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Abstract. In this paper we study a variational inequality over a product of sets, governed by a
multi-valued mapping, in pseudomonotonicity conditions. We are interested in the existence of
the solution and, when the inequality depends on a parameter, also in the behavior of the solution
at perturbations of the parameter.

1. Introduction

Several problems arising in economics, physics, engineering and other fields can
be modeled using systems of variational inequalities or variational inequalities over
Cartesian products of sets. Such problems have been much studied and existence results
were proved in the presence of different monotonicity or pseudomonotonicity concepts
(see [9], [20], [3], [17]).

We consider here a variational inequality over a product of sets, governed by a
multi-valued mapping. Assuming that the mapping satisfies a certain pseudomono-
tonicity condition (used also in [10], [12], [16]) we prove the existence of a solution for
the variational inequality.

If the variational inequality depends on a parameter, a problem of interest is the
behavior of the solution under perturbations of the parameter. In this paper we are
interested in two aspects of this problem: the closedness of the solution mapping and
the Hölder continuity of the solution.

2. An existence result

For each i ∈ I = {1,2, . . . ,n} , let Xi be real Hausdorff topological vector spaces,
X∗

i their duals and X =Πi∈IXi ; X∗ =Πi∈IX∗
i . We denote by 〈·, ·〉 the pairing between

X∗
i and Xi and consider the weak topology defined from the duality of the pair of

spaces.
Let Fi : X → 2X∗

i , F = (F1, . . . ,Fn) . Let Ki ⊂ Xi be nonempty, convex, closed sets
and K = Πi∈IKi . Then K is also a nonempty closed and convex set in X .
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We formulate the following variational inequality:

Find x = (x1, . . . ,xn) ∈ K such that
n

∑
i=1

sup
fi∈Fi(x)

〈 fi,yi − xi〉 � 0, ∀ y = (y1, . . . ,yn) ∈ K
(VI)

To obtain an existence result for the problem (VI) we will use a generalization of the
Ky-Fan intersection lemma and a result about the marginal function:

LEMMA 1. ([8]; [15], Theorem V.2.23) Let V be a topological vector space,
H ⊂V and T : H → 2V such that:

(i) clT (x0) is compact for some x0 ∈ H ,

(ii) for every x1,x2, . . . ,xn ∈ H , co{x1,x2, . . . ,xn} ⊂
n⋃

i=1

T (xi) ,

(iii) for each x ∈H , the intersection of T (x) with any finite dimensional subspace
of V is closed,

(iv) for every line segment D of V ,

cl
( ⋂

x∈H∩D

T (x)
)
∩D =

( ⋂
x∈H∩D

T (x)
)
∩D,

Then
⋂
x∈E

T (x) 
= /0 .

If H is convex, closed and T (x) ⊂ H for every x ∈ H , then the hypothesis (iv)
can be replaced with:

(iv’) for every line segment D of H , cl
( ⋂

x∈D

T (x)
)
∩D =

( ⋂
x∈D

T (x)
)
∩D .

LEMMA 2. ([15]) Let U and V be topological spaces, G :U → 2V a set-valued
mapping and g : U ×V → R . Denote by h : U → R , h(u) = sup

v∈G(u)
g(u,v) the marginal

function. If the conditions:
(i) g is upper semi-continuous on U ×V ,
(ii) G(u0) is compact for some u0 ∈U ,
(iii) G is upper semi-continuous at u0 ,

are satisfied, then h is upper semi-continuous at u0 .

For each z∈ X , we denote T (z) = {x∈ K |
n

∑
i=1

sup
fi∈Fi(x)

〈 fi,zi−xi〉� 0} . Obviously,

if x ∈ T (z) for each z ∈ K , then x is a solution of the problem (VI).
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LEMMA 3. For each z1,z2, . . . ,zp ∈ K , co{z1, . . . ,zp} ⊂ T (z1)∪ . . .∪T (zp) .

Proof. Suppose that there exist λ1, . . . ,λp � 0 with λ1 + . . . +λp = 1 such that

z =
p

∑
j=1

λ jz
j /∈ T (zl) , that is

n

∑
i=1

sup
fi∈Fi(z)

〈 fi,zl
i − z i〉 < 0, for each l = 1, . . . , p .

We fix f = ( f1, . . . , fn) ∈ F(z) . Obviously,

n

∑
i=1

〈 fi,zl
i − z i〉 �

n

∑
i=1

sup
fi∈Fi(z)

〈 fi,zl
i − z i〉 < 0,

for each l = 1, . . . , p . We have

0 =
n

∑
i=1

〈 fi, z i − z i〉 =
n

∑
i=1

〈 fi,
p

∑
j=1

λ jz
j
i − (

p

∑
j=1

λ j)z i〉 =
n

∑
i=1

p

∑
j=1

λ j〈 fi,z j
i − z i〉

=
p

∑
j=1

n

∑
i=1

λ j〈 fi,z j
i − z i〉 =

p

∑
j=1

λ j

n

∑
i=1

〈 fi,z j
i − z i〉 < 0,

which is a contradiction. �
Many notions of pseudomonotonicity have been defined (see [14], [19]) mainly

starting from the algebraic one introduced by Karamardian in 1976 and the topological
one introduced by Brézis in 1968. The following condition appears in several papers.
We mention here [11], [16] (where it was studied in the single-valued and set-valued
case and compared to some of the classical concepts of pseudomonotonicity) and [12]
(where it appears also in the more general context of equilibrium problems and it is
called 0-segmentary closedness).

In the case of a multi-function defined on a product of sets, we have:

DEFINITION 4. F = (F1, . . . ,Fn) , Fi : X → 2X∗
i is said to be a C-pseudomonotone

(0 -segmentary closed) mapping if, for each x,y ∈ X and each net {xα} ⊂ X , with
xα ⇀ x ,

n

∑
i=1

sup
fi∈Fi(xα )

〈 fi,(1− t)xi + tyi− xαi 〉 � 0, ∀ t ∈ [0,1],∀α

implies
n

∑
i=1

sup
fi∈Fi(x)

〈 fi,yi − xi〉 � 0.

LEMMA 5. If the function F is C-pseudomonotone, then for each x,y ∈ K

w− cl
( ⋂

z∈[x,y]

T (z)
)
∩ [x,y] =

( ⋂
z∈[x,y]

T (z)
)
∩ [x,y].

Proof. It is enough to prove (see [16]) that, for each y ∈ K , x ∈ w-cl
( ⋂

z∈[x,y]

T (z)
)

implies x ∈ ⋂
z∈[x,y] T (z) . Let {xα} be a net such that xα ∈ ⋂

z∈[x,y] T (z) , with xα ⇀ x .
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This means that xα ∈ K and

n

∑
i=1

sup
fi∈Fi(xα )

〈 fi,(1− t)xi + tyi− xαi 〉 � 0, ∀ t ∈ [0,1], α ∈ N.

Since F is C-pseudomonotone, this implies ∑n
i=1 sup fi∈Fi(x)〈 fi,yi − xi〉 � 0. For each

t ∈ [0,1] , we have

n

∑
i=1

sup
fi∈Fi(x)

〈 fi,(1− t)xi + tyi− xi〉 = t
n

∑
i=1

sup
fi∈Fi(x)

〈 fi,yi − xi〉 � 0

that is x ∈ T (z) , for each z ∈ [x,y] . �

THEOREM 6. Let Ki ⊂Xi be convex, closed, nonempty, for each i∈ I = {1, . . . ,n} .
Let F = (F1, . . . ,Fn) , Fi : K → 2X∗

i . Assume that the following conditions hold:
(a) F is C-pseudomonotone,
(b) there exist B ⊂ X weakly compact and z0 ∈ K such that

n

∑
i=1

sup
fi∈Fi(x)

〈 fi,z0
i − xi〉 < 0, for each x ∈ K \B,

(c) For each finite dimensional subspace Z of X , Fi is upper semi-continuous on
K∩Z , with the weak* topology in X∗

i ,
(d) Fi(x) is weak* compact for each x ∈ K , for each i ∈ I .
Then the problem (VI) has at least a solution.

Proof. We check the hypotheses of Lemma 1 for the sets

T (z) = {x ∈ K |
n

∑
i=1

sup
fi∈Fi(x)

〈 fi,zi − xi〉 � 0}, for z ∈ K.

(i) From (b) we have that T (z0) ⊂ B , which gives w-clT (z0) ⊂ w-clB = B . Since B is
weakly compact, it follows that w-clS(z0) is also weakly compact.
(ii) Follows directly from Lemma 3.
(iii) Let Z be a finite-dimensional subspace of X . We have to prove that Z ∩T (z) is
closed, for each z ∈ K .

Consider a net {xα} ⊂ Z ∩T (z) , with xα → x . This means that x ∈ Z ∩K and
n

∑
i=1

sup
fi∈Fi(xα )

〈 fi,zi − xαi 〉 � 0. The mapping 〈·, ·〉 is continuous for the first component

with the weak* topology and the second one with the strong topology. Defining the
function g : X∗

i ×X → R , by g( f ,x) = 〈 f ,zi − xi〉 we apply Lemma 2 and obtain the
upper semi-continuity of the function sup

fi∈Fi(·)
〈 fi,zi −·〉 , for each i ∈ I . It follows:

limsup
α

sup
fi∈Fi(xα )

〈 fi,zi − xαi 〉 � sup
fi∈Fi(x)

〈 fi,zi − xi〉.
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n

∑
i=1

sup
fi∈Fi(x)

〈 fi,zi − xi〉 �
n

∑
i=1

limsup
α

sup
fi∈Fi(xα )

〈 fi,zi − xαi 〉

� limsup
α

n

∑
i=1

sup
fi∈Fi(xα )

〈 fi,zi − xαi 〉 � 0.

This gives x ∈ T (z) , so x ∈ T (z)∩Z .
(iv) Follows directly from Lemma 5. �

The pseudomonotonicity introduced by Karamardian for single-valued functions
was generalized in several ways for set-valued functions (see [14], [19]). In the case of
a multi-function defined on a product of sets, a possible generalization is the following:

DEFINITION 7. F = (F1, . . . ,Fn) is said to be generalized algebraic-pseudomo-
notone if from

n

∑
i=1

sup
fi∈Fi(x)

〈 fi,yi − xi〉 � 0 it follows that
n

∑
i=1

inf
gi∈Fi(y)

〈gi,yi − xi〉 � 0.

REMARK 8. If F is generalized algebraic pseudomonotone and for each i ∈ I ,
Fi(x) is weakly* compact and the application t �→ Fi((1− t)x + ty) is upper semi-
continuous at 0 with the weak* topology in X∗

i (for each x,y ∈ X ), then F is C-
pseudomonotone.

Proof. Let x,y ∈ X , {xα} ⊂ X , a net with xα ⇀ x and

n

∑
i=1

sup
fi∈Fi(xα )

〈 fi,(1− t)xi + tyi− xαi 〉 � 0, ∀ t ∈ [0,1], ∀α.

From the generalized-algebraic pseudomonotonicity, it follows that
n

∑
i=1

〈gi,(1− t)xi + tyi− xαi 〉 � 0, for each gi ∈ Fi((1− t)x+ ty).

For each i ∈ I , we can pass to the limit, xαi ⇀ xi getting

n

∑
i=1

〈gi, t(yi − xi)〉 � 0, ∀ gi ∈ Fi((1− t)x+ ty), ∀ t ∈ [0,1] and

n

∑
i=1

sup
gi∈Fi((1−t)x+ty)

〈gi,yi − xi〉 �
n

∑
i=1

〈gi,yi− xi〉 � 0, ∀ t ∈ (0,1].

According to Lemma 2 the function h(t) = supgi∈Fi((1−t)x+ty)〈gi,yi− xi〉 is upper semi-
continuous at 0 , for each i ∈ I . We get from this

n

∑
i=1

sup
fi∈Fi(x)

〈 fi,yi − xi〉 �
n

∑
i=1

limsup
t→0

sup
gi∈Fi((1−t)x+ty)

〈gi,yi − xi〉

� limsup
t→0

n

∑
i=1

sup
gi∈Fi((1−t)x+ty)

〈gi,yi − xi〉 � 0. �
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REMARK 9. If Fi : X → 2X∗
i is monotone for each i ∈ I , then F = (F1, . . . ,Fn) is

generalized algebraic-pseudomonotone.

REMARK 10. There exist functions that are C-pseudomonotone but are not gen-
eralized algebraic-pseudomonotone.

For example, let n = 1 and F : R → 2R , F(x) =

⎧⎪⎪⎨
⎪⎪⎩

(−∞,− 1
x

]
, for x < 0,

R, for x = 0,
[− 1

x ,∞
)
, for x > 0.

Taking x = −1 and y = 1, we have that sup
f∈F(x)

〈 f ,y− x〉 = sup
f∈(−∞,1]

f ·2 = 2 � 0, while

inf
g∈F(y)

〈g,y− x〉 = inf
g∈[−1,∞)

g · 2 = −2 < 0. On the other hand, is easy to see that F is

C-pseudomonotone, since 0 ∈ F(x) for each x ∈ R .
Another simple example of a function that is not generalized algebraic-pseudomonotone

but is C-pseudomonotone and also has compact values is G : R → 2R ,

G(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, for x < 0,

[−1,1] , for x = 0,

−1, for x > 0.

3. Behavior of the solution

If the variational inequality depends on some parameter, a much studied problem
is what happens to the solution when the parameter is perturbed. We consider a family
of variational inequalities of the type:

x ∈ K(μ) such that ∑
i∈I

sup
fi∈Fi(x,μ)

〈 fi,yi − xi〉 � 0, ∀ yi ∈ Ki(μ), i ∈ I. (VI)μ

where the parameter μ belongs to a metric space M .
Denote by S(μ) the set of solutions of the problem (VI)μ and suppose that S(μ) 
=

/0 , for each μ ∈ M . We study next the following problem: for a fixed parameter μ0 , if
x(μ) ∈ S(μ) and x(μ) ⇀ x0 in X , when μ → μ0 , in what conditions x0 ∈ S(μ0)?

This property, called the closure of the graph of the solution function was studied,
for instance, in [4] for hemivariational inequalities and in [5] for equilibrium problems.

We recall a characterization of the Mosco convergence for sets: a generalized

sequence of sets Eα ⊂ X converges to a set E ⊂ X in Mosco sense (Eα
M→ E ) if and

only if:
(1) if zα j ∈ Eα j and zα j ⇀ z , then z ∈ E ,
(2) for each z ∈ E , there exists zα ∈ Eα such that zα → z .

Another notion of pseudomonotonicitywill be used in what follows. It generalizes
the pseudomonotonicity in the sense of Brézis (see [7], [6], [13]).
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DEFINITION 11. A set-valued function G : X → 2X∗
i is said to be generalized

topologically pseudomonotone if for a net {xα} ⊂ X with xα ⇀ x in X , with

liminf
α

sup
g∈G(xα )

〈g,xi − xαi 〉 � 0,

it follows that limsup
α

sup
g∈G(xα )

〈g,yi−xαi 〉� sup
g∈G(x)

〈g,yi−xi〉 , for each y = (y1, . . . ,yn) ∈
X .

We state now

THEOREM 12. Let Ki(μ) ⊂ Xi be convex, closed, nonempty, K(μ) = K1(μ)×
. . .×Kn(μ); F = (F1, . . . ,Fn) with Fi : X ×M → 2X∗

i . Assume that the following con-
ditions hold:

(a) for each i ∈ I , the function Fi(·,μ0) is generalized topologically pseudomono-
tone,

(b) K(μ) M→ K(μ0) when μ → μ0 ,
(c) for any convergent net {x(μ)} when μ → μ0 ,

limsup
μ→μ0

{
n

∑
i=1

sup
fi∈Fi(x(μ),μ)

〈 fi,yi − xi(μ)〉−
n

∑
i=1

sup
gi∈Fi(x(μ),μ0)

〈gi,yi− xi(μ)〉} � 0,

for each y = (y1, . . . ,yn) ∈ X ,
(d) for any nets x(μ) ⇀ x0 and x̂(μ) → x0 in X when μ → μ0 ,

sup
fi∈Fi(x(μ),μ)

〈 fi, x̂i(μ)− xi(μ)〉 � 0 implies liminf
μ→μ0

sup
fi∈Fi(x(μ),μ)

〈 fi,x0
i − xi(μ)〉 � 0.

Then if x(μ) ∈ S(μ) and x(μ) ⇀ x0 when μ → μ0 , then x0 ∈ S(μ0) .

Proof. Let x(μ) ∈ S(μ) , with x(μ) ⇀ x0 , for μ → μ0 . Since K(μ) M→ K(μ0) ,
we have x0 ∈ K(μ0) and there exists a net, denoted x̂(μ) , such that x̂(μ) ∈ K(μ) and
x̂(μ) → x0 in X .

For an i ∈ I fixed, we take y = (x1(μ), . . . , x̂i(μ), . . . ,xn(μ)) in (VI)μ and obtain

sup
fi∈Fi(x(μ),μ)

〈 fi, x̂i(μ)− xi(μ)〉 � 0.

From hypothesis (d), it follows that liminf
μ→μ0

sup
fi∈Fi(x(μ),μ)

〈 fi,x0
i − xi(μ)〉 � 0.

Then, using (c) with y = (x1(μ), . . . ,x0
i , . . . ,xn(μ)) ,

liminf
μ→μ0

sup
gi∈Fi(x(μ),μ0)

〈gi,x
0
i − xi(μ)〉

� liminf
μ→μ0

sup
gi∈Fi(x(μ),μ0)

〈gi,x
0
i − xi(μ)〉

+ limsup
μ→μ0

{ sup
fi∈Fi(x(μ),μ)

〈 fi,x0
i − xi(μ)〉− sup

gi∈Fi(x(μ),μ0)
〈gi,x

0
i − xi(μ)〉}

� liminf
μ→μ0

sup
fi∈Fi(x(μ),μ)

〈 fi,x0
i − xi(μ)〉 � 0.
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The pseudomonotonicity of Fi(·,μ0) implies now that for each yi ∈ Ki(μ0) ,

sup
fi∈Fi(x0,μ0)

〈 fi,yi − x0
i 〉 � limsup

μ→μ0

sup
fi∈Fi(x(μ),μ0)

〈 fi,yi − xi(μ)〉, for each i ∈ I.

By summing up these relations, using the properties of ”limsup” and again hypothesis
(c), it follows

n

∑
i=1

sup
fi∈Fi(x0,μ0)

〈 fi,yi − x0
i 〉 � limsup

μ→μ0

n

∑
i=1

sup
fi∈Fi(x(μ),μ0)

〈 fi,yi − xi(μ)〉

� limsup
μ→μ0

n

∑
i=1

sup
fi∈Fi(x(μ),μ0)

〈 fi,yi − xi(μ)〉

+ limsup
μ→μ0

{
n

∑
i=1

sup
fi∈Fi(x(μ),μ)

〈 fi,yi − xi(μ)〉−
n

∑
i=1

sup
fi∈Fi(x(μ),μ0)

〈 fi,yi − xi(μ)〉}

� limsup
μ→μ0

n

∑
i=1

sup
fi∈Fi(x(μ),μ)

〈 fi,yi − xi(μ)〉 � 0.

This last inequality means that x0 ∈ S(μ0) , which concludes the proof. �

REMARK 13. For n = 1, if G : X → 2X∗
is generalized-topological pseudomono-

tone, then it is also C-pseudomonotone.

Proof. Let x,y ∈ X and {xα} ⊂ X with xα ⇀ x and

sup
f∈G(xα )

〈g,(1− t)x+ ty− xα〉 � 0, ∀ t ∈ [0,1], α ∈ N. (1)

For t = 0 we have liminfα sup f∈G(xα )〈 f ,x−xα〉� 0. Then, from the topological pseu-
domonotonicity

sup
f∈G(x)

〈 f ,y− x〉 � limsup
α

sup
f∈G(xα )

〈 f ,y− xα〉 � 0,

taking t = 1 in (1). �

REMARK 14. A more classic way of defining the pseudomonotonicity in the sense
of Brézis for set-valued functions (see also [6]) is the following: a function G : X → 2X∗

i

is called generalized-Brézis-pseudomonotone if, for {xα} ⊂ X with xα ⇀ x in X ,
gα ∈ G(xα ) with

liminf
α

〈gα ,xi − xαi 〉 � 0,

follows that, for each y ∈ X , there exists gy ∈ G(x) , such that

limsup
α

〈gα ,yi − xαi 〉 � 〈gy,yi − xi〉.

If G is generalized-topological pseudomonotone and G(x) is weak* compact for each
x ∈ X , then G is also generalized-Brézis-pseudomonotone.
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We mention also a situation when the variational inequality depends on two pa-
rameters λ ∈ Λ and μ ∈ M , and another concept of stability of the solution. In what
follows, Xi are real normed vector spaces, X∗

i their duals and the norm on the product
space X is defined by ‖x‖X = (‖x1‖2

X1
+ . . .+‖xn‖2

Xn
)1/2 . Consider:

(VI)λ ,μ x ∈ K(λ ) such that ∑
i∈I

sup
fi∈Fi(x,μ)

〈 fi,yi − xi〉 � 0, ∀ yi ∈ Ki(λ ), i ∈ I.

We can state:

THEOREM 15. Let Ki ⊂ Xi be convex, closed, nonempty, for each i ∈ I . Let
F = (F1, . . . ,Fn) , Fi : K → 2X∗

i . Assume that the following hold:
(a) there exists a neighborhood U of λ0 such that for each λ1,λ2 ∈U ,

Ki(λ1) ⊂ Ki(λ2)+ liBXi(0,dα(λ1,λ2)), with li > 0,α > 0,

(b) there exist U0 , V0 neighborhoods of λ0 and μ0 such that for each λ ∈ U0 ,
μ1,μ2 ∈V0 , x,y ∈ K(λ ) , x 
= y,

| sup
fi∈Fi(x,μ1)

〈 fi,yi− xi〉− sup
gi∈Fi(x,μ2)

〈gi,yi − xi〉| � mi‖yi− xi‖Xid
γ (μ1,μ2),

mi > 0 , γ > 0 ,
(c) for each λ ∈ U0 , μ ∈ V0 , x,y ∈ K(λ ) , x 
= y, for each fi ∈ Fi(x,μ) , gi ∈

Fi(y,μ) , 〈 fi −gi,yi− xi〉 � −ci‖xi− yi‖2
Xi

, ci > 0,
(d) for each λ ∈U0 , μ ∈V0 , x ∈ K(λ ) , y,z ∈ K(λ ) , for each fi ∈ Fi(x,μ) ,

|〈 fi,yi − zi〉| � ni‖yi− zi‖2
Xi

, ni > 0.

Then in a neighborhood of (λ0,μ0) , the solution x(λ ,μ) of (VI)λ ,μ is unique and

‖x(λ1,μ1)− x(λ2,μ2)‖X � k1d
γ (μ1,μ2)+ k2d

α(λ1,λ2).

Proof. The proof uses directly a particular case of Corollary 2.3 of [2], in the
settings that appear also in [1], for equilibrium problems. �
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[2] L. Q. ANH, AND P.Q. KHANH, Uniqueness and Hölder continuity of the solution to multivalued
equilibrium problems in metric spaces, Journal of Global Optimization, 32 (2007), 449–465.

[3] Q.H. ANSARI AND Z. KHAN, Relatively B-pseudomonotone variational inequalities over product of
sets, Journal of Inequalities in Pure and Applied Mathematics, 4, 1 (2003), article 6.
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