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ON y- INTERPOLATION SPACES
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Abstract. In this paper the sequence Banach space (y,(Z) is defined for a class of convex func-
tions y, and properties of the K- and J- interpolation spaces (Eo,E1)g,y x and (Eo,E1)g,ys for
a Banach couple E = (Ey,E;) and 0 € (0,1) are studied.

1. Introduction

Extended a result of Bonsall and Duncan [2], Saito, Kato and Takahashi [11] de-
fined the set ¥, of convex and continuous functions on A, = {(s1,...,s,_1) €[0,1]"":

n—1
Y, si < 1} which satisfy some appropriate conditions, and the norm ||-[|,, on C" for
i=1

every y € ¥,,. For vy € ¥, Kato, Saito and Tamura [4] defined the y -direct sum of
a finite family X, ...,X, of Banach spaces and proved geometrical properties of this
space. Mitani and Saito [8] and Zachariades [13] introduced the sequence spaces £y,
and £y .. for y € ¥, where ¥, is a class of convex functions, and studied properties
of these spaces. £,, 1 < p < oo, the Lorentz sequence spaces d (w, p) and the Orlicz se-
quence spaces /)y are examples of £y, spaces. In [13] the y-direct sum of a sequence
of Banach spaces was defined and geometrical properties of this space were studied.

In this paper we define the Banach space ¢, (Z) and study properties of the K-
and J- interpolation spaces (Ey,E)x x and (Ep,E)x s considered for a Banach couple
E = (Ey,E), v € ¥, and X -weighted sequence space Eg, 0 < (0,1).

2. Preliminaries

n—1
Let Ay = {(s1,...,5,-1) €[0,1]""': ¥ s; < 1}. Saito, Kato and Takahashi [11]
i=1

denoted by W), the set of all continuous and convex functions y : A, — R which satisfy
the following conditions:

(Ao): w(0,0,...,0) = w(1,0,...,0) = y(0,1,...,0) = ... = y(0,0,...,1) = 1

S1 Sp—1
Ay): ey Sp_1) = 4 S ey
(A0 W(stemssut) > (51 4ot s 1>w((ﬁ+__.+5n_l) <s1+...+sn_1>)
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(A2): W(Stveressut) = (1—s1)w<o,ls—2,..., s’”)

— 81 1—51

S1 Sp—2
An) ) = (1 — s 0.
(W) Wo1eso) > (0w (2 2220

Let A<? = {s = (sp)nen € [0,1]¥ : {n € N : 5, # 0} is finite and Z sp < 1} and

let y: A<? — R. In [13] the sequence associated to y is the sequence (1//,,),1127 where
W, - Ay — R is defined by v, (s1,...,8.—1) = ¥(s1,...,5:-1,0,0,...) for n =2,3,...,
and the set ¥ = {y : A<® — R: y, € ¥, forevery n=2,3,...} was defined.

Let be a sequence (), such that y, € ¥, and W, (s1,...,8—1) = Wnt1(s1,- .-,
Sn—1,0) for every (sq,...,sp—1) €A, and n =2,3,.... For s = (sy)neny € A<?, with
s #(0,...,0,...), we put ng = max{n : s, # 0}. The function y : A<® — R defined by
W(s) = Wn,4+1(51,...,8,) if s#0 and y(s) =1 if s =0, belongs to ¥, and (), _,
is its associated sequence.

Examples of functions in ‘¥, are

[( is,) —|—25] if 1<p<e
Wp(s) = =

sup l—Zsi,s17S27...,sn7...} if p=oo
i=1

for s = (sn)nen € A<?.

Let coo = {z= (zn)nen € CV: {n € N: z, # 0} is finite } and (e,)nen is the usual
basis of coy. Denote |z| = (|z4|)nen. A norm on cqg is called absolute if ||z|| = |||z|||
for every z € cop and normalized if ||e,|| =1 forevery n=1,2,.... Forevery y € ¥,
the norm ||. || is defined for every z = (zx)nen € coo as

3 [22] 2] ) :
Zi = ey = yeen ifz # 0,
Izl = <i=1 l) v (21'1 il i lail ?

0 ifz=0

Note that if y € ¥y, then |||y € AN, - the set of all absolute and normalized norms
on cqp. For any ||.|| € ANy, the function y : A<? — R defined by w(s) = ||(1 —
Yo 18n;51,52,...)|| belongs to Wy, and ||(z1,...,2n,...)|| = |(z1,---,2n,...)||y forev-
ery (zi,...,2n,---) € coo. Let us mention the following properties of the functions
v € ¥, and the y-norms:

1) Weols) < w(s) <1 forall s = (s,)neny € A<?.

2) [l < [l lly < [l

3)If z=(z)7, and w= (w;)7>, with |z| < |w;| forevery i=1,...,n,..., then
lelly < ol

(The corresponding properties of the functions from ¥, are provedin [11].)
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In [8] and [13] the spaces fy and {y . were defined independently. In the
following we present the construction of these spaces as it is presented in [13].

For n=1,2,... let the projection P, : CN — C" defined by P21y y2ny--.) =
(21,---52n). If y € ¥y and ()57, is its associated sequence, then for every z € coo
the sequence (||P,(z)]|y,)s—, is non-decreasing.

For y € ¥, the space £y is defined to be the completion of the space (coo, |||,

and the space {y .. is defined as the space £y . = {z € CN : sup, || Pu(2)|ly, < +},
equipped with the norm ||z||y. = sup,, || P.(z) ||y, . For ¥ € ¥, the spaces ¢, and £y, .
are Banach spaces and ¢y, is a closed subspace of ¢y, ... The following proposition was
proved in [13]

PROPOSITION 2.1. Let y € ¥y,.

i) The sequence (ep)nen is a monotone and unconditional basis of {y,.

ii) (en)nen is a boundedly complete basis of Ly if and only if £y = {y .

iii) If (en)nen is a shrinking basis of Ly, then Ly . is isometric to the second dual
of Ly.

iv) (en)nen is a shrinking and boundedly complete basis o y if and only if 0y, is
reflexive.

Typical examples of £y, and £y .. spaces are the spaces £, = ly, =Ly, , 1 <p <
oo, the space co = {y,, and the space l.. = £y, ... Examples of £y, spaces are also the
Lorentz sequence spaces d(w, p) and the Orlicz sequence spaces £y [13].

Mitani, Oshiro and Saito [7] defined the dual function y* of v € ¥, as

1=t —c—=th—) (1 =s1—...=Sp—1 ) FHt1S1 - p— 1 50—
W*(sla-"asn—l) _ sup ( 1 n 1)( S Sn l) 151 n—1S1—1
(Ilvn-vtnfl)EAn W(lh...,tn,l)

for (s1,...,8,-1) € A,. They also proved that y* € ¥y, (y*)" =y and [|-[}, = [|-[],+ -
For v and y* the following generalized Holder inequality is proved.

PROPOSITION 2.2. Let y € W,. Then we have | <x,y > | < ||x||,, [yl for any
x,y e C".

In [13] the dual function of a y € ¥, was defined and the following properties
were proved.

DEFINITION 2.3. Let w € ¥,. If (W,)nen is the associated sequence of y € ¥,
and y;; is the dual function of y, for n=2,3,...., the dual function y* of v is defined
to be the function with associated sequence (y;)5_,.

LEMMA 2.4. If y € Y,2= (2n)nen € by and w= (Wy)nen € Ly, then ¥ |wnzn|
n=1
< Al llzlly, -

THEOREM 2.5. Let y € Wy. If (en) is a shrinking basis of {y, then the dual
space of £y is isometric to {y.
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For w € ¥, the y-direct sum of a sequence of Banach spaces (X,,) is the space

(Z @Xn> = {x= (Xu)nen € HX,, :(Inll)nen € €y}
n=1 v n=1
equipped with norm |x{| = [|({|xa[|)nenlly [13].

For every y € ¥, the space (¥, ©X,),, is a Banach space.

Examples of y -direct sums are the £, -direct sums for y = y,, 1 < p <o, Lorentz
and Orlicz direct sums.

Let E = (Ey,E;) be a Banach couple, i.e. Ey and E; be two Banach spaces
algebraically and topologically imbedded in a separated topological linear space U. The
space AE consists of the elements common to Ey and E; and its norm is defined by
|a||,z = max(||al|k,, ||al|£,). The space ZE consists of the elements of the form a =
ap+ a; with ag € Ey and a; € E;, and its norm is defined by ||a||sz = inf{||aol|g, +
llaillg, : @ =ao+ai, ap € Eo, a1 € E; }. We mention the definition of Peetre K- and J-
functionals.

The K-functional is defined by K(,a) = K(t,a,Ey,E,) = inf{||ag||g, +1||a1]|£, :
a=ap+ai, ap € Ey, a; € E,} forevery a € XE. The J functional is defined by J(t,a) =
J(t,a,Eo,E1) = max(||al|g,.t||al|g,) forevery a € AE.

Let X be a Banach sequence space on Z. Under some conditions, the K-method
space and the J-method space were considered (see [5], [10], [3]). The K-method space
Kx(E) = (Eo,E1)x k is the Banach space of all a € 2E for which (K(2",a,E,E\)),cz
€ X with the associated norm ||a|| = || (K(2",a,E,E1)),c7 ||x- This space is an exact
interpolation space. That is, for every two Banach couples A = (Ag,A;) and B =
(B(),B]) if T:ZA— Z§7 with T‘Ai :A; — B; for i=0,1, then ||TLIHKX(§) < M||a||KX(K)
for every a € Kx(A), where M = max(||Ta, ||, 7|4, [|)-

The J-method space Jx(E) is the Banach space of all a € XE for which there
exists a sequence (up)pen in AE such that a = e ” Uy (convergence in YE) and
(J(2",un, E0, E1)) ez, € X, equipped with norm [a|| = inf{||(J (2", un, Eo, E1)) ez :
a=Y,""un, up € AE, (J(2",un,E0,E1)),c7 € X }. This space is also an exact inter-
polation space.

3. The spaces (Eo,E1)g,yx and (Eo,E1)g.ys

Let 7: N — Z defined by

I_Tl it 1=1,3,...
T(l) = /
—3 if1=24..

and T : C% — C" defined by T'((z1))nez = (27(1))ien-
For y € ¥,, we define £y(Z) = {z= (z4)nez € CZ: T(z) € £y} and Izlley(z) =
I7(2)||y- Where no confusion is possible we write |-/, instead |- 0wz
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If D={z=(zu)nez € ly(Z):{n € Z:z, # 0} is finite }, from the definition of
the spaces ¢y (Z) and ¢, we obtain that D is a dense subset of ¢y (Z) and ||z||y =

( E: |Zn|) v ij'l , +1fl| ) lsz‘ ) +EZ| ,... | forevery z= (zy)nez € D.
n=-—e ,,:Sim‘zn‘ ,,:Sim‘zn‘ nzzim‘zﬂ n:§m|zn|

In AN, many norms are invariant under permutations, that is ||(x,)uen|| =
H (Xz(n) JneN H for every permutation 7 : N — N, but there are norms which do not have
this property. For example, let v : A, — R is defined by y(s) = max{1 —sy,s1,s2,...}
forevery s = (sn)nen € Aw. Itis easy to see that y € ¥, and [|(zn)nenl|,, = max{|zi|+

S Jaal fal} Thus, [/(1,2,3,0,0,..)1], =4 and [/2,0,1,3,0,0,...)|,, =6. So, |/,

is not invariant under permutations.

DEFINITION 3.1. Let = (fy)pen, S = (Sn)nen in AS®.

i) ¢, s are called equivalent if there exists a bijection 7 : N — N such that s, =1,
for every n € N.

ii) ¢, s are called complementary if there exrsts a bijection T N—Nandn €N

such that s, =15, for every n#n and s, + E n =lg(n) + E sp=1.

DEFINITION 3.2. A function y € W, is called invariant if y(s) = w(¢) for every
equivalent or complementary s, r € A<%.

LEMMA 3.3. Let v € ¥, be invariant and n: N — N be a permutation. Then
H(Zn)nENHW = H(Zrc(n))neNHWfor every (Zn)neN € Co0-

Proof. Let 2= (zn)nen € coo and W= (Zg(y) Jnen- Itisclearthat ¥ |z,[= 3 |27(y)-
neN neN

We set 0 = lélelll’ T = Izgkl“)ll for k=1,2,...., 0 = (O )ken and T = (T )gen. If

neN neN

(1) =1, we set ¢ : N — N defined by ¢(n) = n(n+ 1) — 1. Then it is easy to see
that ¢ is a permutation and 0y(,) = 7, for every n € N. So, 0 and 7 are equivalent. If
n(1) # 1, we put n; = 7(1) and ny = £~ '(1). Then the function ¢ : N — N defined
by ¢(n) =m(n+1)—1if n #ny—1 and ¢(np — 1) =n; — 1, is a permutation with

property T, = Oy, for n#ny —1. Itis clear that Oy, 1) = Opj—1 = Op(1)-1 = ‘;ﬂ(llz)n‘l
neN
|Znn ‘
and T, = Pl Ii)zl = Zlmlll So, Ty,—1+ 2 On = Op(n,—1)+ X Tn = L. Hence, o and

neN
T are complementary Therefore l|zllw = ||WHW O

PROPOSITION 3.4. Let yw € ¥, be invariant and m: N — N be a permutation.
Then ||(zn)nenlly = | (za(n) Jnenly for every (zn)nen € Ly

Proof. Let (zu)nen € Ly and w = (Zz(n) Jnen. We put Z = (z1,.-,2,0,...) and
Wi = (2r(1)» -+ 2a(k),0,---) for k=1,2,... Let k € N. For every i = 1,...,k there exists
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Ji such that z; = z,(;y. Let m = max{j; :i=1,....k}. We put % = (va)uen, Where
Vji =2g(j) =% fori=1,...k and v, =0 for n # ji,i=1,...,k. Then, from lemma 3.3
and from properties of y-norm, we obtain ||Z|| = ||Vx|| < ||Wm||. Therefore ||z|y <
[l Similarly, we obtain [[wily < [l So Izl = [w]y-

It is easy to prove the following lemma.

LEMMA 3.5. Let w € ¥, be invariant and 7 : Z — 7 be a permutation. If 7 =

(zn)nez € by(Z) and w = (2g(n) ez, then
i)wely(Z), and

ii) T(W) = (2n(z(1)) )1eN-

From proposition 3.4 and lemma 3.5 we obtain the following corollary.

COROLLARY 3.6. Let vy € Y, be invariant and 7 : 7Z — Z be a permutation.
Then ||(zn)nezlly = | (za(n) )nezlly for every (zn)nez € Ly (Z).

Let (X, )cz be a family of Banach spaces. We define

( 2 ®X> { (Xn)nez = (I1xXnl)nez GKW(Z)}
"

n=-—oco

Jroo
and ||x=T((xn>nez>||wforeveryx=<xn>neze( 5 eaxn) |
W

oo

Let E = (Ep,E;) be a Banach couple, 6 € (0,1) and y € ¥,,. We are going to
define the K- and J- interpolation spaces when the Banach sequence space is the space
04 = {(zn)nez € C=: (27|23 )nez € £y (Z)} with [[(za)nez]l = ||(27" 2 Jnez]|,, - Tt
is not difficult to see that Ee is K-nontrivial, i.e. (min(1,2")),ecz € Eg and J-nontrivial,

ie. sup{ i emin(1,27")|ay| : (an)nez € Bffz} < oo(in terminology of [9]).

DEFINITION 3.7. Let E = (Eg,E}) be a Banach couple, 6 € (0,1) and y € ¥,,.
i) The K-interpolation space (Eo,E1)g,yk is the space of all a € XE such that

lallo = Il (27K (2", a,E0,ED) -
nez

ii) The J-interpolation space (Eo,E1)g,y s is the space of all a € YE, for which
there exists a sequence (u,)nez in AE such that @ = 3,7 _u, (convergence in XE)

and (J(2",un,Eo,E1)),ez € éﬁ, equipped with the norm

oo
llal| :inf{H (Z_BHJ(Z",un,Eo,E1)> ZH fa= Z Un, Uy EAE YneZ,
neslly

N=—oc0

; 0
(J(2",un,Eo,E1)) ez € éw}
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The classical spaces (Eo,E])g,, 1 < p < o, are spaces of this type. It is possible
to define K- and J- interpolation spaces using the sequence space £y ... This will cover
also the classical case (Ep,E|)g -

It is clear that AE C (E07E1)9,u/,Ka (EO,E1)97W7‘] C XE.

A consequence of the fundamental lemma of interpolation is the imbedding
(Eo,E1)6,w,x C (Eo,E1)e,y- If the function y is invariant, then the norm of the space
Ly (Z) is translation invariant and it is easy to see, that Calderon operator Q : £, (Z) —
Ly(Z), defined by Q((an)nez) = (Ej’;:_wmin(LZ”_m)|am\)nez, is bounded. In this
case (see [9], [3]) we have that the K- and J-method spaces coincide (with equivalence
of norms) It is easy to see that the spaces (Eo,E1)g,yx and (Eo,E1)g,y s are exact
interpolation spaces.

In the following theorem we prove that these spaces are of interpolation type 6
when y is invariant.

THEOREM 3.8. If (Ey,E1) is a couple of Banach spaces, 0 < 0 <1 and y is
an invariant function in W, then the space (Eo,E1)g, is of interpolation type 6.
Moreover; for every two Banach couples A = (Ag,A;), B= (Bo,B;) if T : 2A — 3B,
with T|a, : Aj — B; for i =0,1, then ”T“H(BmBn)e.w.K < 29Mé_6M19||a||(A07A1)9‘W‘K for
every a € (Ao,A1)e,y,x, Where My = ||T\A0H and My = ||T |4, ||

Proof. Let y € ¥, is invariant, A= (Ag,A1), B= (Bo,B;) two Banach couples
and T : XA — 2B, with Ty, : A; — B; for i=0,1. We put M; = ||T|4,|| for i=0,1. From
corollary 3.6 [|-,, is invariant under permutation and hence it is translation invariant.
Since

K(t,Ta,Bo,B1) < _inf (||Taolls, +t[[Tarlls,) < _inf (Mollaolla +Millaslls,)
Mt
<M0K<—1707A0,A1>
My
we get

HTa”(B(),Bl)g‘W.K = H(z neK(zn Ta B07Bl))nEZHU/

(2’ neK( 2" 7a7A07A1>)nEZ
My ”

Let m € Z be such, that 2" < %—(‘) < 2m+1l Then

1Tall(Bo.B1)gyx < Mol|(27" 0K (2" a, A, A1) )nezly
= My||(2~ (mtm0p(me D0 (2ntm L g Ay A)))nezlly

= 1‘/102(erl e‘aH (A0,A1) 6,k

M,

<M0<M

0 0
) I4lap o = 2°ME M Lall A1y

The proof is complete. [
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PROPOSITION 3.9. Let E = (Ey,E1) be a Banach couple, 0 € (0,1) and y €
Wo. Then 27"0K(2", a) < ||allo.y.x < Co2 "0J (2™, a) for every a € AE and m € Z,
where CQ = m

Proof. Let m,n € Z. From the inequality, min (1,%) K(s,a) < K(r,a) [1], by
replacing ¢ by 2" and s by 2", we get 279 min(1,2"")K (2", a) < 27"°K(2",a) and
so, we obtain

K@"a)|(27min(1,27") | < lallo,px-
n€Zlly

Therefore
mo

A m

K(2",a) <

lallo,y.x,
where A, = ||(20"9 min(1,2"")) ez |l y-

Since 1 < A,, we obtain 270K (2" a) < ||al|g.y k-

Consider now the inequality K (r,a) <min (1,%)J(s,a). By replacing ¢ by 2" and
s by 2" we get

270K (2" a) < 27M020m M0 min(1,2""™)J (2", a).

Therefore, we obtain ||a||g.yx < Aw2 ™07 (2™, a). Since [l < lIll; we have

Ap < Y 200 min(1,2"™) = Y 270 min(1,2") = Co.

n=—oco n=—oo

So, |lallo,y.x < Co27m0J(2" a). O

Using Proposition 3.9 a generalization of so called Lions-Peetre lemma about
compactness can be proved but for brevity we will omit here the proof.

THEOREM 3.10. Let B be a Banach space, A = (Ay,A1) a Banach couple and T
be a linear operator. Let 0 < 0 < 1.

i) T :3A — B, with T|a, : Ao — B compact and T\Al : A1 — B bounded, then
T : (Ao,A1)e,y.x — B is compact.

ii) T:B— AA, T:Bw— Ag compact and T : B +— A bounded, then T : B —
(A0,A1)e,y is compact.

Let A be a Banach space, v € ¥, and 0 < 0 < 1. The space Eg,(A) is defined

as the space of the sequences (04 ),z of A such that (279 ||o,||)nez € £y(Z), with
I(ew)nezll = |2~ It nez |-

THEOREM 3.11. Let A be a Banach space, W, Wy, W1 € Yy and 0 <0 < 1. If ¢

is invariant then ({y, (A),Elll,l (A))o.y = Eg,(A) up to equivalence of norms.
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Proof. Using properties of ||-[|,, as wellas K(,a eo(A), LL(A)) ~ sup; min(1,727)
laj|la and K(t,a,¢1(A),01(A)) ~ Zr="Zmin(1,:2")|as||4, which are proved like in
Theorem 1.18.2 [12], we can prove the following chain of embeddings

C3(A) C (1(A), £1(A))o,y © (Ly(A), Ly, (A))o,y C (£s(A), L0 (A) ),y C L3 (A).

So, (Ly, (A),élll,1 (A))o.y = Eg,(A) up to equivalence of norms. [

REMARK. The particular case (£y,,ly, )o,y = éﬁ, can be obtained from results of
[9]. Indeed, when v is invariant, the space 63, is K-nontrivial and J- nontrivial and
so (Eo,E1)e,y.x = (Eo,E1)e,y,; = (Eo,E1)g,y for every Banach couple (Eo, E;) and
0 < 0 < 1. Therefore, the conditions of Corollary 2.6 [9] are fulfilled and we have
€9, = (£1,01)g,yy- Under the same conditions Corollary 2.9 [9] gives £, = ({ws, (L )0,y
Therefore, we get following chain of embeddings

09 = (01, 01) 0,y C (Lygs Ly o,y C (Loor ) g,y = 05,

Thus (£y,, ¢y, )e.y = L5 up to equivalence of norms.

Let (Eo,E|) be a Banach couple, v is an invariant function in ¥, and 0 < 6 <
1. We are going to determine the dual space of (Eo,E1)g,y. If a € (Eo,E1)g,y =
(Eo,E1)e,ys then a can be represented in the form ¥, ="_u, with u = (u,) € AE
and |la| g, = inf{|| (2707 (2" u,,7E07E1 ) a= """ _uy, u, € AE}.

E)o,y. neZng : n=—co
Let u = (u,) € AE such that a = $p="_ u, and (279J(2",un,Eo,E1)),, € ly(Z).
For every € > 0, we can find ¢ = (Cn)nEZ €D:||b—cl|ly <& where b= (by)pez =

(2799 (2", un, Eo, E1)), ., - Then
n=N
a— Z Uy
n=—N
(Eo.E1)0,y0
< H(O7"'?0?bN+1?b (N+1)» )HW
< |I(Ibo = col, |bl_Clmbfl_Cfl|7~”v|bN_CN‘v|b—N_C—N|7bN+1»~~~)HW
=lb—clly <e.

So, we get that AE is dense in (Eg,E})g,y-
Now, from the embedding (dense) AE C (Eo,E})p,, C ZE we get AE” C (EO,El)’e_W
CXE.

THEOREM 3.12. If AE is dense in Ey and E, 0 < 0 < 1 and  is an invariant
functionin ¥ such that Ly, has a shrinking basis, then (Eo, E1)p \, = (Eq, E})o,y (With
equivalent norms).

Sketch of the proof. We mention, that if AE is dense in Eg and E;, then the
following equalities hold K(r,d’,E{,E|) = Sup cpx J(K“aig‘E) and J(t,d ,E),E}) =
SupuEAE K(t ‘<aaaEilEl) [1]
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As in the proof of the corresponding Theorem 3.7.1 [1], we can show that
(A0,A1) 7 C (A1,AQ)1—p ek and (A},AQ)1—p, s C (A0, A1)y k- The proof of these
embeddings goes in the same way, replacing the space A#:4 by Kl,f, . Note that the spaces
éf;, and Ei,;“ are in duality, generated by the bilinear form Y, 27"a,b, when £y, has
shrinking basis. As a consequence of fundamental lemma of interpolation theory the K
interpolation space is embedded in the J interpolation space for any function from ‘¥, .
Moreover, invariantness of ¥ and equality K(27",a,Eo,E;) =27"K(2",a,E},Ey) give
that (Eo,E1)e,y = (E1,E0)1—6,y- Since for y invariant J and K spaces coincide up to
equivalence of norms, these embeddings with u =1—0, Ag = E|,A| = Ep give

(E07E1)/9,u/ = (E17E0)/179,u/ = (ElvEO)llfe,u/,J - (E(/)7Ei)9~,lll*7K c (E(/)in)e.,lll*J
c (E17E0)/179,u/,K = (ElvEO)llfe,w = (E07E1)/9,u/' U

If we want to avoid the condition the space ¢y, to have shrinking basis, then we
will arrive not to the space (Ey,E])g,y+ but to a space, generated by the space (y ..
We are not going to consider here this situation in details.

Let (Ep,E;) be a Banach couple. Sometimes is more proper to consider the space
(Eo,E1)6,p,4> 0< 0 <1, 1 <q < which is defined as follow.

For n=1,2,... let the space X, = Eo+ E; with |jal| =27"°K,(2",a,Ey,E) for
a € X,, where K,(t,a,Eo,E1) = aziﬂrgiﬁ(”a”%ﬂ +z‘1(||a||%l)l/q. Then (Eo,E1)o.yq =

{a€ Eo+E :|ally,, <} where [la]ly, , = (2"9Kq(2"7a7E07E1))neNHW.

Actually we should write (Eo,E1)g,yq and [lal|g, , x butif there is no misun-
derstanding, we will omit K.

The space (Eo, E1)g,y 4 is the subspace of the constant sequencesin ( ¥ @ Xy q)y-
n=1

If 6(¢) =min(Jg,(€),dE, (€)), where Og,(€) and g, (&) are the modulus of convexity
of Eg and Ey, from [6] we have that inf,cy O, ,(€) > 555 (56 (%)) - Therefore, from
[13] we obtain the following corollary.

COROLLARY 3.13. Let (Ey,E|) be a Banach couple, 1 < g < 4o and ¢y € ¥,.

i) If Ly is uniformly convex and the spaces Ey and E| are uniformly convex (resp.
uniformly non-square), then the space (Eo,E|)g,y.q is uniformly convex (resp. uni-
formly non-square).

ii) If £y is uniformly smooth and the spaces Ey and E| are uniformly smooth,
then the space (Eo,E|)g,y,q is uniformly smooth.

Moreover, for ¢ € ¥, we can define generalized K, functional as K, (¢,a,Eo,E;) =

. . t]|al|
infuag s | lollzy +larllz) g = infaaq-ar (laollz, +tllar ) (Emetiars )

When ¢(r) = ¢1(r) = 1 we get Peetre K -functional. When ¢(¢) = ¢, () = ((1—1)7+

1
t9)a we get Holmstedt-Peetre K -functional K, (t,a,Eo, E;). The function ¢(z) is con-
vex, 9(0) = 1,¢(1) = I,max(t,1 —1) < ¢(t) < 1 and infe(t) > min(r,1 —1) =}, i.e.
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< () < 1. Hence for Ky (t,a,Eo,Ei) = Ky(t,a) we have

NI
/

1 .
7K(ta) SKp(t,a) <K(t,a) = inf ([laollg, +llallE,)-

ap
But K(t,a) < min(1,?)l|al|sz) and K(t,a) > min(1,7)|al|5g). Hence
1. .
5 min(L1)llallse) < Ky (1,a) < min(L,1)]al|ae),
i.e. we get an intermediate space E (A(E) C E C £(E)) , where E = (Eo,E})g ¢ has

norm
0.p,0 = H ({279"K¢(2"707E0,E1)}>

i

nez Ip '

Because of the inequalities 1 ||allo, < |lallo,p.p < |lallp,, Where ||allq,, is the norm
of the space (Eo,E)g,, generated by the usual functional K(,a),we get again the
space (Eo,E)p p with equivalent norm ||al|g ,». We can of course consider another
generalization, namely the space (Eo,E|)g,y,o, With norm

Ha‘ 9,11/,(,0 = H (279"K(P(2n7a7E0aEl)>

nEZHy/'

As above we see that this norm is equivalent to the norm of the space (Eo,E})g,y,. So,
we see that different second functions, namely ¢’s, give equivalent norms.
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