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on the occasion of his 60th birthday

Abstract. The asymptotic estimates of the approximation numbers of the weighted Hardy oper-
ator are given.

1. Introduction

Let B(X ,Y ) denote the set of all linear bounded operators T : X →Y acting from
a Banach space X into a q -Banach space Y, where 0< q � 1 and the triangle inequality
has the form ‖x+ y‖q

Y � ‖x‖q
Y +‖y‖q

Y for all x,y ∈ Y.
For any positive integer n , the n-th approximation number of T ∈ B(X ,Y ) is

defined by

an(T ) = inf{‖T −L‖X→Y : L ∈ B(X ,Y ), rankL � n−1}, rankL = dimR(L).

The approximation numbers have the following properties: for S,T ∈ B(X ,Y )
and R ∈ B(Y,Z)
(i) ‖T‖ = a1(T ) � a2(T ) � · · · � 0;
(ii) an+m−1(RS) � an(R)am(S), n,m ∈ N,
(iii) If Y is q-Banach space (0 < q � 1), then aq

n+m−1(T +S) � aq
n(T )+aq

m(S), n,m ∈
N.

In recent years, a significant amount of attention was paid to the study of the
approximation numbers of the Hardy operator T : Lp(0,∞) → Lq(0,∞), 1 < p,q < ∞
in Lebesgue spaces on the semiaxis. This direction of research was started in the papers
[1-2] with asymptotic estimates of an(T ), as n → ∞, for T : Lp(0,∞) → Lp(0,∞),
1 < p < ∞, continued in [3] for T : Lp(0,∞) → Lq(0,∞), 1 < p,q < ∞, and received
a substantial development in the recent monograph [4]. The main results of [4] was
extended for the one weight Riemann-Liouville operator in [5].
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The present paper supplements investigations of [1-5] for the operator T : Lp(0,∞)→
Lq(0,∞)

T f (x) := v(x)
∫ x

0
f (y)dy (1)

in a new case 0 < q < 1 < p < ∞, where the weight function v(x) supposed to be
non-negative and measurable on (0,∞).

2. Preliminary Lemmas

First we receive estimates of the approximation numbers on a finite interval.

Throughout the paper we suppose that 0 < q < 1 < p < ∞ and define
1
r

:= 1−
1
p

+
1
q
. Note that 0 < r < 1.

LEMMA 1. Let v ∈ Lq(I). Then the following estimate holds on an interval
I = (a,b) ⊆ (0,∞)

‖T f‖Lq(I) � |I|1/p′‖v‖Lq(I) ‖ f‖Lp(I) for all f ∈ Lp(I).

Proof. Follows by Hölder’s inequality with p and p′. �

Denote Jv(I) := |I|1/p′‖v‖Lq(I). In Lemmas 2-3 we prove the properties of Jv(I),
when I ⊂ (0,∞) is a finite interval. A disjoint partition of an interval I ⊂ (0,∞) means
a decomposition I =

⊔N
k=1 Ik with non-overlapping interiors of the intervals {Ik} ⊆ I.

LEMMA 2. (i) For v ∈ Lq(I) and a disjoint partition I =
⊔N

k=1 Ik the following
inequality holds: (

N

∑
k=1

Jv(Ik)r

)1/r

� Jv(I). (2)

(ii) For v1, v2 ∈ Lq(I) and a disjoint partition I =
⊔N

k=1 Ik we have

∣∣∣ N

∑
k=1

Jv1(Ik)
r −

N

∑
k=1

Jv2(Ik)
r
∣∣∣� J|v1−v2|(I)

r. (3)

Proof. Applying Hölder’s inequality with parameters p′
r and q

r , we receive

N

∑
k=1

Jv(Ik)r �
(

N

∑
k=1

|Ik|
)r/p′( N

∑
k=1

∫
Ik

v(t)q dt

)r/q

= Jv

(
N⋃

k=1

Ik

)r

= Jr
v(I).

For the proof of (3) we apply an elementary inequality

∣∣∣∣‖x‖r
r−‖y‖r

r

∣∣∣∣� ‖x−y‖r
r in case
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of 0 < r < 1. Then we have∣∣∣∣∣
N

∑
k=1

Jv1(Ik)
r −

N

∑
k=1

Jv2(Ik)
r

∣∣∣∣∣�
N

∑
k=1

|Ik|r/p′
∣∣∣‖|v1|r ‖Lq/r(Ik)− ‖|v2|r ‖Lq/r(Ik)

∣∣∣
�

N

∑
k=1

|Ik|r/p′ ‖ | |v1|r −|v2|r | ‖Lq/r(Ik)

�
N

∑
k=1

|Ik|r/p′ ‖ |v1− v2|r |‖Lq/r(Ik)

=
N

∑
k=1

|Ik|r/p′‖v1− v2‖r
Lq(Ik)

=
N

∑
k=1

J|v1−v2|(Ik)
r

� J|v1−v2|(I)
r. �

LEMMA 3. Let I ⊂ (0,∞) be a finite interval, v ∈ Lq(I) . Then

(i) ‖v‖Lr(I) = inf
τ

⎧⎨
⎩
(

N

∑
k=1

Jv(Ik)r

)1/r
⎫⎬
⎭ , where the infimum is taken over all dis-

joint partitions τ = {I1, . . . , IN} of I.
(ii) for every n ∈ N there exists such a disjoint partition τ∗ = {I∗1 , I∗2 , . . . I∗n} of I

that
Jv(I∗1 ) = Jv(I∗2 ) = . . . = Jv(I∗n ).

Proof. Let τ = {I1, I2, . . . IN} be a disjoint partition of I. By Hölder’s inequality

with parameters p′
r and q

r , we receive

‖v‖r
Lr(I) =

N

∑
k=1

∫
Ik

v(t)rdt �
N

∑
k=1

|Ik|r/p′
(∫

Ik
v(t)q dt

)r/q

=
N

∑
k=1

Jv(Ik)r

and the inequality ‖v‖Lr(I) � inf
τ

⎧⎨
⎩
(

N

∑
k=1

Jv(Ik)r

)1/r
⎫⎬
⎭ follows. For the proof of the re-

verse inequality observe that the equality (i) holds for step functions η(t)=∑N
k=1αkχIk (t),

αk � 0 :
N

∑
k=1

Jη(Ik)r =
N

∑
k=1

αr
k |Ik|r/p′ |Ik|r/q =

N

∑
k=1

αr
k |Ik| = ‖η‖r

Lr(I).

Given ε > 0 and v ∈ Lq(I) let a function η � 0 be chosen such that the inequality
‖v−η‖Lq(I) � ε|I|−1/p′ holds which by Hölder’s inequality implies ‖v−η‖Lr(I) � ε.
By virtue of inequality (ii) of Lemma 2 we have∣∣∣∣∣

N

∑
k=1

Jv(Ik)r −
N

∑
k=1

Jη(Ik)r

∣∣∣∣∣� J|v−η|(I)r � εr.
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Thus,
N

∑
k=1

Jv(Ik)r �
N

∑
k=1

Jη(Ik)r + εr = ‖η‖r
Lr(I) + εr � ‖v‖r

Lr(I) +2εr

and (i) follows by taking the infimum and tending ε → 0.

To show (ii) we fix n ∈ N and define the function Φ on a set of n -partitions of
interval I by the formula

Φ(τ) := max
1�k�n

Jv(Ik)− min
1�k�n

Jv(Ik), τ = {I1, . . . , In}.

The function Φ(τ) continuously depends on the end-points of the intervals defining
a partition τ of the interval I. Hence, there is a partition τ∗, |I∗k | > 0, on which the
function Φ reaches its minimal value. We show that Φmin = Φ(τ∗) = 0.

Suppose, that there exists a partition τ ′ = {I1′, . . . , In′} 	= τ∗ on which the function
Φ(τ) reaches the minimal value, but Φ′

min = Φ(τ ′) > 0. Then such a number k0 ∈
{1, . . .n} can be found, that Jv(Ik0

′) = max1�k�n Jv(Ik ′), admitting Jv(Ik0
′) > Jv(Ik0+1

′).
If we pertubate |Ik0

′| by a small enough δ > 0, for example |Ik0
′|= |xk0 −xk0−1|>

|(xk0 −δ )− xk0−1|, then for the new partition τ ′′ = {I1′′, . . . , In′′} 	= τ ′, there exist such
a number k1 ∈ {1, . . .n} that Jv(Ik1

′′) = max1�k�n Jv(Ik′′) and Jv(Ik0
′) > Jv(Ik1

′′).
Then the new partition τ ′′ is such that Φ(τ ′) >Φ(τ ′′). Having repeated this procedure,
we receive a new partition τ ′′′ : Φ(τ ′) > Φ(τ ′′) > Φ(τ ′′′). As a result, it is possible
to build new partitions on which function Φ accept smaller value, hence, any partition
τ ′ for which Φ(τ ′) > 0, cannot be minimal. Hence, Φmin = Φ(τ∗) = 0 with Jv(I∗1 ) =
Jv(I∗2 ) = . . . = Jv(I∗n ) and the proof of lemma 3 is completed. �

Let I=
⊔

k Ik be a representation of the interval I ⊆ (0,∞) as the union of pairwise
disjoint finite intervals Ik. It is supposed also, that v ∈ Lq(Ik).

We define projectors Pc
I : Lp(I) → Lc

p(I) and P◦
I : Lp(I) → L◦

p(I) according to the
formulae

Pc f (t) =∑
k

1
|Ik|
(∫

Ik
f

)
χIk (t) and P◦

I = id−Pc
I ,

where Lc
p(I) = Pc(Lp(I)) =

{
f ∈ Lp(I) : f (t) = ∑k∈K αkχIk (t), αk ∈ R

}
and

L◦
p(I) :=

{
f ∈ Lp(I) :

∫
Ik

f (y)dy = 0, k ∈ K
}

,

Thus, the operator T is decomposed into the sum T = TP◦ +TPc. Observe that
‖P◦‖� 2, ‖Pc‖� 1. If supp f ⊆ Ik and f ∈ L◦

p(I), then T f (x) = 0, if x 	∈ Ik = (ak,bk)
since for x � bk, we have T f (x) = v(x)

∫
Ik

f (y)dy = 0. This implies, that in the sub-
space L◦

p(I) the disjunct property

‖T f‖q
Lq(I) = ∑

k∈K

‖T f‖q
Lq(Ik)

, f ∈ L◦
p(I) (4)

holds. The following lemma specifies the norm value of operator T when it is narrowed
to the subspace L◦

p(I) and plays a key role in obtaining of further estimations.
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LEMMA 4. Let I ⊆ (0,∞), τ = {Ik}k∈K , I =
⊔

k∈K Ik and v ∈ Lq(Ik). Then for
any function f ∈ L◦

p(I;τ)

‖T f‖Lq(I) �
(
∑

k∈K

Jv(Ik)r/(1−r)

)1/r−1

‖ f‖Lp(I). (5)

Proof. Applying Hölder’s inequality with parameters p
q , r

(1−r)q and lemma 1, we
have

‖T f‖q
Lq(I)

= ∑
k∈K

‖T (χIk f )‖q
Lq(Ik)

� ∑
k∈K

Jv(Ik)q‖χIk f‖q
p

�
(
∑

k∈K

Jv(Ik)r/(1−r)

)q(1−r)/r(
∑

k∈K

‖χIk f‖p
p

)q/p

=

(
∑

k∈K

Jv(Ik)r/(1−r)

)q(1−r)/r

‖ f‖q
Lp(I)

. �

LEMMA 5. Let I ⊆ (0,∞), τ = {Ik}k∈K , I =
⊔

k∈K Ik, v ∈ Lq(Ik) and P◦ :
Lp(I) → L◦

p(I,τ). Let a sequence of natural numbers {nk}k∈K be such that
n = ∑

k∈K

(nk −1)+1 < ∞. Then

an(TP◦) � 2

(
∑

k∈K

n−r/(1−r)
k Jv(Ik)r/(1−r)

)1/r−1

. (6)

Proof. Since n =∑k∈K (nk−1)+1 <∞ only a finite number of nk can be distinct
from 1. For such nk 	= 1, according to lemma 3 we divide corresponding intervals Ik
into nk intervals I∗k,1, ..., I

∗
k,nk

such that Jv(I∗k,1) = ... = Jv(I∗k,nk
). If nk = 1, we assume

I∗k,1 = Ik. As a result, a new partition τ∗ = {I∗k, j : 1 � j � nk, k ∈ K } of the interval
is constructed. By virtue of the formula (2) we have

(
nk

∑
j=1

Jr
v(I

∗
k, j)

)1/r

� Jv(Ik),

and
(
nkJ

r
v(I

∗
k, j)
)1/r � Jv(Ik) which implies the inequality

Jv(I∗k, j) � n−1/r
k Jv(Ik). (7)

Now we have P◦∗ (Lp(I)) = L◦
p(I,τ∗) and Pc∗ (Lp(I)) = Lc

p(I,τ∗). Hence,

P◦ −Pc
∗P

◦ = P◦
∗P◦ = P◦

∗ , (8)
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rank(Pc
∗P

◦) � ∑
k∈K

(nk −1) = n−1. (9)

Using (9), lemma 4 and (7), we find

‖(TP◦ −TPc
∗P

◦) f‖Lq(I) = ‖T (P◦
∗ f )‖Lq(I) �

(
∑

k∈K
∑
j�nk

Jv(I∗k, j)
r

1−r

) 1
r −1

‖P◦
∗ f‖Lp(I)

� 2

(
∑

k∈K

n
1− 1

1−r
k Jv(Ik)

r
1−r

)1/r−1

‖ f‖Lp(I)

= 2

(
∑

k∈K

n
−r
1−r
k Jv(Ik)

r
1−r

)1/r−1

‖ f‖Lp(I)

for all functions f ∈ Lp(I). It follows from formula (9) that

rank(TPc
∗P

◦) � rank(Pc
∗P◦) � n−1.

Then
an(TP◦) = inf

rank (TPc∗P◦)�n−1
‖TP◦ −TPc

∗P
◦‖

and

an(TP◦) � 2

(
∑

k∈K

n−r/(1−r)
k Jv(Ik)r/(1−r)

)1/r−1

. �

3. Main results

THEOREM 1. Let I ⊆ (0,∞), τ = {Ik}k∈K , I=
⊔

k∈K Ik, v ∈ Lq(Ik) for any k ∈
K and P◦ : Lp(I) → L◦

p(I,τ). Then

an(TP◦) � 2n−1

(
∑

k∈K

Jv(Ik)r

)1/r

. (10)

Proof. Let ∑k∈K Jv(Ik)r < ∞. For k ∈ K we choose such nk ∈ N , that the in-
equality

nk −1 < n · Jv(Ik)r

∑ j∈K Jv(I j)r � nk

holds. Then

n−r/(1−r)
k Jv(Ik)r/(1−r) � n−r/(1−r)

(
∑

j∈K

Jv(I j)r

)r/(1−r)

Jv(Ik)r

and by lemma 5 the estimate (10) follows. �
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THEOREM 2. Let I ⊂ (0,∞) be a finite interval and let v ∈ Lq(I). Then

limsup
n→∞

nan(T ) � 2‖v‖Lr(I). (11)

Proof. Given ε > 0 by lemma 3 there exist a partition τ = {I1, I2, . . . IN} of inter-
val I such that (

N

∑
k=1

Jv(Ik)r

)1/r

� (1+ ε)‖v‖Lr(I). (12)

Let T = TP◦ +TPc, where P◦ : Lp(I) → L◦
p(I,τ), Pc : Lp(I) → Lc

p(I,τ). Note, that
rank(TPc)� N and aN+1(TPc)= 0. Using the property of the approximation numbers,
(12) and theorem 1, we receive

limsup
n→∞

nan(T ) � limsup
n→∞

nan(TP◦) � 2

(
N

∑
k=1

Jv(Ik)r

)1/r

� 2(1+ ε)‖v‖Lr(I).

Then (11) follows, when ε → 0. �
To obtain the upper estimaes for the approximation numbers of the Hardy operator

on the semiaxis we need the following extension of the result from [6] about the a-
numbers of a diagonal operator.

Let 0 < q < 1 < p < ∞, 1
r = 1

q + 1
p′ ,

1
s = 1

q − 1
p .

We consider the diagonal operator D : �p → �q, which is given by

D{xk} = {σkxk}, x = {xk} ∈ �p, σ1 � σ2 � ... � 0.

Applying Hölder’s inequality with parameters p
q , p

p−q we obtain

‖D‖�p→�q = sup
x	=0

‖Dx‖�q

‖x‖�p

= sup
x	=0

(∑∞
k=1 |σkxk|q)1/q

(∑∞
k=1 |xk|p)1/p

and

‖D‖�p→�q �
(

∞

∑
k=1

σ s
k

)1/s

< ∞. (13)

We define the operator Pn : �p → �p by

Pn(x1,x2, ...,xn,xn+1, ...) = (x1,x2, ...,xn,0,0, ...)

and put L = DPn−1. In this case rankL < n, and we find

an(D : �p → �q) � ‖D−L‖�p→�q �
(

∞

∑
k�n

σ s
k

)1/s

< ∞. (14)
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THEOREM 3. Let 0 < q < 1 < p < ∞, 1
r = 1

q + 1
p′ , and the diagonal operator

D : �p → �q, D{xk} = {σkxk}, x = {xk} ∈ �p is defined by a sequence of real numbers
{σk} such that σ1 � σ2 � ... � 0. Then

sup
n

nqaq
n(D) = ‖{aq

n(D)}‖�1/q,∞ � C‖{σk}‖q
�r,∞

. (15)

Proof. In the special case where σk = k−1/r we shall denote the diagonal operator
Dr, which is given by Drxk = k−1/rxk. Applying the inequality (14) we get

aq
n(Dr) �

(
∑
k�n

1

ks/r

)q/s

� C

(
1

n1/r−1/s

)q

= Cn−q.

Hence,
aq

n(D) � sup
k
|σkk

1/r|qaq
n(Dr) � ‖{σk}‖q

�r,∞
aq

n(Dr),

and we conclude

sup
n

nqaq
n(D) = ‖{aq

n(D)}‖�1/q,∞ � C‖{σk}‖q
�r,∞

. �

Set Δk = [2k,2k+1), |Δk|1/p′ = 2k/p′ , and introduce the following notations

‖v‖r :=
(∫ ∞

0
|v(x)|rdx

)1/r

, |v|r :=

(
∑
k∈Z

J(Δk)r

)1/r

,

|v|r,∞ := ‖{δk}‖�r,∞ = sup
k�0

(k+1)1/rδ ∗
k + sup

k<0
|k|1/rδ+

k , (16)

where {δ ∗
k }k�0 and {δ+

k }k<0 are decreasing and increasing rearrangements of δk :=
J(Δk) . Using Hölder’s inequality and properties of Lorentz spaces we have

‖v‖r � |v|r, |v|r,∞ � c|v|r.
Let subspaces L◦

p((0,∞),Δ) and Lc
p((0,∞),Δ) be constructed with respect to the

partition (0,∞) =
⊔

k∈ZΔk and P◦
I : Lp(0,∞) → L◦

p(0,∞), Pc
I : Lp(0,∞) → Lc

p(0,∞) be
the projectors corresponding to this partition. Then we have representation T = TP◦ +
TPc and by property of the approximation numbers we have the following estimate

aq
2n−1(T ) � aq

n(TP◦)+aq
n(TPc). (17)

LEMMA 6. If 0 < q < 1 < p < ∞, then the inequality

sup
n

nqaq
n(TP◦) � 2q|v|qr

holds.

Proof. The proof follows by application of theorem 1 with I = (0,∞) and with
partition τ = {Δk}k∈Z . �
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LEMMA 7. Let 0 < q < 1 < p < ∞, then

sup
n

nqaq
n(TPc) � c|v|qr .

Proof. Let the map ϕp : lp → Lc
p(0,∞) is defined by

ϕp : {xk}k∈Z → ∑
k∈Z

xk|Δk|−1/pχΔk(t).

Then
TPcϕp : lp → Lq(0,∞).

If t ∈ Δk, we have representation

(TPcϕp x)(t) = v(t)xk|Δk|−1/p(t−2k)+ v(t)∑
j<k

x j|Δ j|−1/p′ = R1x(t)+R2x(t).

To estimate the first summand we define diagonal operator D : �p → �q by the
formula D{xk} = {δkxk}, where δk = Jv(Δk), k ∈ Z. Now we define the operator Y :
�q → Lq(0,∞) by the formula

Y (x) = ∑
k∈Z

xkgk,

where x = {xk}k∈Z ∈ �q , and the functions gk(t) :=
v(t)(t−2k)
‖v‖Lq(Δk)|Δk|χΔk(t), t > 0. Note,

that ‖gk‖Lq � 1 and ‖Y‖�q→Lq � 1. For x = {xk}k∈Z ∈ �q and t > 0 we obtain

(YDx)(t) = ∑
k∈Z

xk|Δk|1/p′‖v‖Lq(Δk)gk(t) = ∑
k∈Z

xk|Δk|−1/p(t−2k)v(t)χΔk(t) = R1x(t).

Thus, R1 = YD and
an(R1) � ‖Y‖an(D) � an(D).

Now we define the operator V : �p → �p by the formula Vx :=
{
∑ j<k x j

|Δ j |1/p′

|Δk|1/p′

}
k∈Z

.

By the Young inequality we obtain

‖Vx‖p =

∥∥∥∥∥ ∑k− j>0

x j 2−(k− j)/p′
∥∥∥∥∥

p

=

∥∥∥∥∥
∞

∑
l=1

xk−l 2
−l/p′

∥∥∥∥∥
p

�
∞

∑
l=1

1

2l/p′ ‖x‖p � C‖x‖p.

Also, we introduce the operator Wq : �q → Lq(0,∞) by

Wq(x)(t) :=
v(t)χΔk(t)
‖vχΔk‖q

.

As a result we have R2 = WqDV, hence,

an(R2) � ‖Wq‖an(D)‖V‖ � Can(D)
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and
a2n−1(TPc) � Can(D). (18)

Since D = D+ + D− and aq
2n−1(D) � aq

n(D+)+ aq
n(D−), than applying theorem 3 to

diagonal operators D+ and D−, formed by {δk}k�0 and {δk}k<0, respectively, we
deduce

(2n−1)qaq
2n−1(D) � c1 sup

n
nqaq

n(D
+)+ c2 sup

n
nqaq

n(D
−)

� C1‖{δk}k�0‖q
�r,∞

+C2‖{δk}k<0‖q
�r,∞

� C|v|qr,∞,

from which
sup

n
nqaq

n(D) � C|v|qr,∞ � C|v|qr .

With similar arguments in view of inequality (18) we prove the estimation

sup
n

nqaq
n(T

c
v ) � c|v|qr . �

From the proof of lemmas 6-7 and inequality (18) we get

(2n−1)qaq
2n−1(T ) � 4q

(
sup

n
nqaq

n(TP◦)+ sup
n

nqaq
n(TPc)

)
� cq |v|qr . (19)

Our main result is the following.

THEOREM 4. Let 0 < q < 1 < p < ∞ , and let T : Lp(0,∞)→ Lq(0,∞). Then,
for some constants c1, c2 that are either absolute or dependent only on p and q, the
following estimates hold:

sup
n

nan(T ) � c1 |v|r (20)

and if |v|r < ∞, then

limsup
n→∞

nan(T ) � c2

(∫ ∞

0
|v(x)|rdx

)1/r

. (21)

Proof. The proof of inequality (20) follows from lemmas 6-7 and inequality (19).
Let’s prove the second part of the theorem. If |v|r < ∞, then for a given ε > 0 we
choose a natural number K so that[

∑
|k|�K

2kr/p′
(∫

Δk

v(s)qds

)r/q
]1/r

� ε.

On finite interval I = [2−K,2K ] we define the function v1 := v ·χI and put v2 := v−v1,
then the operator T = Tv1 +Tv2 . Since |v2|r � ε, then (17) implies

sup
n

nqaq
n(Tv2) � cq |v2|qr � cq εq.
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On the other hand, v1 ∈ Lq(I), and it is possible to apply theorem 2 to operator Tv1 .
Thus, according to the property (iii) of the approximation numbers we obtain

(2n−1)qaq
2n−1(T ) � (2n−1)q (aq

n(Tv1)+aq
n(Tv2))

� 2q
(

nqaq
n(Tv1)+ sup

n
nqaq

n(Tv2)
)

� 2q (nqaq
n(Tv1)+ cq εq) .

Applying elementary inequality (a+b)
1
q � 2

1
q−1
(
a

1
q +b

1
q

)
, 0 < q < 1, we get

(2n−1)a2n−1(T ) � 21/q (nan(Tv1)+ cε)

limsup
n→∞

nan(T ) � 21+ 1
q ‖v1‖Lr(I) + cε � 21+ 1

q ‖v‖Lr + cε.

Limiting process with ε → 0 completes the proof of theorem 4. �
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