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Abstract. Let T be a triangle in the Euclidean plane. Let g(T ) be the orthic triangle of the
triangle T , and let gn+1(T ) be the orthic triangle of the triangle gn(T ) . In [2] it is proved that
for n→∞ the triangle gn(T ) tends to the point L . It has also been shown that |OL|� 4

3 R for all
triangles T and that |OL|= 4

3 R if T is a heptagonal triangle, where (O,R) is the circumscribed
circle of the triangle T .

In this paper it will be geometrically proved that the equality in Dixmier–Kahane–Nicolas
inequality |OL| � 4

3R is valid in the case of a heptagonal triangle. The relationship between the
initial heptagonal triangle T and the obtained point L will also be investigated.

Let T be a triangle in the Euclidean plane. Let g(T ) denote the triangle whose
vertices are the feet of the altitudes of the triangle T , i.e. the orthic triangle of the
triangle T , and let g2(T ) be the orthic triangle of the triangle g(T ) ; generally, let
gn+1(T ) be the orthic triangle of the triangle gn(T ) .

In [2] Dixmier, Kahane and Nicolas have proved, by means of trigonometric se-
ries, that for n → ∞ the triangle gn(T ) tends to the point L , a new characteristic point
of the triangle T . If (O,R) is the circle circumscribed to the triangle T , then it has
also been shown that the inequality |OL| � 4

3R is valid for all triangles T and that the
equality |OL|= 4

3R is valid if and only if the angles of T are 4
7π , 2

7π , 1
7π . This special

triangle is called heptagonal triangle according to [1]. It is a very interesting and rare
occurrence that a heptagonal triangle is the extreme triangle, because the extreme trian-
gle in most of the different extreme problems concerning the triangles is an equilateral
triangle.

Here we shall give the elementary geometric proof that in the case of heptagonal
triangle ABC , the Dixmier-Kahane-Nicolas point L is the center of indirect similarity
of the triangle ABC and its orthic triangle B′C ′A′ , where A′ , B′ , C ′ are the feet of the
altitudes through the vertices A , B , C of the triangle ABC .

For the vertices A , B , C of the heptagonal triangle ABC we can get successively
the vertices P10 , P12 , P6 of the regular 14–gon P0P1P2 ...P13 inscribed in the unit circle
K with the center O , i.e. let R = 1 (Figure 1).

The triangles ABC = P10P12P6 and A0B0C0 = P11P9P1 are symmetrical with re-
spect to the common perpendicular bisector of the parallel chords P10P11 , P12P9 , P6P1
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of the circle K , so the orthocenters H , H0 of these triangles are symmetrical with
respect to the perpendicular bisector OH ′ , where H ′ is the midpoint of the segment
HH0 . As P13P6 is the diameter of the circle K , then the chords P12P13 , P12P6 are
perpendicular, and the chords P10P1 , P12P6 are also perpendicular i.e. the line P10P1

is the altitude through the vertex A of the triangle ABC . In the same manner it can
be shown that the lines P12P11 and P6P9 are the altitudes through the vertices B and
C . Because of that the feet of these three altitudes are the points A′ = P12P6 ∩P10P1 ,
B′ = P6P10∩P12P11 , C′ = P10P12∩P6P9 .

The common perpendicular bisector of the chords P12P13 , P11P0 , P10P1 , P6P5 of
the circle K is parallel to its chord P12P6 , and the chords P12P11 , P13P0 are symmet-
rical with respect to this bisector, while the chords P13P0 , P12P1 are mutually parallel.
Because of that the lines on which the chords P12P11 , P12P1 lie, are symmetrical with
respect to the chord P12P6 , so it means that the triangle P12P1H is isosceles and the
point A′ is the midpoint of the side P1H of that triangle. Similarly it may be shown
that the points B′ and C′ are the midpoints of the segments P11H and P9H . Thus, the
points A′ , B′ , C′ are successively the midpoints of the segments C0H , A0H , B0H .
It means that the homothecy with the center H and coefficient 1

2 maps the triangle
A0B0C0 to the triangle B′C′A′ . The composition of the symmetry with respect to the
line OH ′ and the mentioned homothecy is then an indirect similarity σ with the coef-
ficient 1

2 , which maps the given triangle ABC to its orthic triangle B′C′A′ .
Indirect similarity σ maps the circumcenter O , the orthocenter H and the centroid

G of the triangle ABC to the circumcenter O′ , the orthocenter H ′ and the centroid G′
of the triangle B′C′A′ . The point O′ is in fact the Euler center of the triangle ABC and
it is the midpoint of the segment OH , and the points G and G′ lie on the thirds of the
segments OH and O′H ′ starting from the points O and O′ . Because of that the line
GG′ is parallel to the line OH ′ and it intersects the segment H ′H at the point L , which
is on the third of that segment starting from the point H ′ . The point G′ is the centroid
of the rectangular triangle OHH ′ , and the point G′ is the midpoint of the segment GL .

Let us consider the indirect similarity σ0 , which is the composition of the homoth-
ecy with the center L and the coefficient 1

2 and the symmetry with respect to the line
GG′ . This similarity obviously maps the points G and H to the points G′ and H ′ ,
however the indirect similarity σ has also this property. As the (indirect) similarity is
uniquely determined with two pairs of associated points, it follows σ = σ0 . So, we
have proved the following theorem.

THEOREM 1. If the heptagonal triangle ABC and its orthic triangle A′B′C′ have
the centroids G and G′ and the orthocenters H and H ′ , then the triangles ABC and
B′C′A′ are indirect similar. The indirect similarity σ : ABC → B′C ′A′ has mutually
perpendicular axes GG′ and HH ′ , the center L = GG′ ∩HH ′ and coefficient 1

2 . The
restrictions of this similarity on its axes GG′ and HH ′ are homothecies with the center
L and the coefficients 1

2 and − 1
2 (Figure 1).

Let A′′B′′C ′′ be the orthic triangle of the triangle A′B′C ′ and G′′ the centroid and
H ′′ the orthocenter of the triangle A′′B′′C ′′ , then the triangle B′C′A′ is also heptagonal,
thus the triangles B′C′A′ and C ′′A′′B′′ are indirect similar, according to Theorem 1, and
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Figure 1.

the indirect similarity σ ′ : B′C ′A′ → C ′′A′′B′′ has mutually perpendicular axes G′G′′
and H ′H ′′ , the center L′ = G′G′′ ∩H ′H ′′ and the coefficient 1

2 . If ϕ is that oriented
angle between Euler lines GH and G′H ′ of the triangles ABC and A′B′C′ , whose angle
bisector is parallel to the line GG′ then, by the application of the indirect similarity σ ′
it follows that −ϕ is that oriented angle of Euler lines G′H ′ and G′′H ′′ of the triangles
A′B′C ′ and A′′B′′C ′′ , whose angle bisector is parallel to the line G′G′′ , which implies
that the lines GH and G′′H ′′ are parallel and therefore the angle bisectors GG′ and
G′G′′ of these angles are also parallel, i.e. these axes are coincident. The same fact is
also valid for the other axes HH ′ and H ′H ′′ of these two similarities. Thus, these two
similarities σ and σ ′ are coincident. The composition σ ◦σ is the homothecy with
the center L and the coefficient 1

4 . Because of that the following result holds.

THEOREM 2. If A′B′C ′ is the orthic triangle of the triangle ABC and A′′B′′C ′′
the orthic triangle of the triangle A′B′C ′ , then the same indirect similarity maps the
triangle ABC to the triangle B′C ′A′ and the triangle B′C ′A′ to the triangle C ′′A′′B′′ .
The triangle ABC is mapped to the triangle C ′′A′′B′′ by the homothecy with the coeffi-
cient 1

4 and the center L at the intersection of two perpendicular lines G and H out
of which the first line passes through the centroids, and the second one passes through
the orthocenters of the triangles ABC, A′B′C ′ and A′′B′′C ′′ (Figure 1).

The iterative application of Theorem 2 implies that the point L from Theorem 2 is
the Dixmier-Kahane-Nicolas point of the heptagonal triangle ABC .

Let us set the regular 14-gon P0P1P2 ...P13 in the Gauss plane such that the points
P0 , P1 , ..., P13 have the complex coordinates 1, ε , ..., ε13 , where ε = e

1
14 2π i . The
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centroid G of the triangle ABC has the coordinate g = 1
3 (ε10 + ε12 + ε6) , and the or-

thocenter H of that triangle the coordinate h = 3g = ε6 +ε10+ε12 . In the same manner
h0 = ε + ε9 + ε11 is the coordinate of the orthocenter H0 of the triangle A0B0C0 . Be-
cause of ε7 = −1, ε14 = 1 and 1+ ε2 + ε4 + ε6 + ε8 + ε10 + ε12 = 0 we get now

h−h0 = ε6 + ε10 + ε12− ε− ε9− ε11 = ε6 + ε10 + ε12 + ε8 + ε2 + ε4 = −1,

hh0 = ε7(1+ε8+ε10)(1+ε4+ε6)=−(1+ε8+ε10+ε4+ε12+1+ε6+1+ε2)=−2,

therefore |HH0| = 1 and |OH|2 = |OH0|2 = 2, i.e. |OH| = |OH0| =
√

2. From the
rectangular triangle OHH ′ because of |HH ′| = 1

2 we have |OH ′| = 1
2

√
7, and then

from the rectangular triangle OH ′L because of |H ′L| = 1
6 we finally get |OL| = 4

3 . So
we have.

THEOREM 3. The Dixmier-Kahane-Nicolas point L of the heptagonal triangle
ABC is the center of indirect similarity of this triangle and its orthic triangle. If (O,R)
is the circumscribed circle of the triangle ABC, then |OL| = 4

3R.

The second statement of Theorem 3 is also proved in [1].

Complex coordinates ε10 , ε12 , ε6 of the points A , B , C have the product ε28 = 1,
whose cube roots are 1, η , η2 , where η = e

2
3π i . The points with complex coordinates

1, η , η2 are the so called Boutin points of the triangle ABC , and the lines which join
the Boutin points with the circumcenter O of that triangle are the so called Boutin axes
of the triangle ABC . One of the three Boutin points of the triangle ABC is the point P0 .
The diameter P0P7 of the circle K is parallel to the already considered chords of this
circle which have the common perpendicular bisector OH ′ . Because of that the Boutin
axis OP0 of the triangle ABC is perpendicular to the line OH ′ , and then to the line GG′
too, and it is parallel to the line HH ′ . So, we have just proved the following statement.

THEOREM 4. The line G from Theorem 2 is perpendicular to one Boutin axis of
the heptagonal triangle ABC, and the line H is parallel to this axis.

The lines G and H from Theorems 2 and 4 will be called centroidal and ortho-
centric axes of the heptagonal triangle ABC . The triangles ABC and A0B0C0 have the
common orthocentric axis H = HH0 .

The triangle P4P2P8 is symmetrical to the triangle ABC with respect to the diam-
eter P0P7 of the circle K , thus it is also a heptagonal triangle. The lines CP4 , AP2 ,
BP8 , which are the chords P4P6 , P2P10 , P8P12 of the circle K , are successively paral-
lel to the chords P2P8 , P8P4 , P4P2 . Because of that the lines CP4 , AP2 , BP8 form the
triangle, whose midpoints of the sides are the points P4 , P2 , P8 , and the so obtained
triangle is also heptagonal.

The points P2 , P9 are the midpoints of arcs BC of the circle K , and the lines
AP2 , AP9 are the angle bisectors of the angle A of the triangle ABC . Analogously, the
lines BP8 , BP1 are the angle bisectors of the angle B , and the lines CP11 , CP4 are the
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angle bisectors of the angle C of that triangle. Because of that three by three lines AP2 ,
BP8 , CP11 ; AP2 , BP1 , CP4 ; AP9 , BP8 , CP4 ; AP9 , BP1 , CP11 intersect successively at
the centers I , Ia , Ib , Ic of inscribed and excribed circles of the triangle ABC . The pairs
of bisectors AP2 , AP9 ; BP8 , BP1 ; CP11 , CP4 are perpendicular, so the triangle ABC is
the orthic triangle of the triangle IIbIa , whose orthocenter is the point Ic . This triangle
IIbIa has for its sides IbIa , IaI , IIb the lines CP4 , AP2 , BP8 , which, as we have proved,
form the triangle where the points P4 , P2 , P8 are the midpoints of its sides.

Thus, the points P4 , P2 , P8 are the midpoints of the sides IbIa , IaI , IIb of the hep-
tagonal triangle IIbIa . The points P6 =C , P10 = A , P12 = B are the feet of the altitudes
of this triangle. Does the remaining vertex P0 of the regular heptagon P0P2P4P6P8P10P12

have any geometrical meaning for the triangle IIbIa ? We have already known that the
point P0 is the Boutin point of the triangle ABC , and it has the same meaning for its
symmetric triangle P4P2P8 . Let us now find one more nice characterization of this point
for the triangle IIbIa .

As the line P6P13 is the diameter of the circle K , then the line P4P13 is perpen-
dicular to the line P4P6 , i.e. the line P4P13 is the perpendicular bisector of the side IbIa
of the triangle IIbIa , and analogously it can be shown that the lines P2P3 and P8P5 are
perpendicular bisectors of the sides IaI and IIb of that triangle. Because of that the
lines P4P13 , P2P3 , P8P5 intersect at the circumcenter S of the triangle IIbIa . The circle
K is the Euler circle of that triangle, and the radius of the circumscribed circle of that
triangle is 2.

The symmetry with respect to the line OH ′ maps the triangle ABC with the ver-
tices P10 , P12 , P6 to the triangle A0B0C0 with the vertices P11 , P9 , P1 , and then the
altitudes P10P1 , P12P11 , P6P9 of the triangle ABC are mapped to the altitudes P11P6 ,
P9P10 , P1P12 of the triangle A0B0C0 with the intersection H0 . However, the point
P9P10 ∩P6P11 is in fact the point AP9 ∩CP11 = Ic . Thus Ic = H0 . The point O is the
center of Euler circle K of the triangle IIbIa , i.e. it is the midpoint of the circumcenter
S and the orthocenter H0 . Because of the symmetry of the points S , H0 with respect
to the point O and the symmetry of the points H , H0 with respect to the line OH ′ and
because of the perpendicularity of the lines OH ′ and OP0 it follows that the points S
and H are symmetrical with respect to the line OP0 . So the triangle P0HS is an isosce-
les triangle with the base |SH| = 2 · |OH ′| = √

7 and the altitude |OP0|+ |HH ′| = 3
2 ,

wherefrom the equalities |P0H| = |P0S| = 2 easily follow. It means that the point P0

lies on the circumscribed circle of the triangle IIbIa , and the following statement holds:

THEOREM 5. If I , Ia , Ib , Ic are the centers of inscribed and excribed circles
of the heptagonal triangle ABC with the vertices A = P10 , B = P12 , C = P6 at three
vertices of the regular heptagon P0P2P4P6P8P10P12 , then IIbIa is a heptagonal triangle
with the orthocenter Ic , the points P2 , P4 , P8 are successively the midpoints of the
sides IIa , IaIb , IbI , and the point P0 is one intersection of the circumscribed and Euler
circle of that triangle (Figure 2).

Theorem 5 can be applied on the triangle ABC and its orthic triangle A′B′C′ in-
stead of the triangle IIbIa and its orthic triangle ABC , and then it means that the points
A′ , B′ , C′ , the midpoints of the sides of the triangle ABC and the intersection U of the
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Figure 2.

circumscribed and Euler circle of that triangle are the vertices of one regular heptagon,
not in this sequence necessarily (Figure 1). As the points A′ , B′ , C′ are the midpoints
of the segments HP1 , HP11 , HP9 , then the homothecy with the center H and the co-
efficient 1

2 maps the points P1 , P11 , P9 to the points A′ , B′ , C′ . However, the points
P1 , P11 , P9 are the images of the points C , A , B by the symmetry with respect to the
line OH ′ . Indirect similarity σ ′′ , which is the composition of this symmetry and one
homothecy, maps the points P6 , P10 , P12 successively to the images of the points P1 ,
P11 , P9 with regard to the homothecy (H, 1

2 ) ; thus this similarity maps the remaining
vertices P0 , P2 , P4 and P8 of the regular heptagon P0P2P4P6P8P10P12 successively to
the images of vertices P7 , P5 , P3 and P13 of the regular heptagon P7P5P3P1P13P11P9 by
this homothecy. The similarity σ ′′ maps vertices C , A , B of the orthic triangle IIbIa
to the corresponding vertices A′ , B′ , C′ of the orthic triangle of the triangle ABC , and
then it also maps the intersection P0 of the circumscribed and Euler circle of the trian-
gle IIbIa to the intersection of circumscribed and Euler circle of the triangle ABC , and
here it is the image of the point P7 by homothecy (H, 1

2 ) , i.e. the midpoint U of the
segment HP7 . What could be said about the second intersection V of the circumscribed
and Euler circle of the triangle ABC?

According to the known formula for the lengths of the medians of the triangle by
means of the lengths of its sides it follows that the median H0O ′ of the triangle OHH0

with the length of the sides 1,
√

2,
√

2 has the length 1. If U ′ is the point symmetrical
to the point O ′ with respect to the point U , then the segment O ′U ′ is parallel and
equal to the segments OP7 and H0H , therefore O′U ′HH0 is a rhombus because of
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|O ′H0|= 1 = |HH0| (Figure 1). The diagonal O ′H of this rhombus is the perpendicular
bisector of the segments UV and U ′H0 , and as the point U is the midpoint of the
segment O′U ′ , it follows that the point V is the midpoint of the segment O′H0 . As the
points O′ and H0 = Ic are the centers of Euler circle and excribed circle of the triangle
ABC , and these two circles touch each other outside at the corresponding Feuerbach
point Φc , then the point V is that Feuerbach point, and besides that it follows that this
excribed circle has the radius 1

2 . We have proved the following theorem.

THEOREM 6. The feet of the altitudes and the midpoints of the sides of a heptag-
onal triangle are six vertices of one regular heptagon inscribed in Euler circle of that
triangle, and the seventh vertex of that heptagon is one intersection of this circle with
the circumscribed circle of that triangle. The second intersection of these two circles
is the Feuerbach point of the considered triangle, where its Euler circle touches its
inscribed circle. These two last circles have the same radii.

A number of statements of Theorem 6 can be found in [4].
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Department of Mathematics

University of Osijek
Gajev trg 6

31 000 Osijek
Croatia

e-mail: zkolar@mathos.hr
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