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ASYMPTOTIC ESTIMATES FOR APPROXIMATION NUMBERS
OF THE HARDY OPERATOR IN O-BANACH SPACES
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Abstract. The asymptotic estimates of the approximation numbers of the weighted Hardy oper-
ator are given.

1. Introduction

Let #(X,Y) denote the set of all linear bounded operators 7 : X — Y acting from
a Banach space X into a g-Banach space Y, where 0 < ¢ < 1 and the triangle inequality
has the form ||x+y||} < ||lx[|7 + [|y[|7 forall x,y €Y.

For any positive integer n, the n-th approximation number of T € A(X,Y) is
defined by

an(T) =inf{||T — L||x—y : L€ B(X,Y), rankL <n—1}, rankL=dim%Z(L).

The approximation numbers have the following properties: for S,7 € #(X,Y)
and Re A(Y,Z)
(i) ITII=a((T) > ax)(T) > >0;
(ii) antm—1(RS) < an(R)an(S), n,m €N,
iii) If ¥ is g-Banach space (0 <g < 1),then a; (T +S) <ap(T)+an(S), n,m e
N.

In recent years, a significant amount of attention was paid to the study of the
approximation numbers of the Hardy operator T : L,(0,00) — Ly(0,%0), 1 < p,q <o
in Lebesgue spaces on the semiaxis. This direction of research was started in the papers
[1-2] with asymptotic estimates of a,(T), as n — oo, for T : L,(0,00) — L,(0,00),
1 < p < oo, continued in [3] for T : L,(0,00) — L,(0,%0), 1 < p,q < oo, and received
a substantial development in the recent monograph [4]. The main results of [4] was
extended for the one weight Riemann-Liouville operator in [5].
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The present paper supplements investigations of [1-5] for the operator 7 : L,,(0,0) —

Lq(07°°)
%) /0 F()dy (1)

in a new case 0 < g < 1 < p < e, where the weight function v(x) supposed to be
non-negative and measurable on (0, ).

2. Preliminary Lemmas
First we receive estimates of the approximation numbers on a finite interval.
1
Throughout the paper we suppose that 0 < g < 1 < p < e and define — :=1—
r

1 1
—+ —. Notethat 0 <r < 1.
P q

LEMMA 1. Let v € Ly(I). Then the following estimate holds on an interval
I=(a,b) C(0,00)
1T flle,m < 1|\/v W, 11,y forall f € Ly(I).

Proof. Follows by Holder’s inequality with p and p’. O

Denote J,(I) := \I|1/pl||vHLq(1). In Lemmas 2-3 we prove the properties of J,(I),
when I C (0,%0) is a finite interval. A disjoint partition of an interval I C (0,e) means
a decomposition I = | | I; with non-overlapping interiors of the intervals {I;} C I.

LEMMA 2. (i) For v € Ly(I) and a disjoint partition I = | [{_, I the following
inequality holds:

N 1/r
Samy | <a. @)
k=1
(ii) For vi, v2 € Ly(I) and a disjoint partition I = |_|sz1 I, we have
N
’ me (B)" = X I ()" ‘<J|v1 ()" (3)
k=1

Proof. Applying Holder’s inequality with parameters pTI and %, we receive

N N /PN r/q N r
>l < (zuk) (2 / v(t)th> =Jv<uzk> =75(1)
k=1 k=1 =11k k=1

For the proof of (3) we apply an elementary inequality | ||x||— ||y||F| < |lx— || in case
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of 0 < r < 1. Then we have

N N N
PRAIVES WIS < S ey 0 = 12l e
k=1 k=1 k=1
N
< R il = ol 2,0
k=1
N

< Y vy =val e, a0

~
Il
—_

I
M=

N
|77 (|vy — vall7, ) = 2 v vl ()"
k=1

\vlfvzl(l)r' U

N
=T

LEMMA 3. Let I C (0,0) be a finite interval, v € L4(I). Then
1/r
i) vlle,m = irrlf (Z JV(Ik)r> , where the infimum is taken over all dis-
k=1

joint partitions T ={I,,...,Iy} of .
(ii) for every n € N there exists such a disjoint partition t* = {I},I;,...I;} of I
that

Jv(lf) :JV(I;) = :JV(I:;)'

Proof. Let T ={I,L,,...Iy} be a disjoint partition of I. By Holder’s inequality
with parameters £ and 4, we receive

M =3 fm<zmw(4wwﬂwzihwr

k=1

1/r
and the inequality ||v||z, ;) 1nf (2 Jo(I) ) follows. For the proof of the re-

verse inequality observe that the equality (i) holds for step functions 1 () = 221:1 oy x, (1),
oy =>0:

N N
/
W) =Y, o Il 107 = Y af 1kl = Imlly,
1 k=1 k=1

M=

k

Given € >0 and v € L,(I) let a function 17 > 0 be chosen such that the inequality

v =nll,a) < e]I|~1/7" holds which by Holder’s inequality implies ||v — 1 Iy < e
By virtue of inequality (ii) of Lemma 2 we have

N N
D) = X )| e (1) <€
k=1 k=1
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Thus,

M=
=~
=

N
)" < Y In ()" +€" = Inll ) + " < vllgy) +2¢"
k=1

k=1

and (i) follows by taking the infimum and tending € — 0.
To show (ii) we fix n € N and define the function ® on a set of n-partitions of
interval I by the formula

(1) := 1121]?2(”] V(L) — 1mkan v(Iy), t={hL,....L,}.

The function ®(7) continuously depends on the end-points of the intervals defining
a partition 7 of the interval /. Hence, there is a partition 7*, |I;| > 0, on which the
function ® reaches its minimal value. We show that ®;, = ®(7*) = 0.

Suppose, that there exists a partition 7/ = {I,’,...,I,’} # % on which the function
®(1) reaches the minimal value, but @/ . = ®(7’) > 0. Then such a number k €
{1,...n} canbe found, that J, (Ix,") = max;<x<, J, (It"), admitting J, (Ix,") > Jy(lgy11)-

If we pertubate |I,’| by a small enough & > 0, for example |I,| = |xk, —xk,—1] >
|(xg, —0) —xg,—1|, then for the new partition 7/ = {I,”,... 1,”} # 7, there exist such
a number ki € {1,...n} that J,(I,") = maxi<<, Ju(l") and  Jy(Iy,") > Jo(I,").
Then the new partition 7” is such that ®(7’) > ®(7”). Having repeated this procedure,
we receive a new partition 77 : ®(7') > ®(7”) > ®(7"). As a result, it is possible
to build new partitions on which function @ accept smaller value, hence, any partition
7’ for which ®(7’) > 0, cannot be minimal. Hence, @iy = ®(7*) = 0 with J,(I}) =
J(I;) = ... =Jy(I;) and the proof of lemma 3 is completed. O

Let I=| | I; be a representation of the interval I C (0,o) as the union of pairwise
disjoint finite intervals I;. It is supposed also, that v € L, (Ix).

We define projectors Py : L (1) — L(I) and Py : Ly(I) — L, (I) according to the
formulae

. 1 X
P‘f(t)zgm( 1) ad 5 =ia-;,

where LS(I) = PS(Ly(I)) ={f € L,(I) : f(t) = ke Xy (t), o € R} and
(1) = {feLp( ).f,k F)dy =0, ke%f},

Thus, the operator T is decomposed into the sum 7' = T P° + TP¢. Observe that
[Pl <2, [|P|| < 1. If suppf C I and f € Ly(I), then Tf(x) =0, if x & I = (ax, bx)
since for x > by, we have T f(x) = v(x) [; f(y)dy = 0. This implies, that in the sub-
space L, (I) the disjunct property

”TfHZq(]) = 2 ”TfHZq([ ) aS L;(I) (4)
ket *

holds. The following lemma specifies the norm value of operator 7" when it is narrowed
to the subspace L, (I) and plays a key role in obtaining of further estimations.
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LEMMA 4. Let I C (0,00), T={li}ker, I=|ler Ik and v € Ly(Ix). Then for
any function f € L, (I;7)

1/r—1
1T fllzy) < ( > Jv(lk)r/(l_r)> 1Al (5)

ket

Proof. Applying Holder’s inequality with parameters %, =g and lemma 1, we
have

ITAI7, 0= 2 ITCuDIT, gy < X S SN
ket ket
q(1-r)/r a/p
< ( > Jv(1k>’/“’)> ( > mfllﬁ)
ket ket

ket

q(1-r)/r
- ( Y Jvuk)f/“-’)) A

LEMMA 5. Let I C (0,%0), T = {Li}rers I =exwlk, v € Ly(Ix) and P° :
Ly(I) — L, (I,7). Let a sequence of natural numbers {ni} e be such that

n= Y (m—1)+1<oco. Then
ket

1/r—1
an(TP°) <2 < Z nkr/(lr)Jv(Ik)r/(l—r)> ) (6)

ket

Proof. Since n =Yy (ny —1)+ 1 < oo only a finite number of n; can be distinct
from 1. For such ny # 1, according to lemma 3 we divide corresponding intervals I
into ny intervals Ij |, ..., Iy, ~such that Jy(Iy ;) = ... = J(I,, ). If ng =1, we assume
Ity = Ix. As aresult, a new partition 7" = {I; ; : j <ng, ke &} of the interval
is constructed. By virtue of the formula (2) we have

e 1/r
(Z T (Li‘,Q,»)) <AL,
j=1

and (niJ] (I j)) tr < Jy(Iy) which implies the inequality
Bl ) < ). (7)
Now we have P{(L,(I)) = L, (I,7*) and P{(Ly(I)) = L;,(I,7"). Hence,

P°— P°P° = P°P° = P°, (8)
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rank (PCP°) < Y, (mg—1)=n—1. 9)
ket
Using (9), lemma 4 and (7), we find
1

[(TP° =TPP) fll,a) = IT (P )|z, ) ( > > ) ') 122 fllz, )

ke j<ny

ket

1/r—1
1--L r_
<2 ( 3 n, 1r]v(lk)1r> 1F e,

. 1/r—1
=2 ( D n,i_'Jv(lk)ﬁ> £z, )

ket
for all functions f € L,(I). It follows from formula (9) that
rank (TP P°) < rank (P{P°) <n—1.
Then
an(TP°) = inf  ||TP°—TP°P|
rank (TP{P°)<n—1

and

1/r—1
an(TP°) <2 < Z nkr/(lr)Jv(Ik)r/(l—r)> ) 0

ket

3. Main results

THEOREM 1. Let I C (0,%0), T={li}kcr, I=ler Ik, v € Ly(Ik) for any k €
A and P°: Ly(I) — L)(1,7). Then

1/r
a,(TP°) <2n~ (2] Ik> ) (10)
ket

Proof. Let Yyc v Jy(I)" < oo. For k € # we choose such n; € N, that the in-
equality
Jo(L)"

n—1l<n o—————
Zjen ()

X Mg
holds. Then

r/(1=r)
nk—’/(l—”)J( )r/(l r)<n—r/1 r) (Z _] ) Jv(lk)r

jexX

and by lemma 5 the estimate (10) follows. [
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THEOREM 2. Let I C (0,%0) be a finite interval and let v € Ly(I). Then

limsupna,(T) < 2||v||z,)- (11)

n—oo

Proof. Given € > 0 by lemma 3 there exist a partition T = {I,,...Iy} of inter-
val I such that

N 1/r
<va(1k)r> < (L+)vll, - (12)
k=1

Let T =TP°+ TP, where P°: L,(I) — L,(I,7), P°:Ly(I) — L}(I,7). Note, that
rank (TP°) < N and ay1(TP¢) =0. Using the property of the approximation numbers,
(12) and theorem 1, we receive

1/r
limsupna,(T) < limsupna,(TP°) (2] () ) <21+ )|Vl

n—oo n—oo

Then (11) follows, when € — 0. [

To obtain the upper estimaes for the approximation numbers of the Hardy operator
on the semiaxis we need the following extension of the result from [6] about the a-
numbers of a diagonal operator.

Let 0<g<1<p<oo, %:§+1%, =3

<=

We consider the diagonal operator D : £, — £,, which is given by
D{xk}:{ckxk}, x:{xk}eﬁp, oL=202>..20.

Applying Holder’s inequality with parameters 51_7 , ﬁ we obtain

IPxlle, (37 o)/
HDH[p_’éq p =su oo l/p
240 Hx||/ x#0 (21;1 Xk |?)

and

- /s
1Dlg,—e, < (2 0;‘?) < oo, (13)

k=1
We define the operator P, : £, — £, by

Po(x1,%0, s Xy X 15 -o2) = (X1,X2,,%, 0,0, ...)
and put L = DP,_. In this case rankL < n, and we find

- 1/s
an(D: Ly —Ly) <||D—Lllg, e, < (2 G,f) < oo, (14)

k>n
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THEOREM 3. Let 0 < g<l<p <o, L= é—f— 57 and the diagonal operator

D:l,—{ly, D{x} ={owxr}, x ={xx} € £, is defined by a sequence of real numbers
{0} suchthat 6y > 0y > ... > 0. Then

supn?al(D) = |[{a(D)} .. < Cl{o}I!_- (15)

Proof. In the special case where o; = k~'/" we shall denote the diagonal operator
D,, which is given by D,x; = k~'/"x;. Applying the inequality (14) we get

| a/s | q
4q i - — —-q
al(D,) < <k>§n kx/r> <C (nl/rl/s) Cn™9.

a}(D) < sup |oxk!"|4al(Dy) < [[{ow}If,_ad(Dy),
. :

Hence,

and we conclude

supn®aji(D) = |{a}(D)} ¢, .. < Cll{oi}ll{ . O
n

Set Ay = [25, 2801 |Ag]'/P = 2%/7' | and introduce the following notations

Il = ( [ weras)” b= (kgz J(Aky) ’

where {§; }i>0 and {8, }x<o are decreasing and increasing rearrangements of & :=
J(Ax). Using Holder’s inequality and properties of Lorentz spaces we have

= [{dcHle,. = Sup(k+ DY 8; +suplk|"7 8, (16)
k<0

Wl <[Vl Ve < eyl

Let subspaces L, ((0,%),A) and L5 ((0,%0),A) be constructed with respect to the
partition (0,00) = UkeZAk and Py : L,(0 ,oo) — L7(0,00), P : Lp(0,00) — L7,(0,0) be
the projectors corresponding to this partition. Then we have representatlon T TP°+
TP° and by property of the approximation numbers we have the following estimate

a3, (T) < aj(TP°) +aj(TF). (17)
LEMMA 6. If 0 < g <1< p <oo, then the inequality
supnfal(TP°) < 29|v|?

holds.

Proof. The proof follows by application of theorem 1 with I = (0,e0) and with
partition 7= {Ag}rez. O



ASYMPTOTIC ESTIMATES FOR APPROXIMATION NUMBERS OF THE HARDY OPERATOR 823

LEMMA 7. Let 0 < g <1< p < oo, then

supnfal(TP°) < c|v|i.
n

Proof. Let the map ¢, : [, — L;,(0,) is defined by
Op Itrez — X el Ak TP xa ().
kez

Then
TP, 1, — Lg(0,00).

If t € Ag, we have representation

(TP @y x)() = v(O)xel A ~1/P (2 = 2 +v(t) 3 xj[Aj /7 = Ryx(2) + Rox(r).
Jj<k

To estimate the first summand we define diagonal operator D : £, — ¢, by the
formula D{x;} = {&xi}, where & = J,(Ax), k € Z. Now we define the operator Y :
Ly — L4(0,00) by the formula

=) X8k

keZ

v(r)(r —2%)
VIl (a0 |Ak|
that ||gkllz, < 1 and [[Y[s,—r, < 1. For x = {x; }xez € {4 and ¢ >0 we obtain

where x = {x; }rez € {4, and the functions g (¢) := xa (1), t>0. Note,

(YDx)(t Zxk\Ak\l/p VIl (a0 85 (1) = X xelAe|™ VP (e —2MY(t) ya (1) = Rux(t).
kEZ kEZ
Thus, Ry =YD and
an(R1) < [|Y[|an(D) < an(D).
s
Now we define the operator V : £, — £, by the formula Vx:= {Zj<k X :i:}—l/i, }

‘ €Z

By the Young inequality we obtain

IV, = i

2 Xj o~ (k=j)/p'

k—j>0

o 1
< — <
=X 1:21 21/p ||XHP =~ CHXHP

P P

Also, we introduce the operator W, : £, — L;(0,0) by
V() 2, (1)

HVXAk”lI '

Wy (x0)(1) :=

As aresult we have Ry = W, DV, hence,

an(Rz) < [|Wyllan(D)|[V]| < Can(D)
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and
o1 (TP°) < Can(D). (18)
Since D=D"+ D" and a (D) < al(D")+al(D™), than applying theorem 3 to

diagonal operators D" and D~, formed by {&}i>0 and {& }x<o, respectively, we
deduce

(2n—1)%a3, (D) < cysupn?al(DY) + casupn?al(D™)
n n
<Cil{8ezol? + Call{dibicollf,.. < Y.,

from which
supn?al(D) < Clv|l., < Cv[].
n

With similar arguments in view of inequality (18) we prove the estimation

supn?al(TS) < c|v|d. O
n

From the proof of lemmas 6-7 and inequality (18) we get
(2n—1)%ad _(T) <49 (supnqaZ(TPo) + supn‘%zZ(TP“)) <cly)d. (19)

Our main result is the following.

THEOREM 4. Let 0 < g <1< p <o, andlet T : L,(0,00) = L,(0,00). Then,
for some constants cy, ¢, that are either absolute or dependent only on p and q, the
following estimates hold:

supna,(T) < c1|v|r (20)
n

andif |v|, <eo, then

limsup na,(T) < ¢z (/Ow v(x)|’dx> l/r. (21)

n—oo

Proof. The proof of inequality (20) follows from lemmas 6-7 and inequality (19).
Let’s prove the second part of the theorem. If |v|, < oo, then for a given € > 0 we
choose a natural number K so that

1/r

/ r/
LEKZI"/P (/AkV(s)qu) q] <e.

On finite interval 7 = [27X,2K] we define the function vy :=v- ¥; and put v, := v —vy,
then the operator T =T, +T,,. Since [va| < €, then (17) implies

supnial(T,,) < c?|val? < el
n



ASYMPTOTIC ESTIMATES FOR APPROXIMATION NUMBERS OF THE HARDY OPERATOR 825

On the other hand, v; € L,(I), and it is possible to apply theorem 2 to operator T, .
Thus, according to the property (iii) of the approximation numbers we obtain

(2n—1)%a3, |(T) < (2n— 1) (af(Ty,) + af(Ts,))

<21 (rl‘IaZ(Tvl )+ supnqaZ(TvZ)) <29 (n9al(T,, ) +c7¢€9).

1 1 1 1
Applying elementary inequality (a+b)7 <27 (aﬁ + lﬁ) ,0<g <1, we get

(2n—1)ag, 1(T) <29 (nan(T,) + ce)

: 1+l 1+l
limsupna,(T) <27 |[vi|lg, ) +ce <27 [|v|L, +ce.

n—oo

Limiting process with € — 0 completes the proof of theorem 4. [
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