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Dedicated to Professor Josip Pečarić
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Abstract. Jensen’s inequality induces different forms of functionals which enables refinements
for many classic inequalities ([5]). Several refinements of Jensen’s inequalities were given in [4].
In this paper we refine Jensen’s inequality by separating a discrete domain of it. At the end, we
give some applications.

1. Introduction

Jensen’s inequality plays the crucial role in the Theory of Inequalities. In this
paper, C is a convex subset of the linear space X and f is a convex function on C . If

p1, . . . , pn ∈ (0,1)n ,
n

∑
i=1

pi = 1, and x1, . . . ,xn ∈C is a sequence of vectors, then

f

(
n

∑
i=1

pixi

)
�

n

∑
i=1

pi f (xi). (1)

In [5] the authors have investigated the differences J( f , I, p,x) = ∑
i∈I

pi f (xi)−

PI f

(
1
PI
∑
i∈I

pixi

)
as a functional depending on a function f , a set of indices I , vec-

tors x = {xi}i∈I and weights p = {pi}i∈I with a constraint PI =∑
i∈I

pi �= 0. The next

refinement of (1) was proven in [5] as a consequence of its Theorem 2.1, part (ii) .

COROLLARY 1. Let f : C → R be a convex function on a convex subset C of a

real linear space X , pi > 0 , and xi ∈C. If
n

∑
i=1

pi = 1, then

n

∑
i=1

pi f (xi)− f

(
n

∑
i=1

pixi

)
� max

1�i< j�n

{
pi f (xi)+ p j f (x j)− (pi + p j) f

(
pixi + p jx j

pi + p j

)}
� 0. (2)
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In [4] the authors obtained a refinement for a convex function in a particular case
of its domain.

THEOREM 1. Let C be a convex subset of a linear space X and 0 ∈C. Suppose
f : C → R is a convex function on C, x j ∈C, pi ∈ (0,1), i ∈ In = {1, . . . ,n},n � 2 and
∑n

i=1 pi = 1 .

If
n

∑
i=1

pixi = 0 , then
pk

pk −1
xk ∈C for all k ∈ In and

n

∑
i=1

pi f (xi) � max
k∈In

[
pk f (xk)+ (1− pk) f

(
pk

pk −1
· xk

)]

� min
k∈In

[
pk f (xk)+ (1− pk) f

(
pk

pk −1
· xk

)]
� f (0).

In [3] the author refined Jensen’s inequality representing the consequence of ex-
tracting the single element from {x1, . . . ,xn} together with its weight.

THEOREM 2. Let f : C → R be a convex function defined on the convex subset C

of the linear space X , xi ∈C, pi > 0, i ∈ In = {1, . . . ,n},n � 2 with
n

∑
i=1

pi = 1 . Then

f

(
n

∑
i=1

pixi

)
� min

k∈In

[
(1− pk) f

(
∑n

i=1 pixi − pkxk

1− pk

)
+ pk f (xk)

]

� 1
n

[
n

∑
k=1

(1− pk) f

(
∑n

i=1 pixi− pkxk

1− pk

)
+

n

∑
k=1

pk f (xk)

]

� max
k∈In

[
(1− pk) f

(
∑n

i=1 pixi − pkxk

1− pk

)
+ pk f (xk)

]

�
n

∑
j=1

pi f (xi).

In particular, for pk = 1
n , k = 1, . . . ,n, we have the following inequalities:

f

(
1
n

n

∑
i=1

xi

)
� 1

n
min
k∈In

[
(n−1) · f

(
∑n

i=1 xi − xk

n−1

)
+ f (xk)

]

� 1
n2

[
(n−1)

n

∑
k=1

f

(
∑n

i=1 xi − xk

n−1

)
+

n

∑
j=1

f (x j)

]

� 1
n

max
k∈In

[
(n−1) · f

(
∑i∈I xi

n−1

)
+ f (xk)

]

� 1
n

n

∑
i=1

f (xi).
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The result given in Theorem 2 can be interpreted as an extension of that from
Theorem 1 for the case ∑n

i=1 pixi �= 0. In this paper we give some generalizations of
the results given above and as a consequence, (2) is generalized considering it in the
manner

f

(
n

∑
i=1

pixi

)
� max

1�i< j�n

{
(pi + p j) f

(
pixi + p jx j

pi + p j

)
+ ∑

k �=i, j

pk f (xk)

}
�

n

∑
i=1

pi f (xi).

2. General Result

The refinement in Theorem 2 is due to the separation In = (In \ {xi})∪{xi} . This
separation can be generalized in many different ways. Next refinements are conse-
quences of such generalizations. The main result is given bellow.

THEOREM 2.1. Let f :C → R be a convex function on the convex subset C of the

linear space X , xi ∈C, pi > 0, i ∈ In = {1, . . . ,n},n � 3 with
n

∑
i=1

pi = 1 .

If I = {I ⊂ In, I �= In, |I| � 2} , then

f

(
n

∑
i=1

pixi

)
� min

I

[
PI f

(
∑i∈I pixi

PI

)
+ ∑

i∈In\I
pi f (xi)

]

� 1
2n−n−2

[
∑
I⊂In

PI f

(
∑i∈I pixi

PI

)
+
(
2n−1−n

) n

∑
i=1

pi f (xi)

]

� max
I

[
PI f

(
∑i∈I pixi

PI

)
+ ∑

i∈In\I
pi f (xi)

]

�
n

∑
i=1

pi f (xi).

In particular,

f

(
1
n

n

∑
i=1

xi

)
� 1

n
min
I

[
|I| f

(
∑i∈I xi

|I|
)

+ ∑
i∈In\I

f (xi)

]

� 1
n
· 1
2n−n−2

[
∑
I⊂In

|I| f

(
∑i∈I xi

|I|
)

+
(
2n−1−n

) n

∑
i=1

f (xi)

]

� 1
n

max
I

[
|I| f

(
∑i∈I xi

|I|
)

+ ∑
i∈In\I

f (xi)

]

� 1
n

n

∑
i=1

f (xi).
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Proof. Take a separation In = I∪(In\ I) , name J = In\ I and note that PI +PJ = 1.

Do the further estimation using Jensen’s inequality (1) twice, by observing ∑
i∈J

pi

PJ
= 1 :

f

(
n

∑
i=1

pixi

)
= f

(
PI · ∑i∈I pixi

PI
+PJ · ∑i∈J pixi

PJ

)

� PI f

(
∑i∈I pixi

PI

)
+PJ · f

(
∑i∈J pixi

PJ

)

� PI f

(
∑i∈I pixi

PI

)
+∑

i∈J
pi f (xi)

� ∑
i∈I

pi f (xi)+∑
i∈J

pi f (xi)

=
n

∑
i=1

pi f (xi).

For further estimation we extract the following inequality which holds for every
I ⊆ In :

f

(
n

∑
i=1

pixi

)
� PI f

(
∑i∈I pixi

PI

)
+ ∑

i∈In\I
pi f (xi) �

n

∑
i=1

pi f (xi). (3)

The statement in the Theorem follows from taking the min and max of the

AI = PI f

(
∑i∈I pixi

PI

)
+ ∑

i∈In\I
pi f (xi),

over the every I ⊂ In such that |I| � 2. We use the fact

min
I⊂In

AI � 1
N ∑

I⊂In

AI � max
I⊂In

AI , (4)

where N = 2n−n−2 represents the number of subsets from In except /0 , the base set
In and the subsets of the kind |I| = 1. Taking any of these subsets, the refinement is
shutting down.

Note that ∑
I⊂In

∑
i∈In\I

pi f (xi)=
(
2n−1− (n−1)−1

) n

∑
i=1

pi f (xi) , because every pi f (xi)

appears as many times as there is a subset I ⊂ In, |I|� 2, that doesn’t contain the index
i . �

In the next theorem, subsets of equivalent cardinality are observed.

THEOREM 2.2. Let f : C → R be a convex function on the convex subset C of

the linear space X , xi ∈C, pi > 0, i ∈ In = {1, . . . ,n},n � 3 with
n

∑
i=1

pi = 1 . For every
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subset I ⊂ In such that |I| = s � 2 , we can state the following:

f

(
n

∑
i=1

pixi

)
� min

|I|=s

[
PI f

(
∑i∈I pixi

PI

)
+ ∑

i∈In\I
pi f (xi)

]

� 1(n
s

)
[
∑
|I|=s

PI f

(
∑i∈I pixi

PI

)
+
(

n−1
s

) n

∑
i=1

pi f (xi)

]

� max
|I|=s

[
PI f

(
∑i∈I pixi

PI

)
+ ∑

i∈In\I
pi f (xi)

]

�
n

∑
i=1

pi f (xi).

In particular:

f

(
1
n

n

∑
i=1

xi

)
� 1

n
min
|I|=s

[
s · f

(
∑i∈I xi

s

)
+ ∑

i∈In\I
f (xi)

]

� 1(n
s

)
[

s
n ∑|I|=s

f

(
∑i∈I xi

s

)
+
(

n−1
s

)
1
n

n

∑
i=1

f (xi)

]

� 1
n

max
|I|=s

[
s · f

(
∑i∈I xi

s

)
+ ∑

i∈In\I
f (xi)

]

� 1
n

n

∑
i=1

f (xi).

Proof. The statement in the Theorem follows from taking the min and max of the
middle side of (3), after choosing every subset I ⊂ In , such that |I| = s,2 � s < n.

We use the fact mentioned in (4), where N =
(

n
s

)
represents the number of sub-

sets I ⊂ In, |I| = s. Note that ∑
I⊂In,|I|=s

∑
i∈In\I

pi f (xi) =
[(

n
s

)
−
(

n−1
s−1

)] n

∑
i=1

pi f (xi) ,

because every pi f (xi) in the double sum appears as many times as there are subsets
I ⊂ In , |I| = s � 2 such that i /∈ I . The subset I ⊂ In , with |I| = s and i ∈ I is
constructed by adding s− 1 elements from the n− 1 available once. Algebraically,[(

n
s

)
−
(

n−1
s−1

)] n

∑
i=1

pi f (xi) =
(

n−1
s

) n

∑
i=1

pi f (xi). �

The result from [3] is here obtained for s = n−1. Actually,

min
I⊂In ,|I|=n−1

AI = min
k∈In

Ak, max
I⊂In,|I|=n−1

AI = max
k∈In

Ak

and ∑I⊂In,|I|=n−1 AI = ∑n
k=1 Ak , where Ak = (1− pk) f

(
∑n

i=1 pixi−pkxk
(1−pk)

)
+ pk f (xk).
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The inequalities from Theorem 2.2 can be rewritten as those in Theorem 2.

Every partition of In = {1, . . . ,n} gives the statement obtained in the next Theo-
rem.

THEOREM 2.3. Let f : C → R be a convex function on the convex subset C of

the linear space X , xi ∈C, pi ∈ (0,1), i ∈ In = {1, . . . ,n} , n � 4 and
n

∑
i=1

pi = 1 . For

every integer k , 4 � 2k � n there is a partition I1 ∪ . . .∪ Ik = In with 2 � |I j| < n for
j = 1, . . . ,k .

Then

f

(
n

∑
i=1

pixi

)
� min

j=1,...,k

⎡
⎣PIj f

(
∑i∈Ij pixi

PIj

)
+ ∑

i∈In\Ij
pi f (xi)

⎤
⎦

� 1
k

[
k

∑
j=1

PIj f

(
∑i∈Ij pixi

PIj

)
+(k−1)

n

∑
i=1

pi f (xi)

]

� max
j=1,...,k

⎡
⎣PIj f

(
∑i∈Ij pixi

PIj

)
+ ∑

i∈In\Ij
pi f (xi)

⎤
⎦

�
n

∑
i=1

pi f (xi)

holds.

Proof. Every subset I j ⊂ In induced its complement In \ I j and (3) is valid with

the substitutions: I → I j . For AIj = PIj f

(
∑i∈I j

pixi

PI

)
+∑i∈In\Ij pi f (xi) we take the min

and max over j = 1, ...,k and use the fact that

min
j=1,...,k

AIj � 1
k

k

∑
j=1

AIj � max
j=1,...,k

AIj .

Note:
k

∑
j=1

∑
i∈In\Ij

pi f (xi) = (k−1)
n

∑
i=1

pi f (xi). �

Theorem 2.1 ensures the next refinement of (2).

COROLLARY 2.1. Under the conditions of Theorem 2.1, we obtain

n

∑
i=1

pi f (xi)− f

(
n

∑
i=1

pixi

)
� max

I

[
∑
i∈I

pi f (xi)−PI f

(
∑i∈I pixi

PI

)]
� 0.
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In particular, for pi = 1
n , i ∈ In :

n

∑
i=1

f (xi)−n · f

(
1
n

n

∑
i=1

xi

)
� max

I

[
∑
i∈I

f (xi)−|I| · f

(
∑i∈I xi

|I|
)]

.

Proof. Subtracting
n

∑
i=1

pi f (xi) from every side of (3),we obtain that for every

choice of I ⊆ In = {1, . . . ,n} there is a statement:

n

∑
i=1

pi f (xi)− f

(
n

∑
i=1

pixi

)
�∑

i∈I
pi f (xi)−PI f

(
∑i∈I pixi

PI

)
� 0. (5)

Taking the max of the right side in (5) for I ⊂ In, |I| � 2, the proof is making through.
Similarly, taking pi = 1

n , we obtain the second inequality. �

The main result from [4] given in Theorem 1 is generalized and refined as a con-
sequence of Theorem 2.1.

COROLLARY 2.2. Conditions are taken from Theorem 2.1. Suppose 0 ∈ C. For
J ⊂ In note PJ =∑

i∈J
pi . If

n

∑
i=1

pixi = 0, (6)

then

n

∑
i=1

pi f (xi) � max
0<|J|<n−1

[
∑
i∈J

pi f (xi)+ (1−PJ) f

(
∑i∈J pixi

PJ −1

)]
� f (0).

In particular, for pi = 1
n , there are

n

∑
i=1

f (xi) � max
0<|J|<n−1

[
∑
i∈J

f (xi)+ (n−|J|) f

(
∑i∈J xi

|J|−n

)]
� n f (0),

Proof. We substitute condition (6) in (3), observing it for J = In\I .

f (0) � (1−PIn\I) f

(−∑i∈In\I pixi

1−PIn\I

)
+ ∑

i∈In\I
pi f (xi) �

n

∑
i=1

pi f (xi),

and take the max for 1 � |In \ I|� n−2. �
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3. Applications

Some convex functions admit consequences of the results that have been obtained
above.

APPLICATION 1. If (X , || ||) is a normed linear space, then the function f : X→R

defined by f (x) = ||x||p is a convex function for p � 1 .

Taking xi ∈ X , pi > 0, i ∈ In = {1, . . . ,n},n > 2 with
n

∑
i=1

pi = 1, we get the next

chain of inequalities for I ⊂ In such that |I| � 2 .∥∥∥∥∥
n

∑
i=1

pixi

∥∥∥∥∥
p

� min
I

[
P1−p

I

∥∥∥∥∥∑i∈I
pixi

∥∥∥∥∥
p

+ ∑
i∈In\I

pi‖xi‖p

]

� 1
2n−n−2

[
∑
I

P1−p
I

∥∥∥∥∥∑i∈I

pixi

∥∥∥∥∥
p

+(2n−1−n)
n

∑
i=1

pi‖xi‖p

]

� max
I

[
P1−p

I

∥∥∥∥∥∑i∈I

pixi

∥∥∥∥∥
p

+ ∑
i∈In\I

pi‖xi‖p

]

�
n

∑
i=1

pi‖xi‖p.

In particular, the un-weighted refinement is given as

n1−p

∥∥∥∥∥
n

∑
i=1

xi

∥∥∥∥∥
p

� min
I

[
|I|1−p

∥∥∥∥∥∑i∈I
xi

∥∥∥∥∥
p

+ ∑
i∈In\I

‖xi‖p

]

� 1
2n−n−2

·
[
∑
I

|I|1−p

∥∥∥∥∥∑i∈I

xi

∥∥∥∥∥
p

+(2n−1−n)
n

∑
i=1

‖xi‖p

]

� max
I

[
|I|1−p

∥∥∥∥∥∑i∈I
xi

∥∥∥∥∥
p

+ ∑
i∈In\I

‖xi‖p

]

�
n

∑
i=1

‖xi‖p.

The arithmetic mean-geometric mean inequality is well known in the literature. If

xi, pi > 0, i ∈ In = {1, . . . ,n} and
n

∑
i=1

pi = 1, then

n

∑
j=1

p jx j �
n

∏
j=1

x
p j
j .

The equality holds in the case x1 = x2 = . . . = xn.
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APPLICATION 2. Let xi, pi > 0 , i ∈ In = {1, . . . ,n},n � 3, with
n

∑
i=1

pi = 1. Ap-

plying the concave function f : (0,∞) → R , defined as f (x) = lnx , we are obtaining
the next chain of inequalities. If I ⊂ In and |I| � 2 , then

n

∑
i=1

pixi � max
I

⎡
⎣(∑

i∈I

pixi

PI

)PI

· ∏
i∈In\I

xpi
i

⎤
⎦

�

⎡
⎣∏

I

(
∑
i∈I

pixi

PI

)PI

·
(

n

∏
i=1

xpi
i

)2n−1−n
⎤
⎦

1
2n−n−2

� min
I

⎡
⎣(∑

i∈I

pixi

PI

)PI

· ∏
i∈In\I

xpi
i

⎤
⎦

�
n

∏
i=1

xpi
i

In particular, for the un-weighted case:

1
n

n

∑
i=1

xi � max
I

⎡
⎣
(

1
|I|∑i∈I

xi

)|I|
· ∏
i∈In\I

xi

⎤
⎦

1
n

�

⎡
⎣∏

I

(
1
|I|∑i∈I

xi

)|I|
·
(

n

∏
i=1

xi

)2n−1−n
⎤
⎦

1
n(2n−n−2)

� min
I

⎡
⎣( 1

|I|∑i∈I
xi

)|I|
· ∏
i∈In\I

xi

⎤
⎦

1
n

�
(

n

∏
i=1

xi

) 1
n
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