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Abstract. The C∗ -valued norm is defined on a Hilbert C∗ -module by its standard inner prod-
uct. In this paper we give generalizations of a number of classical inequalities known for either
complex numbers or Hilbert space operators. In particular, we study Bohr’s inequality for the
C∗ -valued norm on a Hilbert C∗ -module.

1. Preliminaries and introduction

Let A be a C∗ -algebra i. e. a Banach linear space with an involution ∗ and the
C∗ -norm property for a norm ‖ · ‖ on A : ‖a∗a‖ = ‖a‖2,a ∈ A . A left pre-Hilbert C∗ -
module V over a C∗ -algebra A is a complex vector space and a left A-module equipped
with an A-valued inner product (·, ·) : V ×V → A with the following properties: for
x,y ∈V,a ∈ A ; α,β ∈ C

1. (αx1 +βx2,y) = α (x1,y)+β (x2,y) ,

2. (ax,y) = a(x,y) ,

3. (x,y)∗ = (y,x) ,

4. (x,x) � 0 and (x,x) = 0 if and only if x = 0.

If V is complete with respect to the norm ‖x‖ = ‖(x,x)‖1/2 , then it is called a (left)
Hilbert C∗ -module. The scalar multiplication on V is compatible with the module
action (see [8],15.A) i. e. λ (ax) = (λa)x = a(λx) for all λ ∈ C,a ∈ A,x ∈V .

Recall that an element a ∈ A is positive if a is selfadjoint with a positive real
spectrum, or equivalently, a is of the form b∗b for some b ∈ A . We write a � 0 if a is
positive. For selfadjoint a,b ∈ A we write a � b if b−a � 0. Every positive element
of a C∗ -algebra has a unique positive square root.

Besides the standard C-valued norm, there is the C∗ -valued norm on V defined
by

|x| = (x,x)
1
2 , x ∈V.
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For every x ∈V , |x| is positive and for every λ ∈ C we have |λx| = |λ ||x| . However,
the triangle inequality |x+ y|� |x|+ |y| , x,y ∈V need not hold (see [4] or [6]).

The aim of this paper is to generalize some inequalities, valid for absolute values
of complex numbers or Hilbert space operators, to the C∗ -valued norm on a Hilbert
C∗ -module.

The first question is whether the triangle inequality holds for the C∗ -valued norm
on a Hilbert C∗ -module. A partial answer to this question is given in section 2. We
also give an analogue of the classical aritmetic-geometric mean inequality (cf. [2]) in a
Hilbert C∗ -module setting.

Section 3 is entirely devoted to the study of Bohr’s inequality for the C∗ -valued
norm on a Hilbert C∗ -module. We obtain various forms of Bohr inequalities. We also
generalize Euler-Lagrange type identity to Hilbert C∗ -module setting (Theorem 6) in
order to get another Bohr type inequality (Theorem 7).

2. The triangle inequality

We determine the conditions for the triangle inequality to hold for the C∗ -valued
norm on a Hilbert C∗ -module. First we quote Theorem 2.8 from [1].

THEOREM 1. Let V be a Hilbert C∗ -module over a C∗ -algebra A with unit e .
Let ε > 0 . For every x,y ∈V there are u,v ∈ A such that ‖u‖ � 1,‖v‖ � 1 and

|x+ y|� u|x|u∗+ v|y|v∗+ εe.

THEOREM 2. Let V be a Hilbert C∗ -module over a C∗ -algebra A. For x,y ∈ V
such that |x|, |y| ∈ Z(A) , we have

|x+ y|� |x|+ |y|.

Proof. Without loss of generality we may assume that A possesses a unit e . (If it
is not a case, we adjoin a unit to A .) Let x,y ∈V with |x|, |y| ∈ Z(A) . By Theorem 1,

u|x|u∗ = |x| 1
2 uu∗|x| 1

2 � ‖uu∗‖|x| 1
2 |x| 1

2 � |x|,

and similarly v|y|v∗ � |y| . Now we have

|x+ y|� u|x|u∗ + v|y|v∗+ εe � |x|+ |y|+ εe.

Since ε > 0 is arbitrary, by taking ε → 0 we conclude that |x+ y|� |x|+ |y| . �

LEMMA 1. Let A be a C∗ -algebra and let a,b ∈ A be positive and such that
a ∈ Z(A) or b ∈ Z(A) . Then

ab � a2 +b2

2
.
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Proof. Since a ∈ Z(A) or b ∈ Z(A) , we have

a2−2ab+b2 = (a−b)2 = (a−b)∗(a−b) � 0,

and the claim follows. �
Using this fact we have the following version of a classical arithmetic-geometric

mean inequality for a norm | · | on V .

COROLLARY 1. Let V be a Hilbert C∗ -module over a C∗ -algebra A. For x,y ∈
V , |x| ∈ Z(A) or |y| ∈ Z(A) imply

|x|k|y|k � |x|2k + |y|2k

2
, k ∈ N.

Proof. The result follows from Lemma 1 inserting a := |x|k,b := |y|k , k∈N . �

3. The Bohr’s inequality

Let us discuss Bohr’s inequality for the C∗ -valued ”norm” on a Hilbert C∗ -module
V . It was shown in [5] that for operators A,B ∈ B(H) (where B(H) denotes the C∗ -
algebra of all bounded operators on a complex separable Hilbert space H ) and for real
numbers p,q > 1 such that 1

p + 1
q = 1 we have |A−B|2 � p|A|2 +q|B|2 .

THEOREM 3. Let V be a Hilbert C∗ -module and let x,y ∈ V . Let p,q ∈ R be
such that p,q > 1 and 1

p + 1
q = 1 . A C∗ -valued norm on V satisfies the Bohr’s in-

equality:
|x+ y|2 � p|x|2 +q|y|2.

Proof. Similarly to [5], we first prove that for p � q the inequality |x+y|2 + |(1−
p)x+ y|2 � p|x|2 +q|y|2 holds. We have

|x+ y|2 + |(1− p)x+ y|2− p|x|2−q|y|2
= [1+(1− p)2− p]|x|2 +(2−q)|y|2 +(2− p)[(x,y)+ (y,x)]
= (p−2)(p−1)|x|2 +(2−q)|y|2− (p−2)[(x,y)+ (y,x)]

= (p−2)(p−1)|x|2 +
p−2
p−1

|y|2− (p−2)[(x,y)+ (y,x)]

= (p−2)
∣∣∣∣
√

p−1x− 1√
p−1

y

∣∣∣∣
2

� 0,

since p−2 � 0. Similarly, if p � q , we have

|x+ y|2 + |x+(1−q)y|2 � p|x|2 +q|y|2.
It follows that the Bohr’s inequality |x + y|2 � p|x|2 + q|y|2 holds for real numbers
p,q > 1 such that 1

p + 1
q = 1. �

Notice that this theorem generalizes the result of [5] if we consider B(H) as a
Hilbert C∗ -module over itself. From the proof of Theorem 3, the next result follows.
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COROLLARY 2. Let V be a Hilbert C∗ -module and let x,y ∈V . Let p,q ∈ R be
such that p,q > 1 , p � q and 1

p + 1
q = 1 . Then

|x+ y|2 + |(1− p)x+ y|2 � p|x|2 +q|y|2

and equality holds if and only if p(= q) = 2 or (p−1)x = y.

The next form of Bohr’s inequality (given for complex numbers in [7]) is a conse-
quence of Theorem 3.

COROLLARY 3. Let V be a Hilbert C∗ -module and let x,y ∈ V . For α,β ∈ R
such that α �= 0,β �= 0 and α +β �= 0 we have that

(1)
|x+ y|2
α +β

� |x|2
α

+
|y|2
β

i f α,β > 0,

(2)
|x+ y|2
α +β

� |x|2
α

+
|y|2
β

i f α,β < 0.

Proof. Put p = α+β
α , q = α+β

β . Notice that 1
p + 1

q = 1. For α,β > 0 or α,β < 0,
we have p,q > 1. If α,β > 0, we have from Theorem 3

|x+ y|2 � α +β
α

|x|2 +
α +β
β

|y|2,

which is equivalent to (1) . Similarly, for α,β < 0 we get (2) . �

We also have the following refinement of Bohr’s inequality.

THEOREM 4. Let V be a Hilbert C∗ -module over a C∗ -algebra A and let x,y∈V
be such that |x|, |y| ∈ Z(A) . For p,q ∈ R such that p,q > 1, p � q and 1

p + 1
q = 1 , we

have
|x+ y|4 + |(1− p)x+ y|4 � (p|x|2 +q|y|2)2.

Proof. Notice that a = |x+ y|2 � 0 and b = |(1− p)x+ y|2 � 0. If |x| and |y| are
elements in Z(A) , then a and b commute and therefore ([8], p. 308) their product is
positive. Consequently, a2 +b2 � (a+b)2 and the inequality follows. �

We have the following extension of Theorem 3.

THEOREM 5. Let V be a Hilbert C∗ -module, x,y ∈ V and let p,q ∈ R be such
that p �= 0 , q �= 0 and 1

p + 1
q = 1 . We have

|x+ y|2 � p|x|2 +q|y|2 i f pq > 0,

|x+ y|2 � p|x|2 +q|y|2 i f pq < 0.
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Proof. Notice that

1
q
|x|2 +

1
p
|y|2 − 1

pq
|x+ y|2

=
1
q
|x|2 +

1
p
|y|2 − 1

pq
[|x|2 +(x,y)+ (y,x)+ |y|2]

=
[
1
q
− 1

pq

]
|x|2 +

[
1
p
− 1

pq

]
|y|2 − 1

pq
[(x,y)+ (y,x)]

=
1
q2 |x|2−

1
pq

[(x,y)+ (y,x)]+
1
p2 |y|2 =

∣∣∣∣1qx− 1
p
y

∣∣∣∣
2

.

Hence,

p|x|2 +q|y|2 = |x+ y|2 +
|px−qy|2

pq
.

Depending on sign of the product pq , the claims follow. �
From Theorem 5 we can get generalizations of the results of Cheung and Pečarić

stated in [3] for bounded operators on a Hilbert space.
Namely, we can extract q from the absolute value of the last term of the equality

p|x|2 +q|y|2 = |x+ y|2 +
|px−qy|2

pq

and get

p|x|2 +q|y|2 = |x+ y|2 +
|q p

q x−qy|2
pq

i. e.

p|x|2 +q|y|2 = |x+ y|2 +
q2| p

q x− y|2
pq

.

Using p
q = p−1, we get

p|x|2 +q|y|2 = |x+ y|2 +
1

p−1
|(1− p)x+ y|2.

Similarly, by extracting p , we get

p|x|2 +q|y|2 = |x+ y|2 +
1

q−1
|x+(1−q)y|2.

We have the folloving cases.

1. For 1 < p � 2 we have

p|x|2 +q|y|2 � |x+ y|2 + |(1− p)x+ y|2

and (at the same time q � 2)

p|x|2 +q|y|2 � |x+ y|2 + |x+(1−q)y|2.
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2. For p � 2 we have

p|x|2 +q|y|2 � |x+ y|2 + |(1− p)x+ y|2

and
p|x|2 +q|y|2 � |x+ y|2 + |x+(1−q)y|2.

3. For p < 1 (then q < 1 and pq < 0), by Theorem 5, we have

p|x|2 +q|y|2 � |x+ y|2 � |x+ y|2 + |(1− p)x+ y|2

and
p|x|2 +q|y|2 � |x+ y|2 � |x+ y|2 + |x+(1−q)y|2.

We can get another Bohr’s type inequality by using the next Euler-Lagrange type
identity on V .

THEOREM 6. Let V be a Hilbert C∗ -module over a unital C∗ -algebra A with
unit e . Let: x,y ∈V , α,β ,γ non-zero real numbers, a,b ∈ Z(A) with ab∗ selfadjoint
and αaa∗ +βbb∗ = γe. We have the Euler-Lagrange identity:

|x|2
α

+
|y|2
β

− |ax+by|2
γ

=
|βbx−αay|2

αβγ
.

Proof. Using the assumptions, we get:

βγ|x|2 +αγ|y|2−αβ |ax+by|2
= βγ (x,x)+αγ (y,y)−αβ [a(x,x)a∗ +a(x,y)b∗ +b(y,x)a∗ +b(y,y)b∗]
= β (x,x) [γe−αaa∗]+α (y,y) [γe−βbb∗]−αβab∗[(x,y)+ (y,x)]
= β 2bb∗|x|2 +α2aa∗|y|2−αβab∗[(x,y)+ (y,x)]
= |βbx−αay|2. �

As a consequence of Theorem 6 we can state the next result.

THEOREM 7. Let V be a Hilbert C∗ -module over a unital C∗ -algebra A with
unit e . Let: x,y ∈V , α,β ,γ non-zero real numbers, a,b ∈ Z(A) with ab∗ selfadjoint
and αaa∗ +βbb∗ = γe. Then the following Bohr’s type inequalities hold:

|ax+by|2
γ

� |x|2
α

+
|y|2
β

i f αβγ > 0,

|ax+by|2
γ

� |x|2
α

+
|y|2
β

i f αβγ < 0.

Acknowledgements. The author is grateful to the referee for pointing out several
mistakes in previous version of the paper, and for suggesting some improvements as
well.

The author was supported in part by the Ministry of Science, Education and Sports
of the Republic of Croatia (Project no. 178-1782223-2216and Project no. 037-0372784-
2757).



INEQUALITIES FOR THE C∗ -VALUED NORM ON A HILBERT C∗ -MODULE 751

RE F ER EN C ES

[1] LJ. ARAMBAŠIĆAND R. RAJIĆ, On the C∗ -valued triangle equality and inequality in Hilbert C∗ -
modules, Acta Mathematica Hungarica, 119, 4 (2008), 373–380.

[2] R. BHATIA AND F. KITTANEH, Notes on matrix arithmetic-geometric mean inequalities, Linear Al-
gebra and its Applications, 308 (2000), 203–211.
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[7] J. E. PEČARIĆ AND TH. M. RASSIAS, Variations and Generalizations of Bohr’s inequality, Journal

of Mathematical Analysis and Applications, 174 (1993), 138–146.
[8] N. E. WEGGE-OLSEN, K-theory and C∗ -algebras: a friendly approach, Oxford University Press,

1993.

(Received September 18, 2008) Biserka Kolarec
Department of Informatics and Mathematics

Faculty of Agriculture
University of Zagreb
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