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Abstract. In this paper we show that solutions for a large class of functional inequalities can be
obtained from solutions of the corresponding functional equations.

1. Introduction

Let I ⊂ R be a nonempty and open interval. We say that a function M : I2 → I is
a mean on I if

min{x,y} � M(x,y) � max{x,y}

for all x,y ∈ I . If, moreover, these inequalities are sharp for all x �= y , then M is said
to be a strict mean.

Let m : I2 → I and n : I2 → I be some continuous strict means. In [4] the author
considered the following inequality

f
(
n(x,y)

)
+ f

(
m(x,y)

)
� f (x)+ f (y), x,y ∈ I, (A)

and the corresponding functional equation

ϕ
(
n(x,y)

)
+ϕ

(
m(x,y)

)
= ϕ(x)+ϕ(y), x,y ∈ I, (B)

with unknown functions f : I →R and ϕ : I →R , respectively. He proved that: if there
exists a continuous strictly increasing solution ϕ : I → R of (B), then a continuous
function f : I → R satisfies (A) if and only if f ◦ϕ−1 is a convex function on ϕ(I) .

In this paper we extend that result for a large class of functional inequalities.
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2. Main result

Let λ : I2 → (0,1) be a fixed function. For a given f : I → R we adopt the
following symbol

(
Tλ

f

)
(x,y) := λ (x,y) f (x)+ (1−λ (x,y)) f (y).

For the given means m,n : I2 → R we consider the following inequality
(
T λ

f

)(
m(x,y),n(x,y)

)
�

(
Tλ

f

)
(x,y), x,y ∈ I, (I)

and the related functional equation
(
T λ
ϕ

)(
m(x,y),n(x,y)

)
=

(
Tλ
ϕ

)
(x,y), x,y ∈ I, (II)

with unknown functions f : I → R and ϕ : I → R , respectively.
It easy to see, that if λ is a constant function, equals identically one-half, then (I)

becomes (A) and (II) becomes (B).

THEOREM 1. Let λ : I2 → (0,1) be a function, n,m : I2 → I be continuous means
and one of them is strict. If there exists a continuous, one-to-one solution ϕ : I → R of
(II), then a lower semicontinuous function f : I → R satisfies (I) if and only if f ◦ϕ−1

is a convex function on ϕ(I) .

Proof. Assume that a function ϕ is continuous, one-to-one and satisfies (II) and
a function f is lower semi-continuous satisfying (I). Take arbitrary x,y ∈ I and define
sequence (xk,yk) in the following way

x1 := x y1 := y,

xk+1 := m(xk,yk) yk+1 := n(xk,yk).
(1)

Such a sequence is said to be the Gauss-iteration determined by the pair (m,n)
with the initial values (x,y) ∈ I2 (cf. [2]). Under our assumptions the Gauss-iteration
(1) is convergent, i.e.

lim
k→∞

xk = lim
k→∞

yk

for any value (x,y) ∈ I2 and it determines an other mean. Such a mean is said to be
Gauss-composition of (m,n) , we denote it by m⊗n and define it as a common limit of
the sequences (xk) and (yk) , i.e.

m⊗n(x,y) := lim
k→∞

xk = lim
k→∞

yk, (2)

for all x,y ∈ I (cf. [2], p.164,165).
From definition (1), inequality (I) and equation (II) we get

(
T λ

f

)
(xk,yk) �

(
T λ

f

)
(x,y) and

(
T λ
ϕ

)
(xk,yk) =

(
T λ
ϕ

)
(x,y), k ∈ N. (3)
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Making use of the lower semicontinuity of f , the continuity of ϕ and (2), we conclude
that for each ε > 0 there exists k0 ∈ N such that for all k > k0 we have

f (m⊗n(x,y))− ε < f (xk)
and

f (m⊗n(x,y))− ε < f (yk)
(4)

as well as

ϕ(m⊗n(x,y))− ε < ϕ(xk) < φ(m⊗n(x,y))+ ε
and

ϕ(m⊗n(x,y))− ε < ϕ(yk) < ϕ(m⊗n(x,y))+ ε.
(5)

Multiplying inequalities (4) by λ (xk,yk) and 1−λ (xk,yk) , respectively, adding them
and using inequality in (3) and the definition of T λ

f we obtain

f (m⊗n(x,y))− ε <
(
Tλ

f

)
(xk,yk) �

(
Tλ

f

)
(x,y).

Similarly, multiplying inequalities (5) by λ (xk,yk) and 1− λ (xk,yk) , respectively,
adding them and using equality in (3) we conclude that

ϕ(m⊗n(x,y)) = lim
k→∞

(T λ
ϕ

)
(xk,yk) =

(
Tλ
ϕ

)
(x,y).

Thus

f (m⊗n(x,y)) � λ (x,y) f (x)+ (1−λ (x,y)) f (y) (6)

and

ϕ(m⊗n(x,y)) = λ (x,y)ϕ(x)+ (1−λ (x,y))ϕ(y). (7)

Function ϕ is one-to-one, then from (7) we have

m⊗n(x,y) = ϕ−1(λ (x,y)ϕ(x)+ (1−λ (x,y))ϕ(y)
)

and taking into account (6) we obtain

f
(
ϕ−1(λ (x,y)ϕ(x)+ (1−λ (x,y))ϕ(y)

))
� λ (x,y) f (x)+ (1−λ (x,y)) f (y).

Putting in the last inequality s := ϕ(x) , t := ϕ(y) , μ(s, t) := λ (ϕ−1(s),ϕ−1(t)) and
g := f ◦ϕ−1 we get

g
(
(μ(s, t)s+(1− μ(s,t))t

))
� μ(s,t)g(s)+ (1− μ(s,t))g(t).

It means that the function g is μ− convex on ϕ(I) . Moreover, g is lower semicontin-
uous, then it must be convex (cf. [1]).
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Now assume that ϕ satisfies (II) and that f ◦ϕ−1 is a convex function on ϕ(I) .
Take arbitrary x,y ∈ I . Because m,n are means and function ϕ , as a continuous and
one-to-one, is monotone, we deduce that

min{ϕ(x),ϕ(y)} � ϕ(m(x,y)) � max{ϕ(x),ϕ(y)}
and

min{ϕ(x),ϕ(y)} � ϕ(n(x,y)) � max{ϕ(x),ϕ(y)} .
(8)

From convexity of the function f ◦ϕ−1 we conclude that

α
(
f ◦ϕ−1)(u)+ (1−α)

(
f ◦ϕ−1)(v) � β

(
f ◦ϕ−1)(w)+ (1−β )

(
f ◦ϕ−1)(z), (9)

as long as

αu+(1−α)v = βw+(1−β )z,

for some u,v,w,z ∈ ϕ(I) such that u and v are between w and z , and α,β ∈ [0,1] .
Finally, on account of (II), (8) and (9) we get (I), which was to be proved. �

On the base of the following lemma we will be able to modify some assumptions
of Theorem 1.

LEMMA 1. Let λ : I2 → (0,1) be a function, n,m : I2 → I be continuous strict
means and ϕ : I → R is a nonconstant and continuous solution of equation (II), then
ϕ is one-to-one.

Proof. Let m⊗n : I2 → I be a Gauss-composition of (m,n) . In our assumptions
m⊗n is continuous strict mean (cf. [2], p.164,165). Suppose that there exist a,b ∈ I ,
a �= b , such that ϕ(a) = ϕ(b) and put

J := {x ∈ I : ϕ(x) = ϕ(a)} .

By the continuity of ϕ , the set J is closed in I . Note that J is an interval. In the
opposite case we could find a1,b1 ∈ J (a1 < b1) such, that

ϕ(x) �= ϕ(a), x ∈ (a1,b1). (10)

Function ϕ satisfies equation (II), thus setting in it x = a1 , y = b1 we get

ϕ
(
m⊗n(a1,b1)

)
= λ (a1,b1)ϕ(a1)+ (1−λ (a1,b1))ϕ(b1) = ϕ(a).

But in view of (10) it is impossible, because a1 < m⊗n(a1,b1) < b1 . It means that J is
an interval. Now if J �= I , then supJ < sup I or infJ < inf I . Suppose that supJ < sup I
(if infJ < inf I the proof is similar and we omit it). Take arbitrary x ∈ intJ and y∈ I \J
(supJ < y) such, that m⊗ n(x,y) ∈ J (it is possible by strictnesses and continuity of
m⊗n ). Finally from (II) we obtain

ϕ(a) = ϕ
(
m⊗n(x,y)

)
= λ (x,y)ϕ(x)+ (1−λ (x,y))ϕ(y)

= λ (x,y)ϕ(a)+ (1−λ (x,y))ϕ(y),
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thus

ϕ(a) = ϕ(y),

which according to the choice of y is impossible. Now we conclude that J = I . This
contradiction proves that ϕ is one-to-one. �

Now as an immediate consequence of Theorem 1 and Lemma 1 we get the follow-
ing theorem.

THEOREM 2. Let λ : I2 → (0,1) be a function, n,m : I2 → I be continuous strict
means. If there exists a continuous, nonconstant solution of (II), then for every lower
semicontinuous function f : I → R satisfying inequality (I), the function f ◦ ϕ−1 is
convex on ϕ(I) .

Finally, we give some applications of Theorem 1 and Theorem 2.

EXAMPLE 1. Consider the functional inequality

1
3

f

(
3
4
x+

1
4
y

)
+

2
3

f

(
1
8
x+

7
8
y

)
� 1

3
f (x)+

2
3

f (y), x,y ∈ I. (11)

Since ϕ = id is a solution of the corresponding functional equation, therefore, a lower
semicontinuous function f : I → R is a solution of inequality (11) if and only if it is
convex.

EXAMPLE 2. Let M : I2 → I be a continuous strict mean and satisfies the bisym-
metry equation:

M(M(s,t),M(u,v)) = M(M(s,u),M(t,v)),

for all s, t,u,v ∈ I , and λ : I2 → (0,1) be a weight function of mean M i.e.:

M(x,y) = λ (x,y)x+(1−λ (x,y))y, x,y ∈ I.

Consider the functional inequality(
T λ

f

)
(M(x,M(x,y)),M(y,M(x,y))) �

(
T λ

f

)
(x,y), (12)

for all x,y ∈ I. Function ϕ = id is a solution of the corresponding functional equation,
therefore, a lower semicontinuous function f : I → R is a solution of (12) if and only
if it is convex.

EXAMPLE 3. Let M,N : I2 → I be continuous strict means and λ : I2 → (0,1) is
a weight function of mean M⊗N . Consider the functional inequality(

T λ
f

)
(M(x,y),N(x,y)) �

(
T λ

f

)
(x,y), (13)

for all x,y ∈ I. Function ϕ = id is a solution of the corresponding functional equation,
therefore, a lower semicontinuous function f : I → R is a solution of (1) if and only if
it is convex.
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