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Abstract. In this short note a Chebyshev type sharp upper bound is presented for the tail prob-
ability of scale mixtures of the zero mean multivariate normal distribution, only in terms of the
variance. Similar estimation is proved for the probability content of an arbitrary ellipsoid con-
taining the origin.

1. Introduction

The classical Bienaymé–Chebyshev inequality says that

P(|X −E(X)|� t) � Var(X)
t2

holds for every positive t . This simple inequality is valid for all univariate random
variables X with finite variance, but in particular cases, when more is known about
X , it can be improved significantly. For instance, there exist sharper inequalities for
random variables having unimodal distribution [14], or finite higher moments, and also
in the case where X is a sum of n i.i.d. random variables [1], etc. Efforts have also
been made to construct similar inequalities for random vectors, see e.g. [2, 9, 10]. In a
recent paper [13] sharp lower bounds are presented on the probability of a set defined
by quadratic inequalities, given the first two moments of the distribution. Though the
bounds are not explicite, they can be efficiently computed using convex optimization.

Let Z = (Z1, . . . ,Zn)� be an n -variate standard normal vector, and S a symmetric,
positive semidefinite random matrix of size n× n , independent of Z . Scale mixtures
of the n -variate standard normal distribution are defined as distributions of random
vectors X of the form X = S1/2Z .

Scale mixtures of multivariate normal distributions are widely applied in many
fields, though in most cases S is a random scalar multiple of a fixed positive semidefi-
nite matrix [3, 4, 6, 7, 8, 11]. If S is not of that simpler form, the mixture is no longer
elliptically contoured: the equiprobability contours are star-convex from the origin, but
not convex in general.
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Clearly, EX = 0, and Var(X) = ES = Σ . We want to estimate the tail probabil-
ity P

(‖X‖ � t
)
, for t > 0, similarly to the univariate case. One can apply Markov’s

inequality to ‖X‖2 to obtain

P
(‖X‖ � t

)
= P

(‖X‖2 � t2
)

� E‖X‖2

t2
=

tr Σ
t2

. (1)

While (1) is valid for all random vectors with zero mean and finite variance, it may
turn out to be weaker than optimal when X is known to possess a particular structure.
Therefore, we are lookig for the smallest constant C = Cn for which

P
(‖X‖ � t

)
� C · tr Σ · t−2 (2)

holds for every positive t , whenever the distribution of X is a scale mixture of the
n -variate standard normal distribution.

The aim of the present note is twofold. First, we determine the value of Cn , then
we extend inequality (2) to the probability content of ellipsoids containing the origin.

2. Results

First we characterize the optimal constant Cn .

THEOREM 1.
Cn = max

t>0
tP(Vn � t),

where the distribution of Vn is gamma, with parameters n/2 , n/2 (see Table 1).

n Cn n Cn n Cn n Cn

1 0.33143 6 0.45703 12 0.52803 30 0.62656
2 0.36788 7 0.47214 14 0.54457 40 0.65653
3 0.39649 8 0.48560 16 0.55899 50 0.67905
4 0.41998 9 0.49771 18 0.57174 100 0.74381
5 0.43985 10 0.50871 20 0.58314 1000 0.89215

Table 1. Value of the optimal constant in n dimensions.

Proof. Let us first suppose that S is a constant (i.e., non-random) matrix. Let S =
UΛΛΛΛU� be the spectral decomposition of S , where ΛΛΛΛ = diag(λ1, . . . ,λn) is a diagonal
matrix with the eigenvalues of S in the main diagonal, and U is an orthonormal matrix
(i.e., U−1 = U� ). Then

‖X‖2 = Z�SZ = Z�UΛΛΛΛU�Z = λ1W
2
1 + . . .+λnW

2
n ,

where the distribution of W = (W1, . . . ,Wn)� = U�Z is n -variate standard normal, that
is, W1, . . . ,Wn are i.i.d. N(0,1) random variables. Let

Cn = max
{
tP

(
λ1W

2
1 + . . .+λnW

2
n � t

)
:

λ1, . . . ,λn � 0, λ1 + . . .+λn = 1, t > 0
}
, (3)
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then

P
(‖X‖ � t

)
= P

(‖X‖2 � t2
)

= P
(
λ1W

2
1 + . . .+λnW

2
n � t2

)

� Cn
λ1 + . . .+λn

t2
= Cn

trS
t2

.

When S is a random matrix, the same inequality holds for the conditional probability:

P
(‖S1/2Z‖ � t

∣∣ S
)

� Cn
trS
t2

.

By taking expectations on both sides, and remembering that trace and expectation can
be interchanged, we obtain

P(‖X‖ � t) � Cn
tr Σ
t2

. (4)

Thus, the optimal constant Cn in (4) is given by (3).
Let t be fixed, and λ1, . . . ,λn vary, in such a way that P

(
λ1W 2

1 + . . .+λnW 2
n � t

)
is maximal. By Theorem 1 of Székely and Bakirov [12] it follows that all non-zero
coefficients λi must be equal. Hence

Cn = max
i�n

max
t>0

tP(Vi � t),

where the distribution of Vi is gamma with parameters i/2, i/2.
Since EVi = 1, max

t>0
tP(Vi � t) is equal to the minimal value of constant κ with

which
P
(|X | � x

)
� κ E|X |/x

holds for every positive x and arbitrary symmetric random variable X of the form
|X | = σVi , where the random variable σ > 0 is independent of Vi (see Remark 2 of
[5]). In terms of [5], this κ is the Chebyshev constant associated with α = 1 in the
family of scale mixtures of the two-sided gamma distribution with parameter ν = i

2 −1
(Example 4 of [5]). By Theorem 4 of [5], the Chebyshev constant is an increasing
function of the parameter ν , that is, of i . The proof is completed. �

The probability on the left-hand side of (1) can also be written in the form P(X /∈
M ) , where M ⊂ R

n is the open ball with center 0 and radius t . Let us extend in-
equality (1) to arbitrary ellipsoids containing the origin.

THEOREM 2. Let A be a positive definite n×n matrix, a∈R
n , and t > 0 . Define

M = {x ∈ R
n : (x−a)�A(x−a) < t2};

an ellipsoid with center a. Suppose that 0 ∈ M , that is, a�Aa < t2 . Let the distri-
bution of the random vector X be a scale mixture of the n-variate standard normal
distribution, with variance Σ . Then

P(X /∈ M ) � Cn tr(ΣA)t−2, if a = 0, (5)

P(X /∈ M ) � Cn

t2−a�Aa

(
tr(ΣA)

t

t−
√

a�Aa
− a�AΣA�a

a�Aa+ t
√

a�Aa

)
, if a �= 0,

(6)
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where Cn is given in Theorem 1.

Proof. Let us first suppose that a = 0. Clearly, X /∈ M if and only if ‖Y‖ � t ,
where Y = A1/2X = (SA)1/2Z . Thus Y is a scale transform of the n -variate normal
distribution again. Since E(SA) = ΣA , inequality (5) immediately follows from (4).

In the general case we first show that M ⊃ M1∪M2 , where

M1 =
{

x ∈ R
n : a�Ax < 0, x�Ax <

(
t−

√
a�Aa

)2}
,

M2 =
{

x ∈ R
n : a�Ax � 0, x�(A−B)x < t2−a�Aa

}
,

with B =
2Aaa�A

a�Aa+ t
√

a�Aa
.

M1 and M2 are obviously disjoint. Both are halves of ellipsoids centered at the
origin. The first one is homothetic to M . In order to show what the second one is, let
us check that A−B is positive definite. Let x ∈ R

n be different from 0. Using that
a ∈ M we have

x�Bx =
2
(
a�Ax

)2

a�Aa+ t
√

a�Aa
<

(
a�Ax

)2

a�Aa
� x�Ax.

Suppose x ∈ M1 . Then by using the triangle inequality we get

(x−a)�A(x−a) �
(√

x�Ax+
√

a�Aa
)2

< t2.

On the other hand, let x ∈ M2 . Then

(x−a)�A(x−a) = x�Ax−2a�Ax+a�Aa < t2 + x�Bx−2a�Ax,

therefore it suffices to show that x�Bx � 2a�Ax , that is,

(a�Ax)2 � (a�Ax)
(
a�Aa+ t

√
a�Aa

)
. (7)

Let us start from the inequality

(
a�(A−B)x

)2 �
(
a�(A−B)a

)(
x�(A−B)x

)
�

(
a�(A−B)a

)(
t2−a�Aa

)
. (8)

Here

a�(A−B)x =
(
a�Ax

) t−
√

a�Aa

t +
√

a�Aa
. (9)

Let us apply (9) to both sides of (8). Then we get

(
a�Ax

)2 � t +
√

a�Aa

t−
√

a�Aa

(
a�Aa

)(
t2−a�Aa

)
=

(
a�Aa+ t

√
a�Aa

)2
, (10)

which is equivalent to (7). Thus M2 ⊂ M .
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Since scale transforms of the multivariate normal distributions are diagonally sym-
metric (that is, X and −X have the same distribution), we have

P(X ∈ M1) =
1
2

P
(
X�AX <

(
t−

√
a�Aa

)2
)

� 1
2

(
1−Cn · tr(ΣA)(

t−
√

a�Aa
)2

)
,

and similarly,

P(X ∈ M2) =
1
2

P
(
X�(A−B)X < t2−a�Aa

)
� 1

2

(
1−Cn · tr(Σ(A−B))

t2 −a�Aa

)
.

Using the cyclic invariance of the trace operator we can write

tr(ΣB) =
2tr(ΣAaa�A)

a�Aa+ t
√

a�Aa
=

2a�AΣAa

a�Aa+ t
√

a�Aa
.

Hence,

P(X ∈ M ) � 1−Cn tr(ΣA)
1
2

(
1

t2−a�Aa
+

1(
t−

√
a�Aa

)2

)

+Cn
a�AΣA�a

a�Aa+ t
√

a�Aa
· 1
t2−a�Aa

,

which is tantamount to (6). �
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