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Abstract. In this paper we show that solutions for a large class of functional inequalities can be
obtained from solutions of the corresponding functional equations.

1. Introduction

Let I C R be a nonempty and open interval. We say that a function M : I — I is
amean on [ if

min {x,y} < M(x,y) < max{x,y}

for all x,y € I. If, moreover, these inequalities are sharp for all x # y, then M is said
to be a strict mean.

Let m: 1> — I and n: I> — I be some continuous strict means. In [4] the author
considered the following inequality

f(n(x.y) + f(m(x,y) < f()+f(y), xyeL, (A)

and the corresponding functional equation

@ (n(x,y)) +@(m(x,y)) =ox) + o), xyel, (B)

with unknown functions f:/ — R and ¢ : I — R, respectively. He proved that: if there
exists a continuous strictly increasing solution ¢ : I — R of (B), then a continuous
function f:1— R satisfies (A) if and only if fo @~ is a convex function on @(I).

In this paper we extend that result for a large class of functional inequalities.
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2. Main result

Let A : 1> — (0,1) be a fixed function. For a given f :1 — R we adopt the
following symbol

(TF) (ey) i= A, y) F(6) + (1= A (x ) f ().

For the given means m,n : I*> — R we consider the following inequality

(T7) (mx,y),n(x,y)) < (TF) (y), xyel, M
and the related functional equation
(77) (m(x.y).n(x,y) = () (x,y), xy€l, (In

with unknown functions f: 1 — R and ¢ : I — R, respectively.
It easy to see, that if A is a constant function, equals identically one-half, then (I)
becomes (A) and (II) becomes (B).

THEOREM 1. Let A : I> — (0,1) be a function, n,m: I*> — I be continuous means
and one of them is strict. If there exists a continuous, one-to-one solution ¢ : I — R of
(I1), then a lower semicontinuous function f : I — R satisfies (1) if and only if fo ™!
is a convex function on @(I).

Proof. Assume that a function ¢ is continuous, one-to-one and satisfies (II) and
a function f is lower semi-continuous satisfying (I). Take arbitrary x,y € I and define
sequence (x,yx) in the following way

X=X 1=y,
)

Xpeg 1 i= m(xg, yk) Va1 := (X, Vi)

Such a sequence is said to be the Gauss-iteration determined by the pair (m,n)
with the initial values (x,y) € I? (cf. [2]). Under our assumptions the Gauss-iteration
(1) is convergent, i.e.

lim x; = lim
k—o0 k k—}ooyk

for any value (x,y) € I> and it determines an other mean. Such a mean is said to be
Gauss-composition of (m,n), we denote it by m ® n and define it as a common limit of
the sequences (x;) and (yg), i.e.

m@n(x,y) = limx = lim yg, )

for all x,y € I (cf. [2], p.164,165).
From definition (1), inequality (I) and equation (II) we get

(Tf/l)(xkayk) < (T;L)(XJ) and (Tél)(xk»yk) = (T(;L)(x»y% keN. (3)
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Making use of the lower semicontinuity of f, the continuity of ¢ and (2), we conclude
that for each € > 0 there exists ko € N such that for all £ > ky we have

fm®@n(x,y)) — e < f(x)
and @
fm@n(x,y)) —€ < f(y)

as well as
p(mn(x,y)) —e < @(x) <Pp(m@n(x,y)) +¢€
and )
p(m@n(x,y)) —€ < @) < p(m@n(x,y)) +e.

Multiplying inequalities (4) by A (xx,yx) and 1 — A (xx,yx), respectively, adding them
and using inequality in (3) and the definition of T} we obtain

flm@n(x,y) —e < (T7) (woye) < (T7) (x)-

Similarly, multiplying inequalities (5) by A(xx,yx) and 1 — A(x, i), respectively,
adding them and using equality in (3) we conclude that

p(m@n(x,y)) = gifolo(Tﬁ)(kak) = (T5) (x,y).
Thus

fm@n(x,y)) <Axy)f(x)+(1=2A0xy)f(v) (6)
and

p(m@n(x,y)) =A(x,y) o)+ (1 -A(x,)0y). (7
Function ¢ is one-to-one, then from (7) we have

m@n(x,y) ="' (A(x,y)x)+ (1 -1 (x,y)9())
and taking into account (6) we obtain
Flo7 (Ao + (1 =2xy)0()) <Ay F(x) + (1 =A060)f()-

Putting in the last inequality s := @(x), 1 := @(y), u(s,2) :=A(¢~'(s),0~(¢)) and
g:=fop ! we get

g((u(s.t)s+ (1 —u(s,0)))) < uls,0)g(s) + (1 —uls,1))g(t).

It means that the function g is u — convex on ¢(I). Moreover, g is lower semicontin-
uous, then it must be convex (cf. [1]).
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Now assume that ¢ satisfies (IT) and that f o @~ is a convex function on ¢@(I).

Take arbitrary x,y € I. Because m,n are means and function ¢, as a continuous and
one-to-one, is monotone, we deduce that

min {@(x), @(y)} < @(m(x,y)) < max{@(x), o(y)}
and (8)

min{(x),p(y)} < @(n(x,y)) < max{o(x),(y)}.

1

From convexity of the function fo @~ we conclude that

a(fop )@ +(1-a)(foe )W) <B(foe )W) +(1-B)(foo ") (2), ©
as long as
ou+(1—a)yy=LPFw+(1-P)z,

for some u,v,w,z € @(I) such that u and v are between w and z, and o,f € [0,1].
Finally, on account of (II), (8) and (9) we get (I), which was to be proved. U

On the base of the following lemma we will be able to modify some assumptions
of Theorem 1.

LEMMA 1. Let A : I — (0,1) be a function, n,m: I> — I be continuous strict
means and @ : I — R is a nonconstant and continuous solution of equation (11), then
@ is one-to-one.

Proof. Let m@n : I*> — I be a Gauss-composition of (m,n). In our assumptions
m® n is continuous strict mean (cf. [2], p.164,165). Suppose that there exist a,b € I,
a # b, such that ¢(a) = ¢(b) and put

Ji={xel:px)=¢(a)}.

By the continuity of ¢, the set J is closed in /. Note that J is an interval. In the
opposite case we could find ay,b; € J (a; < by) such, that

o(x) # ¢(a), x € (ar,by). (10)

Function ¢ satisfies equation (II), thus setting in it x = a;, y = b; we get

¢(m®@n(ay,br)) = Alar,br)@(ar) + (1 —A(ar,b1))@(b1) = ¢(a).

But in view of (10) it is impossible, because a; < m®n(ay,by) < b; . It means that J is
an interval. Now if J # 1, then supJ < sup/ or infJ < infl. Suppose that supJ < sup/
(if infJ < inf1 the proof is similar and we omit it). Take arbitrary x € intJ and y € I\ J
(supJ < y) such, that m®@n(x,y) € J (it is possible by strictnesses and continuity of
m® n). Finally from (II) we obtain

¢(a) = @(m@n(x,y)) = 2(x,y)0(x) + (1= A(x,)0(y)
=A(xy)e(a)+(1-A(xy))e(y),
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thus

pla)=0(y),

which according to the choice of y is impossible. Now we conclude that J = I. This
contradiction proves that ¢ is one-to-one. [

Now as an immediate consequence of Theorem 1 and Lemma 1 we get the follow-
ing theorem.

THEOREM 2. Let A : I> — (0,1) be a function, n,m : I> — I be continuous strict

means. If there exists a continuous, nonconstant solution of (Il), then for every lower

semicontinuous function f : 1 — R satisfying inequality (1), the function fo @~ is

convex on ¢(I).

Finally, we give some applications of Theorem 1 and Theorem 2.

EXAMPLE 1. Consider the functional inequality
1,./3 1 2 /1 7 1 2
—fl-x+- —flox+=y) << - , x,yelL 11
3f<4X+4y>+3f<8X+ 8y> 3/ +3f0), xye (1D

Since @ = id is a solution of the corresponding functional equation, therefore, a lower
semicontinuous function f :7 — R is a solution of inequality (11) if and only if it is
convex.

EXAMPLE 2. Let M : I*> — I be a continuous strict mean and satisfies the bisym-
metry equation:
M(M(s,t),M(u,v)) = M(M(s,u),M(t,v)),
forall s,z,u,v €I,and A : I> — (0,1) be a weight function of mean M i.e.:
M(x,y) =A(x,y)x+ (1 —=A(x,y))y, x,yel
Consider the functional inequality
(TF) (M(x,M(x,)), M(y,M(x,y))) < (T}) (x,), (12)

for all x,y € I. Function ¢ =1id is a solution of the corresponding functional equation,
therefore, a lower semicontinuous function f : I — R is a solution of (12) if and only
if it is convex.

EXAMPLE 3. Let M,N : I> — I be continuous strict means and A : I — (0, 1) is
a weight function of mean M ® N. Consider the functional inequality

(T}) (M(x,y),N(x,y)) < (T}) (x,y), (13)

for all x,y € I. Function ¢ =1id is a solution of the corresponding functional equation,
therefore, a lower semicontinuous function f:7 — R is a solution of (1) if and only if
it is convex.
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