t + |C|/2)‖ < |C|/2, a
contradiction.

o

ċ(t)

−ċ(t + |C|
2

)

ċ(t) − ċ(t + |C|
2

)

c̈ω0(t)

−c̈ω0(t + |C|
2

)

c̈ω0(t) − c̈ω0(t + |C|
2

)

ω0

A
B

Figure 4: ċ(t)− ċ(t + |C|/2) turns into the same direction as ċ(t) and ċ(t + |C|/2) .

Furthermore, by Lemma 2.4 we have for any λ ∈ (0,1)

ċ(t) 
⊥B

(
ċ(t)−λ ċ

(
t +

|C|
2

))
(2.1)

and

−ċ

(
t +

|C|
2

)

⊥B

(
−ċ

(
t +

|C|
2

)
+λ ċ(t)

)
. (2.2)
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Denote by c̈ω0(t) the derivative of ċ(t) in direction ω0 , i.e., the one-side derivative
turns ċ(t) in the direction ω0 (see Figure 4). (2.1) and (2.2) imply that c̈ω0(t)+ ċ(t)−
ċ(t + |C|/2) and −c̈ω0(t + |C|/2)+ ċ(t)− ċ(t + |C|/2) cannot lie in the domains A and
B , respectively. Therefore, c̈ω0(t) and −c̈ω0(t + |C|/2) turn the vector ċ(t)− ċ(t +
|C|/2) into the direction ω0 . Hence C∗ is convex.

This result can be extended to closed convex curves, approximating them by smooth
closed convex curves. �

In [10] the lower bound |SX |/4 for the geometric dilation in Minkowski planes
was derived, and it was shown that a closed convex curve with the smallest geometric
dilation is not necessarily a circle. In the following theorem we present a sufficient
condition for the geometric dilation of a curve to be larger than |SX |/4.

THEOREM 2.7. Let C be a closed convex curve with H/h > 2 . Then δX(C) >
|SX |/4 .

Proof. Suppose that δX (C) = |SX |/4. By Theorem 2.6 and the convexity of C we
have

δX (C) =
|C|
2h

� |C∗|
2h

= δX (C∗) � |SX |
4

,

which yields |C| = |C∗| . As stated in Remark 2.2, C∗ contains the disc (h/2)BX .
On the other hand, C∗ has to connect some halving pair q and −q having maximum
halving distance H .

−q q

−v u

v−u

o

H
2

h
2

Ĉ

h
2
BX

Figure 5: The curve Ĉ is the shortest curve containing the disc (h/2)BX and connect-
ing q and −q.

Suppose that the supporting lines of (h/2)BX passing through q support (h/2)BX

at u and v , respectively (see Figure 5: if one of the lines supports (h/2)BX at a segment,
then we choose the point nearest to q on that segment). Thus the supporting lines of
(h/2)BX passing through −q support (h/2)BX at −u and −v , respectively. Let Ĉ be
the closed convex curve depicted in Figure 5. Then

h
2
|SX | � |Ĉ| � |C∗| = h

2
|SX |,

which implies that |Ĉ| = (h/2)|SX | . It follows that

‖q−u‖+‖q− v‖= d h
2 SX

(u,v).
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Thus ‖q−u‖+ ‖q− v‖ = ‖u− v‖ . Since ‖q‖ = H/2 > h and ‖u‖ = ‖v‖ = h/2,
we have ‖q−u‖ � ‖q‖− ‖u‖ > h/2 and ‖q− v‖ > h/2. Therefore h � ‖u− v‖ =
‖q−u‖+‖q− v‖> h , a contradiction. �

3. On the halving distance

The relations between different geometric quantities of convex bodies yield inter-
esting (geometric) inequalities. In this section we relate the minimum and maximun
halving distance h and H to other geometric quantities, such as, for example, the min-
imum width w . The results in the following theorem can be derived immediately from
the definitions of the corresponding quantities.

THEOREM 3.1. Let C ⊂ X be a closed convex curve. Then the following inequal-
ities hold:

1. h � w,

2. H � |C|/2 ,

3. 2r � w,

4. h � H � D,

5. H � 2R.

LEMMA 3.2. Let C ⊂ X be a closed convex curve. Then there exists a point
p0 ∈C such that conv(C) has parallel supporting lines at p0 and p̂0 .

Proof. First we assume that C is a smooth curve. Note that

|C|/2∫
0

ċ(t)dt = c

(
|C|
2

)
− c(0) = −

|C|/2∫
0

ċ

(
t +

|C|
2

)
dt.

By the intermediate value theorem of integration, there exists a number t0 ∈ (0, |C|/2)
such that ċ(t0)+ ċ(t0 + |C|/2) = 0. Let p0 = c(t0) . Then conv(C) has parallel support-
ing lines at p0 and p̂0 .

Again this result can be generalized to closed convex curves, approximating them
by smooth closed convex curves. �

THEOREM 3.3. Let C ⊂ X be a closed convex curve. Then H � w.

Proof. By Lemma 3.2 there exists a point p0 ∈ C such that [p0, p̂0] is a halving
chord and conv(C) has parallel supporting lines at p0 and p̂0 . Then the distance be-
tween the supporting lines at p0 and p̂0 is not smaller than the minimum width w of
C . Since (p0, p̂0) is a halving pair, it follows that H � ‖p0− p̂0‖ � w . The inequality
is tight, since circles attain the equality case. �

The following corollary follows from Theorem 3.1 and Theorem 3.3.
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COROLLARY 3.4. Let C ⊂ X be a closed convex curve. Then H � 2r . This
inequality is tight, because equality holds for circles.

LEMMA 3.5. [1, Theorem3] If C⊂X is a closed convex curve, then w= min
v∈SX

lC(v) .

LEMMA 3.6. Let C ⊂ X be a closed convex curve. Then the inequality hC(v) >
lC(v)/2 holds for every direction v ∈ SX . This inequality cannot be improved.

Proof. For any v ∈ SX , let p and p̂ be the halving pair in the direction v ; [q, q̃]
be the longest chord of C in the direction v , i.e., lC(v) = ‖q− q̃‖ . Without loss of
generality, we can assume that p− p̂ is a positive multiple of q− q̃ . The following
proof is similar to the proof of Lemma 4.12 in [5].

c

p
q

p̂

q̃

hC(v)
lC(v)

b1

b2

a1

a2 C

Figure 6: Proof of Lemma 3.6.

If lC(v) � hC(v) , then the proof is complete. If lC(v) > hC(v) , then the line 〈p,q〉
has to intersect the line 〈p̂, q̃〉 at some point c which is seperated from the segment
[q, q̃] by the line 〈p, p̂〉 (see Figure 6). Let a1 = ‖c− p‖ , a2 = ‖c− p̂‖ , b1 = ‖p−q‖,
and b2 = ‖ p̂− q̃‖ . Since [p, p̂] is a halving chord and C is convex, we have b1 +b2 +
lC(v) � |C|/2 � a1 +a2 . Note that both the chords [p, p̂] and [q, q̃] have direction v . It
follows that

a1

a1 +b1
=

a2

a2 +b2
=

hC(v)
lC(v)

,

and then

hC(v) = lC(v)
a1 +a2

a1 +a2 +b1 +b2
� lC(v)

b1 +b2 + lC(v)
2(b1 +b2)+ lC(v)

>
1
2
lC(v).

The second inequality cannot become an equality, but the two numbers can come arbi-
trarily close to each other if lC(v) , compared with b1 +b2 , is small enough. �

COROLLARY 3.7. Let C ⊂ X be a closed convex curve. Then h > w/2 , and this
inequality is tight.
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z = (0, 1)

x = (−α, 0) y = (α, 0)

o

h0
(− (2α+1)α

2(α+1)
, 1

2(α+1)
) ( (2α+1)α

2(α+1)
, 1

2(α+1)
)

0 < α < 1
2

SX

Figure 7: Proof of Corollary 3.7.

Proof. The first part of this result follows from Lemma 3.5 and Lemma 3.6.
In order to see that the bound is tight, we consider an isosceles triangle in R

2 with
the norm ‖(x1,x2)‖ = |x1|+ |x2| , as shown in Figure 7. One can easily show that w =
2α and the halving distance in direction (x− y)/‖x− y‖ is h0 = (2α +1)α/(α +1) .
Then 1/2 < h/w � h0/w = (2α+1)/(2(α+1)) , which implies that h/w tends to 1/2
when α tends to 0. �

From Theorem 3.1 and Corollary 3.7, the relation between h and r can be derived
immediately in the following corollary.

COROLLARY 3.8. Let C ⊂ X be a closed convex curve. Then h > r .

In order to obtain the upper bound for h in terms of r , we need the following
lemma.

LEMMA 3.9. For any triangle in a Minkowski plane X , there exists a height (i.e.,
the distance from a vertex to the line containing its opposite side) which is not larger
than three times the radius of the incircle of that triangle.

Proof. Suppose that the vertices of the triangle are p1 , p2 , and p3 , and the in-
cirle of the triangle is c0 + rSX with radius r and center c0 . Let c = (p1 + p2 +
p3)/3, and p4 ∈ [p1, p3] , p5 ∈ [p1, p2] , and p6 ∈ [p2, p3] be points such that the lines
〈c, p4〉 ,〈c, p5〉 , and 〈c, p6〉 are parallel to 〈p2, p3〉 ,〈p1, p3〉 , and 〈p1, p2〉 , respectively
(see Figure 8). Then

‖p1 − p4‖
‖p1 − p3‖

=
‖p2− p5‖
‖p2− p1‖

=
‖p3− p6‖
‖p3− p2‖

=
2
3
,

and the segments [c, p4] , [c, p5] , and [c, p6] divide the triangle into three regions. The
center c0 of the incircle should lie in one of these three regions. Suppose, without loss
of generality, that c0 lies in the convex hull of the points c , p4 , p1 and p5 . Let l be
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the line passing through c0 parallel to 〈p2, p3〉 , and d be the distance from p1 to l .
Then, since the distance between l and 〈p2, p3〉 is r , we have d/(d + r) � 2/3, which
yields d � 2r . Hence the height from p1 to the side [p2, p3] is not larger than 3r . �

p1

p2 p3

p4

p5

p6

c c0

r

Figure 8: Proof of Lemma 3.9.

THEOREM 3.10. Let C ⊂ X be a closed convex curve. Then h � 3r .

Proof. Suppose that the incirle of C is c0 + rSX . Then c0 + rSX should touch C
at more than one point. We consider the following two cases:

Case 1: c0 + rSX touches C at exactly two points, say p and q .
In this case, there should be a pair of parallel supporting lines of conv(C) at p and

q . Suppose the contrary, namely that any supporting line of conv(C) at p is not parallel
to each supporting line of conv(C) at q . Let lp and lq be supporting lines of conv(C)
at p and q , respectively, intersecting each other at a point c , and l be a line supporting
c0 + rBX at a point c1 and parallel to 〈p,q〉 , where c1 is separated from c by 〈p,q〉 .
Note that lp and lq are also supporting lines of c0 + rBX at p and q , respectively.

c

p1 q1

c0

C

qp

c1

p′ q′

lp lq
l

c0 + rBX

Figure 9: The chord [p,q] is not a diameter of c0 + rSX .

If the chord [p,q] is not a diameter of c0 + rSX , then there exist a diameter [p′,q′]
and u ∈ SX such that p′ − q′ is a positive multiple of p− q and p′ − q′ ⊥B u (see
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Figure 9). Since c1 , p′ , and q′ are interior points of conv(C) , there exists a number
δ1 > 0 such that the points c1 + δ1u , p′ + δ1u , and q′ + δ1u are still interior points
of conv(C) . Thus we can obtain a translate c0 + δ1u + rSX of the incirle which is
contained in conv(C) and does not touch C . This is a contradiction.

Suppose that [p,q] is a diameter of c0 + rSX . Suppose that lp , lq and the line
passing through q parallel to lp intersects l in p1 , q1 , and q′ , respectively. Let q0

be the point on [q′,q1] nearest to q′ such that the line 〈q,q0〉 supports conv(C) ; p0 ∈
[p1,q1] be a point such that the line 〈p, p0〉 is parallel to 〈q,q0〉 (see Figure 10). Then
〈p, p0〉 does not support conv(C) because of the assumption. Let p2 ∈ [p1, p0] be
a point sufficiently close to p0 such that p2 
= p0 and the line 〈p, p2〉 still does not
support conv(C) , and q2 be the point on l such that 〈q,q2〉 is parallel to 〈p, p2〉 .
Then q2 ∈ [q′,q0] , q2 
= q0 , and 〈q,q2〉 is not a supporting line of conv(C) . We note
that lp , lq , 〈p, p0〉 , 〈q,q0〉 , 〈p, p2〉 , and 〈q,q2〉 are all supporting lines of c0 + rBX .
Since c1 is a interior point of conv(C) , there exists a number δ2 > 0 such that the
points c1 + δ2(p2 − p) , p+ δ2(p2 − p) , and q+ δ2(p2 − p) are still interior points of
conv(C) . Thus the translate c0 +δ2(p2− p)+rSX of the incirle is contained in conv(C)
and does not touch C , a contradiction to the fact that c0 + rSX is the incircle of C .

c

p1 q1

p q

q′p2 q0q2p0

c0

c1

C

c0 + rBX

lp lq

l

Figure 10: The chord [p,q] is a diameter of c0 + rSX .

The minimum width w of C cannot be larger than the distance between the parallel
supporting lines of conv(C) at p and q , which is the minimum width of the incircle
c0 + rSX , that is, w � 2r . By Theorem 3.1, it follows that h � w < 3r .

Case 2: The set c0 + rSX touches C at more than two points. Then there exist at
least three such points that are not collinear. Otherwise, we could obtain a translate of
c0 + rSX which is contained in conv(C) and does not touch C , in a similar way as in
Case 1, a contradiction.

Let q1 , q2 , and q3 be three points in the intersection of c0 + rSX and C with
supporting lines l1 , l2 , and l3 , respectively. Suppose that any two of these lines are not
parallel to each other, and {p1} = l1∩ l3 , {p2} = l1 ∩ l2 , and {p3} = l2 ∩ l3 . Thus the
triangle formed by p1 , p2 , and p3 contains the curve C , and then the minimum width
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of C is not larger than the minimum height of the triangle. By Lemma 3.9 we have
w � 3r , and then h � w � 3r . �
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