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Abstract. Generalizations of Euler identities involving μ -harmonic sequences of functions and moments
of real Borel measure μ are established. Some Ostrowski and Euler-Grüss type inequalities for
functions of various classes are proved.

1. Introduction

For a,b∈R, a < b, let C[a,b] be the Banach space of all continuous functions f :
[a,b]→R with the max norm, and M[a,b] the Banach space of all real Borel measures
on [a,b] with the total variation norm.

Introduce the sequence of functions Ǩn : [a,b]× [a,b]→ R, n � 1, by

Ǩn(x,t) =

⎧⎨
⎩

μ̌n(t), a � t � x

μ̌n(t)+ (−1)n
(n−1)!en−1(t,μ), x < t � b

for a � x < b, while for x = b

Ǩn(b,t) =
{
μ̌n(t), a � t < b

0, t = b
.

Here μ̌n : [a,b]→ R, n � 1 denotes the general distribution function of μ ∈ M[a,b]
defined by

μ̌n(t) = 1
(n−1)!

∫

[a,t]

(t − s)n−1dμ(s),

and

en(x,μ) =
∫

[a,b]
(s− x)ndμ(s), n � 0, x ∈ [a,b]

is the n -th x -centered moment of μ .
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Let f : [a,b]→R be such that f (n−1) is a continuous function of bounded variation
on [a,b] for some n � 1. In the recent paper [1] the following identity has been proved:

∫

[a,b]

f (t)dμ(t)+ Šn(x) = Řn(x) (1.1)

for every x ∈ [a,b], where

Šn(x) = −
n−1

∑
k=0

1
k! f (k)(x)ek(x,μ),

and

Řn(x) = (−1)n
∫

[a,b]

Ǩn(x,t)d f (n−1)(t).

This identity has been used in [1 ] to prove some generalizations of weighted Ostrowski
inequality. See also [5 ] .

The aim of this paper is to generalize formula (1.1), by replacing the sequence
(Ǩn, n � 1) with a more general sequence, and using it to prove some further general-
izations of inequalities of Ostrowski type and Euler-Grüss type inequalities.

2. Some integral identities

Let μ ∈ M[a,b]. A sequence of functions Pn : [a,b] → R, n � 1, is called μ -
harmonic sequence of functions on [a,b] if

P′
n(t) = Pn−1(t), t ∈ [a,b], n � 2,

and

P1(t) = c+ μ̌1(t), t ∈ [a,b]

for some c ∈ R.
The sequence (μ̌n, n � 1) is an example of μ -harmonic sequence of functions on

[a,b] . The notion of a μ -harmonic sequence of functions has been introduced in [4].
A sequence of polynomials (Qn, n � 1) is called semiharmonic sequence of poly-

nomials if
Q′

n(t) = Qn−1(t), t ∈ [a,b], n � 2,

and
Q1(t) = c, t ∈ [a,b]

for some c ∈ R. If (Qn, n � 1) is a semiharmonic sequence of polynomials and μ ∈
M[a,b] , then the sequence Pn = Qn + μ̌n, n � 1 is a μ -harmonic sequence of functions
on [a,b]. Obviously, the converse also holds.
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Let (Pn, n � 1) be a μ -harmonic sequence of functions on [a,b]. Define function
Kn : [a,b]× [a,b]→ R, n � 1 by

Kn(x,t) =

⎧⎨
⎩

Pn(t), a � t � x

Pn(t)+ (−1)n

(n−1)!en−1(t,μ), x < t � b

for a � x < b, while for x = b

Kn(b,t) =
{

Pn(t), a � t < b
Pn(b)− μ̌n(b), t = b

.

It is easy to see that for n � 1,

Kn(x,a) = Pn(a), Kn(x,b) = Pn(b)− μ̌n(b)

for every x ∈ [a,b], and that Kn(x, ·), n � 2 is continuous on [a,b]\{x}, having a jump
of

(−1)n

(n−1)!en−1(x,μ)

at x. Further, Kn(x, ·), n � 2 is differentiable on [a,b]\{x} and

K′
n+1(x, ·) = Kn(x, ·).

LEMMA 1. For n � 2, x ∈ [a,b], and f ∈C[a,b], we have

∫

[a,b]

f (t)dKn(x,t) =
b∫

a

f (t)Kn−1(x,t)dt + (−1)n
(n−1)!en−1(x,μ) f (x),

while for n = 1,∫

[a,b]

f (t)dK1(x,t) =
∫

[a,b]

f (t)dμ(t)− μ({a}) f (a)− μ([a,b]) f (x).

Proof. For n � 2, the function Kn(x, ·) is differentiable on [a,b] \ {x} and its

derivative is equal to Kn−1(x, ·) . It has a jump of (−1)n

(n−1)!en−1(x,μ) at x, which gives the

first formula. Further, K1(x, ·) has a jump of −μ̌1(b) at x, and by [2, Lemma 2.2.] we
have ∫

[a,b]

f (t)dK1(x,t) =
∫

[a,b]

f (t)dμ̌1(t)− μ̌1(b) f (x)

=
∫

[a,b]

f (t)dμ(t)− μ̌1(a) f (a)− μ̌1(b) f (x)

=
∫

[a,b]

f (t)dμ(t)− μ({a}) f (a)− μ([a,b]) f (x),

which proves the second formula. �
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THEOREM 1. Let f : [a,b] → R be such that f (n−1) is a continuous function of
bounded variation for some n � 1. Then for every semiharmonic sequence of polyno-
mials (Qn, n � 1) we have

∫

[a,b]

f (t)dμ(t)+Sn(x) = Rn(x) (2.1)

for every x ∈ [a,b], where

Rn(x) = (−1)n
∫

[a,b]
Kn (x,t)d f (n−1)(t)

and

Sn(x) =
n

∑
k=1

(−1)k[Qk(b) f (k−1)(b)−Qk(a) f (k−1)(a)]−
n−1

∑
k=0

1
k! f (k)(x)ek(x,μ).

Proof. Integrating by parts, for k � 1, we have

Rk(x) = (−1)kKk (x,t) f (k−1)(t)
∣∣∣b
a
− (−1)k

∫

[a,b]

f (k−1)(t)dKk (x,t) . (2.2)

Since Kk(x,a) = Pk(a) and Kk(x,b) = Pk(b)− μ̌k(b) = Qk(b), by the first formula of
Lemma 1, for k � 2 we have

Rk(x) = (−1)kQk(b) f (k−1)(b)− (−1)kQk(a) f (k−1)(a)

+(−1)k−1
∫

[a,b]

f (k−1)(t)dKk (x,t)

= (−1)kQk(b) f (k−1)(b)− (−1)kQk(a) f (k−1)(a)

+(−1)k−1

b∫
a

f (k−1)(t)Kk−1 (x, t)dt

+(−1)k−1 (−1)k

(k−1)!ek−1(x,μ) f (k−1)(x)

= (−1)kQk(b) f (k−1)(b)− (−1)kQk(a) f (k−1)(a)

− 1
(k−1)! f (k−1)(x)ek−1(x,μ)+Rk−1(x). (2.3)

By the second formula of Lemma 1, for k = 1, (2.2) becomes

R1(x) = −Q1(b) f (b)+P1(a) f (a)+
∫

[a,b]

f (t)dK1 (x,t)

= −Q1(b) f (b)+Q1(a) f (a)+ μ({a}) f (a)
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+
∫

[a,b]

f (t)dμ(t)− μ({a}) f (a)− μ([a,b]) f (x)

= −Q1(b) f (b)+Q1(a) f (a)

+
∫

[a,b]

f (t)dμ(t)− μ([a,b]) f (x). (2.4)

From (2.3) and (2.4), by iteration, it follows that

Rn(x) =
n

∑
k=2

(−1)k[Qk(b) f (k−1)(b)−Qk(a) f (k−1)(a)]

−
n

∑
k=2

1
(k−1)! f (k−1)(x)ek−1(x,μ)+R1(x)

=
n

∑
k=1

(−1)k[Qk(b) f (k−1)(b)−Qk(a) f (k−1)(a)]

−
n

∑
k=2

1
(k−1)! f (k−1)(x)ek−1(x,μ)− μ([a,b]) f (x)+

∫

[a,b]

f (t)dμ(t)

=
n

∑
k=1

(−1)k[Qk(b) f (k−1)(b)−Qk(a) f (k−1)(a)]

−
n−1

∑
k=0

1
k! f (k)(x)ek(x,μ)+

∫

[a,b]

f (t)dμ(t),

which proves our assertion. �

REMARK 1. In the special case Pn = μ̌n, n � 1, i.e. Qn = 0, n � 1, the sequence
(Kn, n � 1) reduces to the sequence (Ǩn, n � 1) from the Introduction, Sn(x) reduces
to Šn(x) , and identity (2.1) becomes identity (1.1).

3. Generalizations of weighted Ostrowski inequality

In this section we shall use the same notations as above.

THEOREM 2. Let f : [a,b]→R be such that f (n−1) is an L-Lipschitzian function
on [a,b] for some n � 1. Then

∣∣∣
∫

[a,b]

f (t)dμ(t)+Sn(x)
∣∣∣ � L

b∫
a

|Kn (x, t)|dt

for every x ∈ [a,b].
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Proof. If ϕ : [a,b] → R is L -Lipschitzian on [a,b] , then for any integrable func-
tion g : [a,b] → R we have |∫[a,b] g(t)dϕ(t)| � L

∫ b
a |g(t)|dt. Using this estimate and

Theorem 1 we get

|Rn(x)| =
∣∣∣

∫

[a,b]

Kn (x,t)d f (n−1)(t)
∣∣∣ � L

b∫
a

|Kn (x,t)|dt,

which proves our assertion. �

COROLLARY 1. If f is L-Lipschitzian on [a,b] , then for every x ∈ [a,b], c ∈ R

and μ ∈ M[a,b] we have∣∣∣
∫

[a,b]

f (t)dμ(t)− μ([a,b]) f (x)+ c [ f (a)− f (b)]
∣∣∣

� L[
x∫

a

|c+ μ ([a,t])|dt +
b∫

x

|c− μ ((t,b])|dt]

� L(b−a)(|c|+‖μ‖).

Proof. Put n = 1 in the theorem above and note that P1(t) = c + μ̌1(t) = c +
μ ([a,t]) , t ∈ [a,b], for some c ∈ R, and S1(x) = −μ([a,b]) f (x) + c [ f (a)− f (b)] ,
while

b∫
a

|K1 (x, t)|dt =
x∫

a

|c+ μ ([a,t])|dt +
b∫

x

|c− μ ((t,b])|dt � (|c|+‖μ‖)(b−a). �

THEOREM 3. Let f : [a,b] → R be such that f (n−1) is a continuous function of
bounded variation on [a,b] for some n � 1. Then∣∣∣

∫

[a,b]

f (t)dμ(t)+Sn(x)
∣∣∣ � max

t∈[a,b]
|Kn(x,t)|Vb

a ( f (n−1))

for every x ∈ [a,b], where V b
a ( f (n−1)) is the total variation of f (n−1) on [a,b].

Proof. If F : [a,b] → R is bounded and the Stieltjes integral
∫
[a,b] F(t)d f (n−1)(t)

exists, then ∣∣∣
∫

[a,b]

F(t)d f (n−1)(t)
∣∣∣ � max

t∈[a,b]
|F(t)| ·Vb

a ( f (n−1)).

By applying this estimation to formula (2.1) we have

|Rn(x)| =
∣∣∣

∫

[a,b]

Kn (x,t)d f (n−1)(t)
∣∣∣ � max

t∈[a,b]
|Kn (x, t)|Vb

a ( f (n−1)),

which proves our assertion. �
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COROLLARY 2. If f is a continuous function of bounded variation on [a,b], then
for every x ∈ [a,b], c ∈ R and μ ∈ M[a,b] we have

∣∣∣
∫

[a,b]

f (t)dμ(t)− μ([a,b]) f (x)+ c [ f (a)− f (b)]
∣∣∣

� max{max
a�t�x

|c+ μ ([a,t])| , max
x<t�b

|c− μ ((t,b])|}Vb
a ( f )

� (|c|+‖μ‖)Vb
a ( f ).

Proof. Put n = 1 in the theorem above and note that

max
t∈[a,b]

|K1 (x, t)| = max{max
a�t�x

|c+ μ ([a,t])| , max
x<t�b

|c− μ ((t,b])|} � |c|+‖μ‖ . �

REMARK 2. In the special case, when Qn = 0, n � 1, i.e. Pn = μ̌n, n � 1, Theorems
2 and 3, according to Remark 1, imply [1, Theorems 2 and 3], respectively.

THEOREM 4. Let f : [a,b] → R be such that f (n) is integrable for some n � 1.
Then ∣∣∣

∫

[a,b]

f (t)dμ(t)+Sn(x)
∣∣∣ � max

t∈[a,b]
|Kn(x, t)| ‖ f (n)‖1

for every x ∈ [a,b].

Proof. Note that in this case Vb
a ( f (n−1)) =

∫ b
a | f (n)(t)|dt = ‖ f (n)‖1, and apply

Theorem 3. �

THEOREM 5. Let f : [a,b]→R be such that f (n) ∈ L∞[a,b] for some n � 1. Then

∣∣∣
∫

[a,b]

f (t)dμ(t)+Sn(x)
∣∣∣ �

b∫
a

|Kn(x, t)|dt · ‖ f (n)‖∞

for every x ∈ [a,b].

Proof. In this case f (n−1) is L -Lipschitzian with L = ‖ f (n)‖∞ . �

THEOREM 6. Let f : [a,b] → R be such that f (n) ∈ Lp[a,b] for some n � 1 and
1 < p < ∞. Then

∣∣∣
∫

[a,b]

f (t)dμ(t)+Sn(x)
∣∣∣ � ‖Kn (x, ·)‖q‖ f (n)‖p

for every x ∈ [a,b], where 1/p+1/q = 1.
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Proof. By applying the Hölder inequality we have

∣∣∣
∫

[a,b]

f (t)dμ(t)+Sn(x)
∣∣∣ �

b∫
a

|Kn (x,t)| | f (n)(t)|dt �
( b∫

a

|Kn (x,t)|q dt
)1/q‖ f (n)‖p,

which proves our assertion. �

4. Some Grüss-type inequalities

In this section we use the identity obtained in Theorem 1 to prove some general
Euler-Grüss type inequalities which hold for a class of functions f possessing deriva-
tives f (n) in L∞[a,b] for some n � 1. For such functions we can always assume that

mn � f (n)(t) � Mn, t ∈ [a,b], a.e.

for some real constants mn and Mn.

REMARK 3. Since

Kn(x,t) = Qn(t)+ Ǩn(x,t), a � t � b, a � x � b,

by using [1, Remark 4] we have

b∫
a

|Kn (x,t)|dt �
b∫

a

|Qn(t)|dt +
b∫

a

∣∣Ǩn(x, t)
∣∣dt

�
b∫

a

|Qn(t)|dt + 1
n!

∫

[a,b]

|t − x|n d |μ |(t)

�
b∫

a

|Qn(t)|dt + 1
n! ‖μ‖ [ b−a

2 + |x− a+b
2 |]n.

Measure μ ∈ M[a,b] is called balanced if μ([a,b]) = 0.

THEOREM 7. Let f : [a,b] → R be such that f (n) ∈ L∞[a,b], for some n � 1. If

x ∈ [a,b] and (Pk, k � 1) are such that Qn+1(b)−Qn+1(a)+ (−1)n
n! en(x,μ) = 0, then

∣∣∣
∫

[a,b]

f (t)dμ(t)+Sn(x)
∣∣∣ � 1

2 (Mn −mn)
b∫

a

|Kn (x,t)|dt

� 1
2 (Mn −mn)

[ b∫
a

|Qn(t)|dt + 1
n!

∫

[a,b]

|t− x|n d |μ |(t)
]

� 1
2 (Mn −mn)

[ b∫
a

|Qn(t)|dt + 1
n! ‖μ‖ [ b−a

2 + |x− a+b
2 |]n

]
.



EULER IDENTITIES AND MOMENTS OF MEASURES 741

Proof. Define measure νn by dνn(t) = (−1)nKn (x,t)dt. Then

νn([a,b]) = (−1)n

b∫
a

Kn (x,t)dt

= (−1)n
[ x∫

a

Kn (x,t)dt +
b∫

x

Kn (x, t)dt
]

= (−1)n
[ x∫

a

Pn (t)dt +
b∫

x

[Pn (t)+ (−1)n

(n−1)!en−1(t,μ)]dt
]

= (−1)n[Qn+1(b)−Qn+1(a)+ (−1)n
n! en(x,μ)],

which means that νn is a balanced measure since, by our condition, νn([a,b]) = 0.
Further, ‖νn‖ =

∫ b
a |Kn (x,t)|dt. Therefore, according to [3, Theorem 1] we have

|Rn(x)| =
∣∣∣

b∫
a

Kn (x,t) f (n)(t)dt
∣∣∣ � 1

2 (Mn −mn)‖νn‖ = 1
2(Mn −mn)

b∫
a

|Kn (x,t)|dt,

which proves our assertion, by using the remark above. �

COROLLARY 3. For f ∈ L∞[a,b] let x ∈ [a,b], c ∈ R and μ ∈ M[a,b] be such
that e1(x,μ) = c(b−a). Then∣∣∣

∫

[a,b]

f (t)dμ(t)− μ([a,b]) f (x)+ c [ f (a)− f (b)]
∣∣∣

� 1
2 (M1 −m1)

[ x∫
a

|c+ μ ([a,t])|dt +
b∫

x

|c− μ ((t,b])|dt
]

� 1
2 (M1 −m1)(b−a)(|c|+‖μ‖) .

Proof. Put n = 1 in the theorem above and note that Q2(t) = c1 + c(t − a) for
some c1, c ∈ R, and Q2(b)−Q2(a)− e1(x,μ) = c(b−a)− e1(x,μ) = 0. �

In the following corollary mn(μ), n � 0 denotes the n -th moment of μ ∈M[a,b] .

COROLLARY 4. Let f : [a,b] → R be such that f (n) ∈ L∞[a,b] for some n � 1.
If μ ∈ M[a,b] and (Pk, k � 1) are such that Qn+1(b) = Qn+1(a) and mk(μ) = 0 for
k = 0, . . . ,n, then

∣∣∣
∫

[a,b]

f (t)dμ(t)+
n

∑
k=1

(−1)k[Qk(b) f (k−1)(b)−Qk(a) f (k−1)(a)]
∣∣∣

� 1
2(Mn −mn)

b∫
a

|Kn (x,t)|dt
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for every x ∈ [a,b].

Proof. Apply the theorem above and note that in this case we have ek(x,μ) = 0
for k = 0, . . . ,n and for every x ∈ [a,b], while

Sn(x) =
n

∑
k=1

(−1)k[Qk(b) f (k−1)(b)−Qk(a) f (k−1)(a)]. �

COROLLARY 5. Let f : [a,b]→ R be such that f (n) ∈ L∞[a,b] for some n � 1. If
μ̌k (b) = 0 for k = 1, . . . ,n+1, and Qn+1(b) = Qn+1(a), then

∣∣∣
∫

[a,b]

f (t)dμ(t)+
n

∑
k=1

(−1)k[Qk(b) f (k−1)(b)−Qk(a) f (k−1)(a)]
∣∣∣

� 1
2(Mn −mn)

b∫
a

|Kn (x,t)|dt

for every x ∈ [a,b].

Proof. Note that in this case we have m0(μ) = m1(μ) = · · · = mn(μ) = 0, by
using [3, Theorem 4] . Now apply Corollary 4. �
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[1] A. ČIVLJAK, LJ. DEDIĆ AND M. MATIĆ, On Ostrowski and Euler-Grüss type inequalities involving
measures, Journal of Mathematical Inequalities, 1, 1 (2007), 65–81.
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[5] M. MATIĆ, J. PEČARIĆ AND N. UJEVIĆ,Generalizations of weighted version of Ostrowski’s inequality
and some related results, Journal of Inequalities and Applications, 5 (2000), 639–666.



EULER IDENTITIES AND MOMENTS OF MEASURES 743

(Received September 15, 2008) A. Čivljak
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