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Abstract. If I ⊆ R is an interval, a ∈ I and f : I → R is n � 1 times differentiable on I , then,
in view of Taylor’s theorem, there exists a function c : I → I such that, for each x ∈ I,

f (x) =
n−1

∑
k=0

f (k) (a)
k!

(x−a)k +
f (n) (c(x))

n!
(x−a)n .

In this paper we study the behaviour of the derivatives c(p) and θ (p)
of the functions c and

θ , respectively, when x approaches a, where θ : I →]0,1[ is defined by θ (x) = (c(x)−a)/(x−a) ,
if x ∈ I\{a} and θ (a) = 1/(n+1) .

Taylor’s theorem (or Taylor’s formula) is one of the most important theorems in
calculus. Taylor’s theorem is usually presented in the following form:

THEOREM 1. (Taylor’s theorem) Let I be an interval in R , a ∈ I and f : I → R

be a function. If the function f is n � 1 times differentiable on I, then for each x ∈
I \{a} there exists a real number cx from the interval with the extremities x and a such
that

f (x) = (Tn−1 f ) (x)+
f (n)(cx)

n!
(x−a)n, (1)

where Tn−1 f : R → R is the polynomial function defined by

(Tn−1 f ) (x) =
n−1

∑
k=0

f (k)(a)
k!

(x−a)k, for all x ∈ R.

If f (n) is injective on I, then the number cx is unique. In this case, we can define
the function c : I \ {a}→ I \ {a} by

c(x) = cx, for all x ∈ I \ {a}. (2)

The function c has the property that

f (x) = (Tn−1 f ) (x)+
f (n)(c(x))

n!
(x−a)n, (3)
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for all x ∈ I \ {a}.
If the function f (n) is not injective on I , then, for some x ∈ I \ {a}, there exist

several real numbers cx from the interval with the extremities x and a such that (1)
holds. If, for each x ∈ I \ {a}, we choose one cx from the interval with the extremities
x and a which satisfies (1), then we can also define the function c : I \ {a} → I \ {a}
by formula (2). This function c satisfies (3), too.

If x ∈ I \ {a} tends to a, because |c(x)−a|� |x−a| , we have

lim
x→a

c(x) = a.

Then the function c : I → I defined by

c(x) =
{

c(x) , if x ∈ I \ {a}
a if x = a,

(4)

is continuous at x = a.
In the last decades there was some interest in the behavior of the function c when

x approaches a. Azpeitia [5] (see, also [11], [6], [7]) proved that if f is n+ p , (p ∈ N)
times differentiable on I, f (n+p) is continuous at x = a, and

f (n+1) (a) = · · · = f (n+p−1) (a) = 0, f (n+p) (a) �= 0,

then the function c is differentiable at x = a and

c(1) (a) =
(

n+ p
p

)−1/p

.

In the special case when n = 1 (mean value theorem) we obtain

c(1) (a) =
1

(p+1)1/p
.

In the particular case when p = 1 (i.e. f (n+1) (a) �= 0) we have

c(1) (a) =
1

n+1
.

These results were generalized by D. I. Duca and O. Pop [8] for Cauchy mean
value theorem. T. Trif [16] gave the asymptotic behavior of the intermediate points in
the Cauchy-Taylor mean value theorem, a generalization due to I. Pawlikowska [12]
of Flett’s mean value theorem, and a Cauchy version of Pawlikowska’s mean value
theorem.

One of the purposes of this paper is to establish under which circumstances the
function c is p times differentiable at the point x = a and to compute its derivative
c(p) (a) . Does the derivative of the function c at the point x = a depend upon the
function f ? Under which circumstances is the function c unique; if there exist several
functions c which satisfy (3), does the derivative of the function c at x = a depend
upon the function c we choose?
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Since for x ∈ I \ {a},

c(x)− c(a)
x−a

=
c(x)−a

x−a
,

if we denote by

θ (x) =
c(x)−a

x−a
,

then θ (x) ∈]0,1[ , c(x) = a+(x−a)θ (x) and hence

f (x) = (Tn−1 f ) (x)+
f (n)(a+(x−a)θ (x))

n!
(x−a)n.

Obviously, the function c : I → I defined by (4) is differentiable at x = a if and
only if the function θ : I \ {a}→]0,1[ defined by

θ (x) =
c (x)− c(a)

x−a
=

c(x)−a
x−a

, for all x ∈ I \ {a}

has limit at the point x = a. Moreover, if the function c is differentiable at x = a, then

c(1) (a) = lim
x→a

θ (x) .

The function θ : I\{a} →]0,1[ has a simple geometric interpretation: for x ∈
I\{a}, the number θ (x) ∈]0,1[ is the ratio between the length of the interval with the
extremities a and c(x) and the length of the interval with the extremities a and x.

In this paper we study the behaviour of the derivatives c(p) and θ (p) of the func-
tions c and θ when x approaches a.

We shall recall two known results, which can be found in [10].

THEOREM 2. Let I,J be two intervals of real numbers and f : I → R , g : J → R

two functions such that f (I) ⊂ J . If f is n times differentiable on I , and g is n times
differentiable on J , then the function g ◦ f : I → R is also n times differentiable on I
and the following holds for every x ∈ I :

(g ◦ f )(n)(x) =
n

∑
m=1

(
g(m) ◦ f

)
(x) (5)

× ∑
i1+2i2+...+nin=n
i1+i2+...+in=m

n!
i1!i2! · . . . · in!

(
f (1)(x)

1!

)i1(
f (2)(x)

2!

)i2

· . . . ·
(

f (n)(x)
n!

)in

.

THEOREM 3. Let I,J ⊆R be two intervals and f : I → J a bijective function. If f
is n times differentiable on I and f ′(x) �= 0, for all x ∈ I , then the function f−1 : J → I
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is n times differentiable on J and, for each y ∈ J :

( f−1)(n)(y) = ∑
i2+2i3+...+(n−1)in=n−1

i1+i2+...+in=n−1

(−1)n−1+i1(2n−2− i1)!
i2!i3! · . . . · in! (6)

× 1(
f (1)(x)

)2n−1

(
f (1)(x)

1!

)i1(
f (2)(x)

2!

)i2

· . . . ·
(

f (n)(x)
n!

)in

where x = f−1(y) .

In what follows we need the following theorem:

THEOREM 4. Let n, p � 1 be two integer numbers, I ⊆ R be an interval, a an
interior point of I and f : I → R be a function that satisfies the conditions:

(i) the function f is n+ p times differentiable on I ,
(ii) the function f (n+p) : I → R is continuous at a.
Then there exists

lim
x→a

(
f (x)− (Tn−1 f ) (x)

(x−a)n

)(p)

and

lim
x→a

(
f (x)− (Tn−1 f ) (x)

(x−a)n

)(p)

=
p!

(p+n)!
f (p+n)(a). (7)

Proof. Taking Leibniz’s rule into account, for each x ∈ I, we have that(
f (x)− (Tn−1 f ) (x)

(x−a)n

)(p)

=
[
( f (x)− (Tn−1 f ) (x))

1
(x−a)n

](p)

=
p

∑
k=0

(
p
k

)
( f −Tn−1 f )(p−k) (x)

(
1

(x−a)n

)(k)

=
p

∑
k=0

(
p
k

)
( f −Tn−1 f )(p−k) (x)

(−1)k (n+ k−1)!
(n−1)!(x−a)n+k

=
1

(x−a)n+p

p

∑
k=0

(−1)k (n+ k−1)!
(n−1)!

(
p
k

)
( f −Tn−1 f )(p−k) (x) (x−a)p−k.

Taking this to the limit, applying l’Hôpital’s rule n times and rearranging, yields:

lim
x→a

(
f (x)− (Tn−1 f ) (x)

(x−a)n

)(p)

= lim
x→a

p!
(n+ p)!(x−a)p

p

∑
k=0

(−1)kap−k f (p+n−k) (x)(x−a)p−k,
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where

ap−k =
k

∑
j=0

(−1) j (n+ k− j−1)!
(n−1)!

(p− k+ j)!
(p− k)!

(
p

k− j

)(
n
j

)
,

for all k ∈ {0, ..., p}. For each k ∈ {1, ..., p}, we have

ap−k =
p!n

(p− k)!

k

∑
j=0

(−1) j (n+ k− j−1)!
j!(n− j)!(k− j)!

= 0,

because (
n
k

)
= (−1)k

(
k−n−1

k

)
.

Then we deduce that

lim
x→a

(
f (x)− (Tn−1 f ) (x)

(x−a)n

)(p)

= lim
x→a

p!
(n+ p)!(x−a)p f (p+n) (x) (x−a)p

=
p!

(p+n)!
f (p+n) (a) .

REMARK 5. Theorem 4 remains true if the point a is an extremity of the interval
I.

THEOREM 6. Let n, p � 1 be two integer numbers, I ⊆ R be an interval, a an
interior point of I and f : I → R a function satisfying the conditions:

(i) the function f is n+ p times differentiable on I ,
(ii) the function f (n+p) is continuous on I ,
(iii) f (n+1)(a) �= 0 .
Then the following statements are true:
10 There exists a real number δ > 0 , such that ]a− δ ,a+ δ [⊆ I, for which the

function c :]a− δ ,a+ δ [\{a}→]a− δ ,a+ δ [\{a} , which satisfies

f (x) = (Tn−1 f ) (x)+
f (n)(c(x))

n!
(x−a)n, (8)

for all x ∈]a− δ ,a+ δ [\{a}, is unique .
20 The function c :]a− δ ,a+ δ [→]a− δ ,a+ δ [ defined by

c(x) =

{
c(x), if x ∈]a− δ ,a+ δ [\{a}
a, if x = a,

(9)

is p times differentiable on ]a− δ ,a+ δ [ and

c(p) (x) =
p

∑
m=1

((
ϕ−1)(m) ◦ g

)
(x)

× ∑
i1+2i2+...+pip=p
i1+i2+...+ip=m

p!
i1!i2! · . . . · ip!

(
g(1)(x)

1!

)i1(
g(2)(x)

2!

)i2

· . . . ·
(

g(p)(x)
p!

)ip

,
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for all x ∈]a− δ ,a+ δ [\{a} and

c(p)(a) =
p

∑
m=1

((
ϕ−1)(m) ◦ g

)
(a)× ∑

i1+2i2+...+pip=p
i1+i2+...+ip=m

p!
i1!i2! · . . . · ip! Fi1,i2,...,ip (a) , (10)

where, for each i1, ..., ip ∈ {0,1, ..., p},
Fi1,i2,...,ip (a) (11)

=
(

n!
(n+1)!

f (n+1) (a)
)i1( n!

(n+2)!
f (n+2) (a)

)i2

· . . . ·
(

n!
(n+ p)!

f (n+p) (a)
)ip

and g :]a− δ ,a+ δ [→R is the function defined by

g(x) =

⎧⎨
⎩n!

f (x)− (Tn−1 f ) (x)
(x−a)n

, if x ∈]a− δ ,a+ δ [\{a}
f (n) (a) , if x = a.

(12)

Moreover,

c(p)(x) =
p

∑
m=1

∑
j2+2 j3+...+(m−1) jm=m−1

j1+ j2+...+ jm=m−1

(−1)m−1+ j1(2m−2− j1)!
j2! j3! · . . . · jm!

× 1(
ϕ(1) (x)

)2m−1

(
ϕ(1) (x)

1!

) j1(ϕ(2) (x)
2!

) j2

· · ·
(
ϕ(m) (x)

m!

) jm

× ∑
i1+2i2+...+pip=p
i1+i2+...+ip=m

p!
i1!i2! · . . . · ip!

(
g(1)(x)

1!

)i1(
g(2)(x)

2!

)i2

· . . . ·
(

g(p)(x)
p!

)ip

,

for all x ∈]a− δ ,a+ δ [\{a} and

c(p)(a) =
p

∑
m=1

∑
j2+2 j3+...+(m−1) jm=m−1

j1+ j2+...+ jm=m−1

(−1)m−1+ j1(2m−2− j1)!

j2! j3! · . . . · jm!
[
f (n+1)(a)

]2m−1 (13)

×
(

f (n+1)(a)
1!

) j1(
f (n+2)(a)

2!

) j2

· . . . ·
(

f (n+m)(a)
m!

) jm

× ∑
i1+2i2+...+pip=p
i1+i2+...+ip=m

p!
i1!i2! · . . . · ip!Fi1,i2,...,ip (a)

where Fi1,i2,...,ip (a) (i1, ..., ip ∈ {0,1, ..., p}) are given by (11) .
30 The function θ :]a− δ ,a+ δ [\{a}→]0,1[ for which

f (x)− (Tn−1 f ) (x) =
(x−a)n

n!
f (n)(a+(x−a)θ (x)), (14)
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for all x ∈]a− δ ,a+ δ [\{a}, is unique.
40 The function θ :]a− δ ,a+ δ [→]0,1[ defined by

θ (x) =

⎧⎪⎨
⎪⎩
θ (x), x ∈]a− δ ,a+ δ [\{a}

1

n+1
, x = a

is p−1 times differentiable on ]a− δ ,a+ δ [ and

θ (p−1)(a) =
1
p

c(p)(a). (15)

Proof. 10 Assume that f (n+1) (a) > 0. Since a is an interior point of I, then
there exists a real number δ > 0 such that ]a− δ ,a+ δ [⊆ I and f (n+1) (x) > 0, for all
x ∈]a− δ ,a+ δ [.

It follows that the function f (n) is increasing on ]a−δ ,a+δ [ and therefore injec-
tive on ]a−δ ,a+δ [. Then the function ϕ :]a−δ ,a+δ [→ f (n) (]a− δ ,a+ δ [) defined
by

ϕ (x) = f (n) (x) , for all x ∈]a− δ ,a+ δ [,

is bijective and hence the function c is unique. If f (n+1) (a) < 0, the proof is similar.
20 Taking 10 into account, (8) yields that c has the following expression

c(x) =
(
ϕ−1)(n!

f (x)− (Tn−1 f ) (x)
(x−a)n

)
, for all x ∈]a− δ ,a+ δ [\{a}. (16)

According to (16) and (12), relation (9) becomes

c(x) =
{(

ϕ−1 ◦ g
)
(x) , if x ∈]a− δ ,a+ δ [\{a}

a, if x = a.

From (i) and the definition of g we have that the function c is p times differentiable
on ]a− δ ,a+ δ [ and heeding (5) and (6) , for all x ∈]a− δ ,a+ δ [\{a} we have that

c(p) (x) =
p

∑
m=1

((
ϕ−1)(m) ◦ g

)
(x)

× ∑
i1+2i2+...+pip=p
i1+i2+...+ip=m

p!
i1!i2! · . . . · ip!

(
g(1)(x)

1!

)i1(
g(2)(x)

2!

)i2

· . . . ·
(

g(p)(x)
p!

)ip

=
p

∑
m=1

∑
j2+2 j3+...+(m−1) jm=m−1

j1+ j2+...+ jm=m−1

(−1)m−1+ j1(2m−2− j1)!
j2! j3! · . . . · jm!

× 1(
ϕ(1) (x)

)2m−1

(
ϕ(1) (x)

1!

) j1(ϕ(2) (x)
2!

) j2

· · ·
(
ϕ(m) (x)

m!

) jm

× ∑
i1+2i2+...+pip=p
i1+i2+...+ip=m

p!
i1!i2! · . . . · ip!

(
g(1)(x)

1!

)i1(
g(2)(x)

2!

)i2

· . . . ·
(

g(p)(x)
p!

)ip

.
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Taking it to the limit and recalling (7), one obtains (10) and (13) .
30 The uniqueness of the function θ follows immediately by the uniqueness of

the function c .
40 Obviously

lim
x→a

θ (x) = lim
x→a

c(x)− c(a)
x−a

= lim
x→a

c(x)− c(a)
x−a

= c(1) (a) =
1

n+1
,

hence the function θ is continuous at x = a. Moreover, from (14) and (9) it follows
that the function θ is p−1 times differentiable on ]a− δ ,a+ δ [ and

θ (p−1) (x) =
(

c(x)− c(a)
x−a

)(p−1)

,

for all x ∈]a− δ ,a+ δ [\{a} .
Considering (7) for the function f = c and n = 1, one obtains (15).

REMARK 7. Theorem 6 remains true if the point a is an extremity of the interval
I.
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