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Abstract. In this paper the sequence Banach space �ψ (Z) is defined for a class of convex func-
tions ψ , and properties of the K- and J- interpolation spaces (E0,E1)θ ,ψ,K and (E0,E1)θ ,ψ,J for
a Banach couple E = (E0,E1) and θ ∈ (0,1) are studied.

1. Introduction

Extended a result of Bonsall and Duncan [2], Saito, Kato and Takahashi [11] de-
fined the set Ψn of convex and continuous functions on Δn = {(s1, . . . ,sn−1)∈ [0,1]n−1 :
n−1
∑
i=1

si � 1} which satisfy some appropriate conditions, and the norm ‖·‖ψ on Cn for

every ψ ∈Ψn. For ψ ∈Ψn Kato, Saito and Tamura [4] defined the ψ -direct sum of
a finite family X1, ...,Xn of Banach spaces and proved geometrical properties of this
space. Mitani and Saito [8] and Zachariades [13] introduced the sequence spaces �ψ
and �ψ,∞ for ψ ∈Ψω , where Ψω is a class of convex functions, and studied properties
of these spaces. �p , 1 � p �∞, the Lorentz sequence spaces d(w, p) and the Orlicz se-
quence spaces �M are examples of �ψ spaces. In [13] the ψ -direct sum of a sequence
of Banach spaces was defined and geometrical properties of this space were studied.

In this paper we define the Banach space �ψ(Z) and study properties of the K-
and J- interpolation spaces (E0,E1)X ,K and (E0,E1)X ,J considered for a Banach couple
E = (E0,E1), ψ ∈Ψω and X -weighted sequence space �θψ ,θ ∈ (0,1).

2. Preliminaries

Let Δn = {(s1, . . . ,sn−1) ∈ [0,1]n−1 :
n−1
∑
i=1

si � 1}. Saito, Kato and Takahashi [11]

denoted by Ψn the set of all continuous and convex functions ψ : Δn → R which satisfy
the following conditions:

(A0) : ψ(0,0, . . . ,0) = ψ(1,0, . . . ,0) = ψ(0,1, . . . ,0) = . . . = ψ(0,0, . . . ,1) = 1

(A1) : ψ(s1, . . . ,sn−1) � (s1 + . . .+ sn−1)ψ
(

s1

(s1 + . . .+ sn−1)
, . . . ,

sn−1

(s1 + . . .+ sn−1)

)
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(A2) : ψ(s1, . . . ,sn−1) � (1− s1)ψ
(

0,
s2

1− s1
, . . . ,

sn−1

1− s1

)
...

(An) : ψ(s1, . . . ,sn−1) � (1− sn−1)ψ
(

s1

1− sn−1
, . . . ,

sn−2

1− sn−1
,0

)
.

Let Δ<ω = {s = (sn)n∈N ∈ [0,1]N : {n ∈ N : sn �= 0} is finite and
∞
∑

n=1
sn � 1} and

let ψ : Δ<ω �→R. In [13] the sequence associated to ψ is the sequence (ψn)∞n=2, where
ψn : Δn → R is defined by ψn(s1, . . . ,sn−1) = ψ(s1, . . . ,sn−1,0,0, . . .) for n = 2,3, . . . ,
and the set Ψω = {ψ : Δ<ω �→ R : ψn ∈Ψn for every n = 2,3, . . .} was defined.

Let be a sequence (ψn)∞n=2 such that ψn ∈Ψn and ψn(s1, . . . ,sn−1) =ψn+1(s1, . . . ,
sn−1,0) for every (s1, . . . ,sn−1) ∈ Δn and n = 2,3, . . . . For s = (sn)n∈N ∈ Δ<ω , with
s �= (0, ...,0, ...), we put ns = max{n : sn �= 0} . The function ψ : Δ<ω �→ R defined by
ψ(s) = ψns+1(s1, . . . ,sns) if s �= 0 and ψ(s) = 1 if s = 0, belongs to Ψω and (ψn)∞n=2
is its associated sequence.

Examples of functions in Ψω are

ψp(s) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[(
1−

∞

∑
i=1

si

)p

+
∞

∑
i=1

sp
i

] 1
p

if 1 � p < ∞

sup

{
1−

∞

∑
i=1

si,s1,s2, . . . ,sn, . . .

}
if p = ∞

for s = (sn)n∈N ∈ Δ<ω .
Let c00 = {z = (zn)n∈N ∈ CN : {n∈ N : zn �= 0} is finite } and (en)n∈N is the usual

basis of c00 . Denote |z| = (|zn|)n∈N. A norm on c00 is called absolute if ‖z‖ = ‖|z|‖
for every z ∈ c00 and normalized if ‖en‖ = 1 for every n = 1,2, . . . . For every ψ ∈Ψω
the norm ‖.‖ψ is defined for every z = (zn)n∈N ∈ c00 as

‖z‖ψ =

⎧⎪⎨
⎪⎩
(

∞

∑
i=1

|zi|
)
ψ
( |z2|
∑∞

i=1 |zi| , . . . ,
|zn|

∑∞
i=1 |zi| , . . .

)
ifz �= 0,

0 ifz = 0.

Note that if ψ ∈Ψω , then ‖.‖ψ ∈ ANω - the set of all absolute and normalized norms
on c00. For any ‖.‖ ∈ ANω , the function ψ : Δ<ω → R defined by ψ(s) = ‖(1−
∑∞

n=1 sn,s1,s2, . . .)‖ belongs to Ψω and ‖(z1, . . . ,zn, . . .)‖ = ‖(z1, . . . ,zn, . . .)‖ψ for ev-
ery (z1, . . . ,zn, . . .) ∈ c00. Let us mention the following properties of the functions
ψ ∈Ψω and the ψ -norms:

1) ψ∞(s) � ψ(s) � 1 for all s = (sn)n∈N ∈ Δ<ω .
2) ‖.‖∞ � ‖.‖ψ � ‖.‖1 .
3) If z = (zi)∞i=1 and w = (wi)∞i=1 with |zi| � |wi| for every i = 1, . . . ,n, . . . , then

‖z‖ψ � ‖w‖ψ .
(The corresponding properties of the functions from Ψn are proved in [11].)
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In [8] and [13] the spaces �ψ and �ψ,∞ were defined independently. In the
following we present the construction of these spaces as it is presented in [13].

For n = 1,2, . . . let the projection Pn : CN �→ Cn defined by Pn(z1, . . . ,zn, . . .) =
(z1, . . . ,zn). If ψ ∈Ψω and (ψn)∞n=2 is its associated sequence, then for every z ∈ c00

the sequence (‖Pn(z)‖ψn)
∞
n=2 is non-decreasing.

For ψ ∈Ψω the space �ψ is defined to be the completion of the space (c00,‖·‖ψ )
and the space �ψ,∞ is defined as the space �ψ,∞ = {z ∈ CN : supn ‖Pn(z)‖ψn < +∞},
equipped with the norm ‖z‖ψ,∞ = supn ‖Pn(z)‖ψn . For ψ ∈Ψω the spaces �ψ and �ψ,∞
are Banach spaces and �ψ is a closed subspace of �ψ,∞. The following proposition was
proved in [13]

PROPOSITION 2.1. Let ψ ∈Ψω .
i) The sequence (en)n∈N is a monotone and unconditional basis of �ψ .
ii) (en)n∈N is a boundedly complete basis of �ψ if and only if �ψ = �ψ,∞.
iii) If (en)n∈N is a shrinking basis of �ψ , then �ψ,∞ is isometric to the second dual

of �ψ .
iv) (en)n∈N is a shrinking and boundedly complete basis o �ψ if and only if �ψ is

reflexive.

Typical examples of �ψ and �ψ,∞ spaces are the spaces �p = �ψp = �ψp,∞, 1 � p <
∞, the space c0 = �ψ∞ and the space �∞ = �ψ∞,∞. Examples of �ψ spaces are also the
Lorentz sequence spaces d(w, p) and the Orlicz sequence spaces �M [13].

Mitani, Oshiro and Saito [7] defined the dual function ψ∗ of ψ ∈Ψn as

ψ∗(s1, ...,sn−1) = sup
(t1,...,tn−1)∈Δn

(1−t1−...−tn−1)(1−s1−...−sn−1)+t1s1+...+tn−1sn−1

ψ(t1, ...,tn−1)

for (s1, ...,sn−1) ∈ Δn. They also proved that ψ∗ ∈Ψn, (ψ∗)∗ = ψ and ‖·‖∗ψ = ‖·‖ψ∗ .
For ψ and ψ∗ the following generalized Hölder inequality is proved.

PROPOSITION 2.2. Let ψ ∈Ψn. Then we have | < x,y > | � ‖x‖ψ ‖y‖ψ∗ for any
x,y ∈ Cn.

In [13] the dual function of a ψ ∈ Ψω was defined and the following properties
were proved.

DEFINITION 2.3. Let ψ ∈Ψω . If (ψn)n∈N is the associated sequence of ψ ∈Ψω
and ψ∗

n is the dual function of ψn for n = 2,3, ...., the dual function ψ∗ of ψ is defined
to be the function with associated sequence (ψ∗

n )∞n=2.

LEMMA 2.4. If ψ ∈Ψω ,z = (zn)n∈N ∈ �ψ and w= (wn)n∈N ∈ �ψ∗ , then
∞
∑

n=1
|wnzn|

� ‖w‖ψ∗ ‖z‖ψ .

THEOREM 2.5. Let ψ ∈ Ψω . If (en) is a shrinking basis of �ψ , then the dual
space of �ψ is isometric to �ψ∗ .
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For ψ ∈Ψω the ψ -direct sum of a sequence of Banach spaces (Xn) is the space(
∞

∑
n=1

⊕
Xn

)
ψ

= {x = (xn)n∈N ∈
∞

∏
n=1

Xn : (‖xn‖)n∈N ∈ �ψ}

equipped with norm ‖x‖ = ‖(‖xn‖)n∈N‖ψ [13].
For every ψ ∈Ψω the space (∑∞

n=1
⊕

Xn)ψ is a Banach space.
Examples of ψ -direct sums are the �p -direct sums for ψ =ψp,1 � p <∞ , Lorentz

and Orlicz direct sums.
Let E = (E0,E1) be a Banach couple, i.e. E0 and E1 be two Banach spaces

algebraically and topologically imbedded in a separated topological linear space U. The
space ΔE consists of the elements common to E0 and E1 and its norm is defined by
‖a‖ΔE = max(‖a‖E0,‖a‖E1). The space ΣE consists of the elements of the form a =
a0 +a1 with a0 ∈ E0 and a1 ∈ E1, and its norm is defined by ‖a‖ΣE = in f{‖a0‖E0 +
‖a1‖E1 : a = a0 +a1, a0 ∈ E0, a1 ∈ E1}. We mention the definition of Peetre K- and J-
functionals.

The K-functional is defined by K(t,a) = K(t,a,E0,E1) = inf{‖a0‖E0 + t‖a1‖E1 :
a= a0+a1, a0 ∈E0, a1 ∈E1} for every a∈ΣE. The J functional is defined by J(t,a)=
J(t,a,E0,E1) = max(‖a‖E0 ,t‖a‖E1) for every a ∈ ΔE.

Let X be a Banach sequence space on Z. Under some conditions, the K-method
space and the J-method space were considered (see [5], [10], [3]). The K-method space
KX (E) = (E0,E1)X ,K is the Banach space of all a∈ ΣE for which (K(2n,a,E0,E1))n∈Z

∈ X with the associated norm ‖a‖ = ‖(K(2n,a,E0,E1))n∈Z
‖X . This space is an exact

interpolation space. That is, for every two Banach couples A = (A0,A1) and B =
(B0,B1) if T : ΣA→ ΣB, with T |Ai : Ai → Bi for i = 0,1, then ‖Ta‖KX (B) � M‖a‖KX (A)

for every a ∈ KX (A), where M = max(
∥∥T |A0

∥∥ ,‖T |A1‖).
The J-method space JX(E) is the Banach space of all a ∈ ΣE for which there

exists a sequence (un)n∈N in ΔE such that a = ∑n=∞
n=−∞un (convergence in ΣE ) and

(J(2n,un,E0,E1))n∈Z
∈ X , equipped with norm ‖a‖ = inf{∥∥(J(2n,un,E0,E1))n∈Z

∥∥ :
a = ∑n=∞

n=−∞un, un ∈ ΔE, (J(2n,un,E0,E1))n∈Z
∈ X}. This space is also an exact inter-

polation space.

3. The spaces (E0,E1)θ ,ψ,K and (E0,E1)θ ,ψ,J

Let τ : N → Z defined by

τ(l) =

⎧⎪⎨
⎪⎩

l−1
2

if l = 1,3, ...

− l
2

if l = 2,4, ...

and T : CZ → CN defined by T ((zn))n∈Z = (zτ(l))l∈N.

For ψ ∈Ψω we define �ψ(Z) = {z = (zn)n∈Z ∈ CZ : T (z) ∈ �ψ} and ‖z‖�ψ(Z) =
‖T (z)‖ψ . Where no confusion is possible we write ‖·‖ψ instead ‖·‖�ψ (Z) .
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If D = {z = (zn)n∈Z ∈ �ψ(Z) : {n ∈ Z : zn �= 0} is finite }, from the definition of
the spaces �ψ(Z) and �ψ we obtain that D is a dense subset of �ψ(Z) and ‖z‖ψ =(

+∞
∑

n=−∞
|zn|
)
ψ

⎛
⎝ |z−1|

+∞
∑

n=−∞
|zn|

, |z1|
+∞
∑

n=−∞
|zn|

,
|z−2|

+∞
∑

n=−∞
|zn|

, |z2|
+∞
∑

n=−∞
|zn|

, ...

⎞
⎠ for every z = (zn)n∈Z ∈ D.

In ANω many norms are invariant under permutations, that is ‖(xn)n∈N‖ =∥∥(xπ(n))n∈N

∥∥ for every permutation π : N → N, but there are norms which do not have
this property. For example, let ψ : Δω → R is defined by ψ(s) = max{1− s1,s1,s2, ...}
for every s = (sn)n∈N ∈Δω . It is easy to see that ψ ∈Ψω and ‖(zn)n∈N‖ψ = max{|z1|+
∞
∑

n=3
|zn|, |z2|}. Thus, ‖(1,2,3,0,0, ...)‖ψ = 4 and ‖(2,0,1,3,0,0, ...)‖ψ = 6. So, ‖·‖ψ

is not invariant under permutations.

DEFINITION 3.1. Let t = (tn)n∈N, s = (sn)n∈N in Δ<ω .
i) t, s are called equivalent if there exists a bijection π : N→N such that sn = tπ(n)

for every n ∈ N.
ii) t, s are called complementary if there exists a bijection π : N → N and n1 ∈ N

such that sn = tπ(n) for every n �= n1 and sn1 +
∞
∑

n=1
tn = tπ(n1) +

∞
∑

n=1
sn = 1.

DEFINITION 3.2. A function ψ ∈Ψω is called invariant if ψ(s) =ψ(t) for every
equivalent or complementary s, t ∈ Δ<ω .

LEMMA 3.3. Let ψ ∈ Ψω be invariant and π : N → N be a permutation. Then
‖(zn)n∈N‖ψ =

∥∥(zπ(n))n∈N

∥∥
ψ for every (zn)n∈N ∈ c00.

Proof. Let z = (zn)n∈N ∈ c00 and w= (zπ(n))n∈N. It is clear that ∑
n∈N

|zn|= ∑
n∈N

|zπ(n)|.

We set σk = |zk+1|
∑

n∈N

|zn| , τk =
|zπ(k+1)|
∑

n∈N

|zn| for k = 1,2, ...., σ = (σk)k∈N and τ = (τk)k∈N. If

π(1) = 1, we set φ : N → N defined by φ(n) = π(n + 1)− 1. Then it is easy to see
that φ is a permutation and σφ(n) = τn for every n ∈ N. So, σ and τ are equivalent. If
π(1) �= 1, we put n1 = π(1) and n2 = π−1(1). Then the function φ : N → N defined
by φ(n) = π(n+ 1)− 1 if n �= n2 − 1 and φ(n2 − 1) = n1 − 1, is a permutation with

property τn = σφ(n) for n �= n2−1. It is clear that σφ(n2−1) = σn1−1 = σπ(1)−1 =
|zπ(1)|
∑

n∈N

|zn|

and τn2−1 =
|zπ(n2)|
∑

n∈N

|zn| =
|z1|
∑

n∈N

|zn| . So, τn2−1 + ∑
n∈N

σn = σφ(n2−1) + ∑
n∈N

τn = 1. Hence, σ and

τ are complementary. Therefore, ‖z‖ψ = ‖w‖ψ. �

PROPOSITION 3.4. Let ψ ∈ Ψω be invariant and π : N → N be a permutation.
Then ‖(zn)n∈N‖ψ = ‖(zπ(n))n∈N‖ψ for every (zn)n∈N ∈ �ψ .

Proof. Let (zn)n∈N ∈ �ψ and w = (zπ(n))n∈N. We put z̃k = (z1, ...,zk,0, ...) and
w̃k = (zπ(1), ...,zπ(k),0, ...) for k = 1,2, ... Let k ∈ N. For every i = 1, ...,k there exists
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ji such that zi = zπ( ji). Let m = max{ ji : i = 1, ...,k}. We put ṽk = (vn)n∈N, where
v ji = zπ( ji) = zi for i = 1, ...,k and vn = 0 for n �= ji, i = 1, ...,k. Then, from lemma 3.3
and from properties of ψ -norm, we obtain ‖z̃k‖ = ‖ṽk‖ � ‖w̃m‖. Therefore ‖z‖ψ �
‖w‖ψ . Similarly, we obtain ‖w‖ψ � ‖z‖ψ . So ‖z‖ψ = ‖w‖ψ . �

It is easy to prove the following lemma.

LEMMA 3.5. Let ψ ∈Ψω be invariant and π : Z → Z be a permutation. If z =
(zn)n∈Z ∈ �ψ(Z) and w = (zπ(n))n∈Z, then

i) w ∈ �ψ(Z) , and
ii) T (w) = (zπ(τ(l)))l∈N.

From proposition 3.4 and lemma 3.5 we obtain the following corollary.

COROLLARY 3.6. Let ψ ∈ Ψω be invariant and π : Z → Z be a permutation.
Then ‖(zn)n∈Z‖ψ = ‖(zπ(n))n∈Z‖ψ for every (zn)n∈Z ∈ �ψ(Z).

Let (Xn)n∈Z be a family of Banach spaces. We define(
+∞

∑
n=−∞

⊕
Xn

)
ψ

=
{
(xn)n∈Z : (‖xn‖)n∈Z ∈ �ψ(Z)

}

and ‖x‖ = ‖T ((‖xn‖)n∈Z)‖ψ for every x = (xn)n∈Z ∈
(

+∞
∑

n=−∞
⊕

Xn

)
ψ

.

Let E = (E0,E1) be a Banach couple, θ ∈ (0,1) and ψ ∈ Ψω . We are going to
define the K- and J- interpolation spaces when the Banach sequence space is the space
�θψ = {(zn)n∈Z ∈ CZ : (2−θn|zn|)n∈Z ∈ �ψ(Z)} with ‖(zn)n∈Z‖ =

∥∥(2−θn|zn|)n∈Z

∥∥
ψ . It

is not difficult to see that �θψ is K-nontrivial, i.e. (min(1,2n))n∈Z ∈ �θψ and J-nontrivial,

i.e. sup
{
∑+∞

n=−∞min(1,2−n)|an| : (an)n∈Z ∈ B�θψ

}
< ∞(in terminology of [9]).

DEFINITION 3.7. Let E = (E0,E1) be a Banach couple, θ ∈ (0,1) and ψ ∈Ψω .
i) The K-interpolation space (E0,E1)θ ,ψ,K is the space of all a ∈ ΣE such that

‖a‖θ ,ψ,K < ∞, where

‖a‖θ ,ψ,K = ‖
(
2−θnK(2n,a,E0,E1)

)
n∈Z

‖ψ .

ii) The J-interpolation space (E0,E1)θ ,ψ,J is the space of all a ∈ ΣE, for which
there exists a sequence (un)n∈Z in ΔE such that a = ∑+∞

n=−∞un (convergence in ΣE )
and (J(2n,un,E0,E1))n∈Z

∈ �θψ equipped with the norm

‖a‖ = inf

{∥∥∥(2−θnJ(2n,un,E0,E1)
)

n∈Z

∥∥∥
ψ

: a =
+∞

∑
n=−∞

un, un ∈ ΔE ∀n ∈ Z,

(J(2n,un,E0,E1))n∈Z
∈ �θψ

}
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The classical spaces (E0,E1)θ ,p, 1 � p <∞, are spaces of this type. It is possible
to define K- and J- interpolation spaces using the sequence space �ψ,∞. This will cover
also the classical case (E0,E1)θ ,∞.

It is clear that ΔE ⊂ (E0,E1)θ ,ψ,K , (E0,E1)θ ,ψ,J ⊂ ΣE.
A consequence of the fundamental lemma of interpolation is the imbedding

(E0,E1)θ ,ψ,K ⊂ (E0,E1)θ ,ψ,J . If the function ψ is invariant, then the norm of the space
�ψ(Z) is translation invariant and it is easy to see, that Calderon operator Ω : �ψ(Z) →
�ψ(Z), defined by Ω((an)n∈Z) =

(
∑∞

m=−∞min(1,2n−m)|am|
)
n∈Z

, is bounded. In this
case (see [9], [3]) we have that the K- and J-method spaces coincide (with equivalence
of norms) It is easy to see that the spaces (E0,E1)θ ,ψ,K and (E0,E1)θ ,ψ,J are exact
interpolation spaces.

In the following theorem we prove that these spaces are of interpolation type θ
when ψ is invariant.

THEOREM 3.8. If (E0,E1) is a couple of Banach spaces, 0 < θ < 1 and ψ is
an invariant function in Ψω , then the space (E0,E1)θ ,ψ is of interpolation type θ .

Moreover, for every two Banach couples A = (A0,A1), B = (B0,B1) if T : ΣA → ΣB,
with T |Ai : Ai → Bi for i = 0,1, then ‖Ta‖(B0,B1)θ ,ψ,K

� 2θM1−θ
0 Mθ

1 ‖a‖(A0,A1)θ ,ψ,K
for

every a ∈ (A0,A1)θ ,ψ,K , where M0 =
∥∥T |A0

∥∥ and M1 = ‖T |A1‖ .

Proof. Let ψ ∈Ψω is invariant, A = (A0,A1), B = (B0,B1) two Banach couples
and T :ΣA→ΣB, with TAi : Ai →Bi for i = 0,1. We put Mi = ‖T |Ai‖ for i = 0,1. From
corollary 3.6 ‖·‖ψ is invariant under permutation and hence it is translation invariant.
Since

K(t,Ta,B0,B1) � inf
a=a0+a1

(‖Ta0‖B0 + t‖Ta1‖B1) � inf
a=a0+a1

(M0‖a0‖A0 + tM1‖a1‖A1)

� M0K

(
M1t
M0

,a,A0,A1

)

we get

‖Ta‖(B0,B1)θ ,ψ,K
= ‖(2−nθK(2n,Ta,B0,B1))n∈Z‖ψ � M0

∥∥∥∥(2−nθK

(
M1

M0
2n,a,A0,A1

)
)n∈Z

∥∥∥∥
ψ

.

Let m ∈ Z be such, that 2m � M1
M0

< 2m+1. Then

‖Ta‖(B0,B1)θ ,ψ,K
� M0‖(2−nθK(2n+m+1,a,A0,A1)))n∈Z‖ψ
= M0‖(2−(n+m+1)θ2(m+1)θK(2n+m+1,a,A0,A1)))n∈Z‖ψ
= M02

(m+1)θ |a‖(A0,A1)θ ,ψ,K

� M0

(
M1

M0
2

)θ
‖a‖(A0,A1)θ ,ψ,K

= 2θM1−θ
0 Mθ

1 |a‖(A0,A1)θ ,ψ,K
.

The proof is complete. �
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PROPOSITION 3.9. Let E = (E0,E1) be a Banach couple, θ ∈ (0,1) and ψ ∈
Ψω . Then 2−mθK(2m,a) � ‖a‖θ ,ψ,K � Cθ2−mθJ(2m,a) for every a ∈ ΔE and m ∈ Z,

where Cθ = 1
(21−θ−1)(2θ−1) .

Proof. Let m,n ∈ Z. From the inequality, min
(
1, t

s

)
K(s,a) � K(t,a) [1], by

replacing t by 2n and s by 2m, we get 2−nθ min(1,2n−m)K(2m,a) � 2−nθK(2n,a) and
so, we obtain

K(2m,a)
∥∥∥(2−θn min(1,2n−m)

)
n∈Z

∥∥∥
ψ

� ‖a‖θ ,ψ,K.

Therefore

K(2m,a) � 2mθ

Am
‖a‖θ ,ψ,K,

where Am = ‖(2(m−n)θ min(1,2n−m))n∈Z‖ψ .

Since 1 � Am we obtain 2−mθK(2m,a) � ‖a‖θ ,ψ,K .

Consider now the inequality K(t,a) � min
(
1, t

s

)
J(s,a) . By replacing t by 2n and

s by 2m we get

2−nθK(2n,a) � 2−mθ2(m−n)θ min(1,2n−m)J(2m,a).

Therefore, we obtain ‖a‖θ ,ψ,K � Am2−mθJ(2m,a). Since ‖·‖ψ � ‖·‖1 we have

Am �
∞

∑
n=−∞

2(m−n)θ min(1,2n−m) =
∞

∑
n=−∞

2−nθ min(1,2n) = Cθ .

So, ‖a‖θ ,ψ,K � Cθ2−mθJ(2m,a). �

Using Proposition 3.9 a generalization of so called Lions-Peetre lemma about
compactness can be proved but for brevity we will omit here the proof.

THEOREM 3.10. Let B be a Banach space, A = (A0,A1) a Banach couple and T
be a linear operator. Let 0 < θ < 1 .

i) T : ΣA → B, with T |A0 : A0 → B compact and T |A1 : A1 → B bounded, then
T : (A0,A1)θ ,ψ,K �→ B is compact.

ii) T : B �→ ΔA, T : B �→ A0 compact and T : B �→ A1 bounded, then T : B �→
(A0,A1)θ ,ψ,J is compact.

Let A be a Banach space, ψ ∈ Ψω and 0 < θ < 1. The space �θψ(A) is defined
as the space of the sequences (αn)n∈Z of A such that (2−θn‖αn‖)n∈Z ∈ �ψ(Z), with
‖(αn)n∈Z‖ =

∥∥(2−θn‖αn‖)n∈Z

∥∥ .

THEOREM 3.11. Let A be a Banach space, ψ ,ψ0,ψ1 ∈Ψω and 0 < θ < 1. If ψ
is invariant then (�ψ0(A), �1

ψ1
(A))θ ,ψ = �θψ(A) up to equivalence of norms.
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Proof. Using properties of ‖·‖ψ as well as K(t,a, �∞(A), �1
∞(A))∼ sup j min(1,t2 j)

‖a j‖A and K(t,a, �1(A), �1
1(A)) ∼ ∑n=+∞

n=−∞min(1,t2n)‖an‖A, which are proved like in
Theorem 1.18.2 [12], we can prove the following chain of embeddings

�θψ(A) ⊂ (�1(A), �1
1(A))θ ,ψ ⊂ (�ψ0(A), �1

ψ1
(A))θ ,ψ ⊂ (�∞(A), �1

∞(A))θ ,ψ ⊂ �θψ(A).

So, (�ψ0(A), �1
ψ1

(A))θ ,ψ = �θψ(A) up to equivalence of norms. �

REMARK. The particular case (�ψ0 , �
1
ψ1

)θ ,ψ = �θψ can be obtained from results of
[9]. Indeed, when ψ is invariant, the space �θψ is K-nontrivial and J- nontrivial and
so (E0,E1)θ ,ψ,K = (E0,E1)θ ,ψ,J = (E0,E1)θ ,ψ for every Banach couple (E0, E1) and
0 < θ < 1. Therefore, the conditions of Corollary 2.6 [9] are fulfilled and we have
�θψ = (�1, �

1
1)θ ,ψ . Under the same conditions Corollary 2.9 [9] gives �θψ = (�∞, �1

∞)θ ,ψ .
Therefore, we get following chain of embeddings

�θψ = (�1, �
1
1)θ ,ψ ⊂ (�ψ0 , �

1
ψ1

)θ ,ψ ⊂ (�∞, �1
∞)θ ,ψ = �θψ .

Thus (�ψ0 , �
1
ψ1

)θ ,ψ = �θψ up to equivalence of norms.
Let (E0,E1) be a Banach couple, ψ is an invariant function in Ψω and 0 < θ <

1. We are going to determine the dual space of (E0,E1)θ ,ψ . If a ∈ (E0,E1)θ ,ψ =
(E0,E1)θ ,ψ,J then a can be represented in the form ∑n=∞

n=−∞un with u = (un) ∈ ΔE
and ‖a‖(E0,E1)θ ,ψ,J

= inf{∥∥(2−θnJ(2n,un,E0,E1)
)
n∈Z

∥∥
�ψ

: a = ∑n=∞
n=−∞un, un ∈ ΔE}.

Let u = (un) ∈ ΔE such that a = ∑n=∞
n=−∞un and

(
2−θnJ(2n,un,E0,E1)

)
n∈Z

∈ �ψ(Z).
For every ε > 0, we can find c = (cn)n∈Z ∈ D : ‖b− c‖ψ < ε where b = (bn)n∈Z =(
2−θnJ(2n,un,E0,E1)

)
n∈Z

. Then∥∥∥∥∥a−
n=N

∑
n=−N

un

∥∥∥∥∥
(E0,E1)θ ,ψ,J

� ‖(0, . . . ,0,bN+1,b−(N+1), . . .)‖ψ
� ‖(|b0− c0|, |b1− c1|, |b−1− c−1|, . . . , |bN − cN |, |b−N − c−N|,bN+1, . . .)‖ψ
= ‖b− c‖ψ < ε.

So, we get that ΔE is dense in (E0,E1)θ ,ψ .

Now, from the embedding (dense) ΔE ⊂ (E0,E1)θ ,ψ ⊂ΣE we get ΔE ′ ⊂ (E0,E1)′θ ,ψ
⊂ ΣE ′ .

THEOREM 3.12. If ΔE is dense in E0 and E1 , 0 < θ < 1 and ψ is an invariant
function in Ψω such that �ψ has a shrinking basis, then (E0,E1)′θ ,ψ = (E ′

0,E
′
1)θ ,ψ∗ (with

equivalent norms).

Sketch of the proof. We mention, that if ΔE is dense in E0 and E1 , then the

following equalities hold K(t,a′,E ′
0,E

′
1) = supa∈ΔE

|<a′,a>|
J(t−1 ,a,E0,E1)

and J(t,a′,E ′
0,E

′
1) =

supa∈ΔE
|<a′,a>|

K(t−1,a,E0,E1)
[1].
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As in the proof of the corresponding Theorem 3.7.1 [1], we can show that
(A0,A1)′μ,ψ,J ⊂ (A′

1,A
′
0)1−μ,ψ∗,K and (A′

1,A
′
0)1−μ,ψ∗,J ⊂ (A0,A1)′μ,ψ,K .The proof of these

embeddings goes in the same way, replacing the space λ μ,q by �
μ
ψ . Note that the spaces

�
μ
ψ and �

1−μ
ψ∗ are in duality, generated by the bilinear form ∑2−nanbn when �ψ has

shrinking basis. As a consequence of fundamental lemma of interpolation theory the K
interpolation space is embedded in the J interpolation space for any function from Ψω .
Moreover, invariantness of ψ and equality K(2−n,a,E0,E1) = 2−nK(2n,a,E1,E0) give
that (E0,E1)θ ,ψ = (E1,E0)1−θ ,ψ . Since for ψ invariant J and K spaces coincide up to
equivalence of norms, these embeddings with μ = 1−θ , A0 = E1,A1 = E0 give

(E0,E1)′θ ,ψ = (E1,E0)′1−θ ,ψ = (E1,E0)′1−θ ,ψ,J ⊂ (E ′
0,E

′
1)θ ,ψ∗,K ⊂ (E ′

0,E
′
1)θ ,ψ∗,J

⊂ (E1,E0)′1−θ ,ψ,K = (E1,E0)′1−θ ,ψ = (E0,E1)′θ ,ψ . �

If we want to avoid the condition the space �ψ to have shrinking basis, then we
will arrive not to the space (E ′

0,E
′
1)θ ,ψ∗ but to a space, generated by the space �ψ∗,∞.

We are not going to consider here this situation in details.
Let (E0,E1) be a Banach couple. Sometimes is more proper to consider the space

(E0,E1)θ ,ψ,q, 0 < θ < 1, 1 < q < ∞ which is defined as follow.
For n = 1,2, ... let the space Xn = E0 +E1 with ‖a‖ = 2−nθKq(2n,a,E0,E1) for

a ∈ Xn, where Kq(t,a,E0,E1) = inf
a=a0+a1

(‖a‖q
E0

+ tq(‖a‖q
E1

)1/q. Then (E0,E1)θ ,ψ,q =

{a ∈ E0 +E1 : ‖a‖θ ,ψ,q < ∞}, where ‖a‖θ ,ψ,q =
∥∥(2nθKq(2n,a,E0,E1)

)
n∈N

∥∥
ψ .

Actually we should write (E0,E1)θ ,ψ,q,K and ‖a‖θ ,ψ,q,K but if there is no misun-
derstanding, we will omit K.

The space (E0,E1)θ ,ψ,q is the subspace of the constant sequences in (
∞
∑

n=1

⊕
Xn,q)ψ .

If δ (ε) = min(δE0(ε),δE1(ε)), where δE0(ε) and δE1(ε) are the modulus of convexity
of E0 and E1, from [6] we have that infn∈N δXn,q(ε) � δ�2

q

( ε
2δ
( ε

2

))
. Therefore, from

[13] we obtain the following corollary.

COROLLARY 3.13. Let (E0,E1) be a Banach couple, 1 < q < +∞ and ψ ∈Ψω .
i) If �ψ is uniformly convex and the spaces E0 and E1 are uniformly convex (resp.

uniformly non-square), then the space (E0,E1)θ ,ψ,q is uniformly convex (resp. uni-
formly non-square).

ii) If �ψ is uniformly smooth and the spaces E0 and E1 are uniformly smooth,
then the space (E0,E1)θ ,ψ,q is uniformly smooth.

Moreover, for ϕ ∈Ψ2 we can define generalized Kϕ functional as Kϕ (t,a,E0,E1)=

infa=a0+a1 ‖(‖a0‖E0 + t‖a1‖E1)‖ϕ = infa=a0+a1(‖a0‖E0 + t‖a1‖E1)ϕ
(

t‖a‖E1
‖a0‖E0+t‖a1‖E1

)
.

When ϕ(t) = ϕ1(t) ≡ 1 we get Peetre K -functional. When ϕ(t) = ϕq(t) = ((1− t)q +

tq)
1
q we get Holmstedt-Peetre K -functional Kq(t,a,E0,E1) . The function ϕ(t) is con-

vex, ϕ(0) = 1,ϕ(1) = 1,max(t,1− t) � ϕ(t) � 1 and infϕ(t) � min(t,1− t) = 1
2 , i.e.
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1
2 � ϕ(t) � 1. Hence for Kϕ(t,a,E0,E1) = Kϕ (t,a) we have

1
2
K(t,a) � Kϕ (t,a) � K(t,a) = inf

a=a0+a1
(‖a0‖E0 + t‖a‖E1).

But K(t,a) � min(1,t)‖a‖Δ(E) and K(t,a) � min(1,t)‖a‖Σ(E). Hence

1
2

min(1,t)‖a‖Σ(E) � Kψ (t,a) � min(1,t)‖a‖Δ(E),

i.e. we get an intermediate space E (Δ(E) ⊂ E ⊂ Σ(E)) , where E = (E0,E1)θ ,p,φ has
norm

‖a‖θ ,p,ϕ =
∥∥∥({2−θnKϕ (2n,a,E0,E1)

})
n∈Z

∥∥∥
lp

.

Because of the inequalities 1
2‖a‖θ ,p � ‖a‖θ ,p,ϕ � ‖a‖θ ,p where ‖a‖θ ,p is the norm

of the space (E0,E1)θ ,p generated by the usual functional K(t,a) ,we get again the
space (E0,E1)θ ,p with equivalent norm ‖a‖θ ,p,ϕ . We can of course consider another
generalization, namely the space (E0,E1)θ ,ψ,ϕ , with norm

‖a‖θ ,ψ,ϕ =
∥∥∥(2−θnKϕ(2n,a,E0,E1)

)
n∈Z

∥∥∥
ψ

.

As above we see that this norm is equivalent to the norm of the space (E0,E1)θ ,ψ,. So,
we see that different second functions, namely ϕ ’s, give equivalent norms.
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