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Abstract. This paper is devoted to give estimates involving the norm for classes of projection
operators (used, for example, in the theory of deformable models) and to obtain theorems con-
cerning the convergence or the superdense unbounded divergence corresponding to these opera-
tors.

1. Introduction

Let C be the Banach space of all continuous functions f : [−1,1] → R , endowed
with the uniform norm and let Pn be the space of all polynomials of degree at most n .
If r � 1 is an integer, denote by Cr the space of all functions f : [−1,1] → R which
are continuous together with their derivatives up to the order r ; we admit C0 = C .

The linear and continuous operators Un :C→Pn , n � 0, are said to be projection
operators (shortly: projections) of C into Pn if the equality Un f = f holds for each
n � 0 and f ∈ Pn .

The fundamental purpose of this paper is to obtain inequalities involving the norm
for classes of projection operators, such as least squares projections of integral type and
discrete best approximation operators, which are used in the theory of deformable mod-
els. Based on these inequalities, we shall prove theorems concerning the convergence
or the superdense unbounded divergence of the corresponding family of projections.
Consequently, in the second section of the paper, we shall present, shortly, general
estimates involving the norm of projection operators.

The following principle of the condensation of singularities will be used in the
third section.

THEOREM 1.1. [3] If X is a Banach space, Y a normed space and (An)n�0 is
a sequence of continuous linear operators from X into Y so that the set of norms
{‖An‖ : n � 0} is unbounded, then the set of unbounded divergence associated to the
family {An : n � 0} , i.e.

UD(X) = {x ∈ X : limsup
n→∞

‖Anx‖ = ∞} (1.1)

is superdense in X .
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The set UD(X) is named, also, the set of singularities of the family {An : n � 0} .
We recall that a subset of a topological space T is said to be superdense in T if it is
residual (i.e. its complement is of first Baire category), uncountable and dense in T .

In what follows, we shall denote by Mk , k � 1, some positive constants which do
not depend on n . We shall write, usually, an ∼ bn if the sequences of real numbers
(an) and (bn) , with bn �= 0, ∀ n � 0, satisfy the inequalities 0 < M1 � |an/bn| � M2 ,
∀ n � 0 [10], [11].

2. Estimates involving the norms of projection operators

Suppose that Un : C → Pn , n � 0, are projection operators. Writing Un f − f =
Un( f −P)+P− f , we deduce:

‖Un f − f‖ � (‖Un‖+1)‖ f −P‖; f ∈C; P ∈ Pn. (2.1)

It is known that for f ∈ Cr[a,b] , the distance from n -th degree polynomials is
bounded by

const(r) ·
(

b−a
n−1

)r

ω
(

f (r);
b−a

2(n− r−1)

)
(2.2)

where const(r) = 6(3er)/(1+ r) , [7].
Now, it follows from (2.1) and (2.2):

‖Un f − f‖ � M3(‖Un‖+1)n−rω
(

f (r);
1
n

)
; f ∈Cr, r � 0 (2.3)

where M3 depends on r .
Further, let us point out, a lower bound for the norm of the projection operators

Un , n � 0. If Tn : C → Pn , n � 0, are linear and continuous operators and

Δn = sup{‖Tn f − f‖ : f ∈ Pn, ‖ f‖ � 1}, n � 0,

then the following inequalities

‖Tn‖ � 2
π2 (1−Δn) lnn+O(1), n � 1 (2.4)

hold, [8]. The relations (2.4) generalize the famous Theorem of Lozinski and Harsi-
ladze, which asserts that for any family of projection operators (Un)n�0 , i.e. Δn = 0,
∀ n � 0, the inequalities

‖Un‖ � 2
π2 lnn, n � 1, (2.5)

are valid, [9].
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3. Convergence and superdense unbounded divergence for projection operators

The relations (2.3) lead to the following statement.

THEOREM 3.1. Suppose that (Un)n�0 are projection operators and r � 0 is a
given integer.

1◦ . If ‖Un‖ = O(nr) , then the sequence (Un)n�0 is convergent on the space Cr ,
i.e. lim

n→∞
Un f = f , ∀ f ∈Cr .

2◦ . If ‖Un‖ = O(lnn) , then the sequence (Un)n�0 is convergent on the subset
DL(C) of all functions f ∈C which satisfy a Dini-Lipschitz condition lim

δ↘0
ω( f ;δ ) lnδ =

0 .

Regarding the topological characterization of the set of unbounded divergence as-
sociated to a family of projection operators, we get:

THEOREM 3.2. If {Un : n � 0} is a family of projection operators, then the cor-
responding set of unbounded divergence UD(C) , described by (1.1), is superdense in
the Banach space (C,‖ · ‖) .

Proof. Let us take X =C , Y = Pn and An =Un in Theorem 1.1. The inequalities
(2.5) provide the unboundedness of the set {‖Un‖ : n � 0} .

4. Projection operators in the theory of deformable models

This section is devoted to emphasize important classes of projection operators,
which are used in the theory of deformable models, in order to approximate some
curves or surfaces. A 2D deformable model is based on a parametric curve (γ) : v =
v(s) = (x(s),y(s)) , −1 � s � 1, but it is often represented by a discrete set of points
vi = (xi,yi) , named snaxels, [4], [5]. We associate to this curve the so-called energy-
functional E(v) defined by an integral involving a function φ(v,g) which measures the
distance between the “reconstruction” g(s) and the data v(s) . For the sake of simplicity,
we consider an explicit cartesian curve, i.e. v = (x,y) , with x(s) = s and y(s) = f (s) ,
s ∈ [−1,1] . Our goal is to find that “reconstruction” g , belonging to a given space of
functions (usually a class of polynomials), which minimizes φ( f ,g) .

A. Least-Squares Projections of integral type
Let w : [−1,1] → R be a weight-function and denote by (en)n�0 the sequence of

orthonormal polynomials with respect to w . It is known that for each f ∈C and n∈N ,
the polynomial g = Un f for which the infimum of the set{∫ 1

−1
w(x)[P(x)− f (x)]2dx : P ∈ Pn

}

is attained, is given by

Un f =
n

∑
k=0

〈 f ,ek〉 · ek, (4.1)
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where 〈 f ,ek〉 =
∫ 1

−1
w(x) f (x)ek(x)dx , [2], [6].

It is a simple exercise to obtain the inequalities

‖Un f‖ �
(

n

∑
k=0

τk‖ek‖
)
‖ f‖, f ∈C, n � 0 (4.2)

with τk =
∫ 1

−1
w(x)|ek(x)|dx .

Further, let us take as w(x) the Jacobi-weight

w(x) = (1− x)α(1+ x)β , α > −1, β > −1

and denote by P(α ,β )
n , e(α ,β )

n the corresponding Jacobi polynomials and orthonormal
Jacobi polynomials, respectively. In order to estimate the norm of Un , we get for τk of
(4.2), by means of Cauchy-Schwarz-Buniakowski inequality:

τ2
k �

∫ 1

−1
w(x)dx

∫ 1

−1
w(x)e2

k(x)dx =
∫ 1

−1
w(x)dx

=
∫ 1

−1
(1− x)α(1+ x)βdx.

With the substitution x = 2t−1, we obtain [9], [11]:

τ2
k � 2α+β+1 · Γ(α +1)Γ(β +1)

Γ(α +β +2)
= M4. (4.3)

Regarding e(α ,β )
k , k � 0, we have [9]:

e(α ,β )
k = δkP

(α ,β )
k ;

δ 2
k =

Γ(α +β +2k+2)
2α+β+1Γ(α + k+1)Γ(β + k+1)

(
α +β +2k

k

)−1

(4.4)

where (
m
n

)
=

m(m−1) . . .(m−n+1)
n!

, m ∈ R, n ∈ N.

In accordance with the estimates

(
n+α

n

)
∼ nα and Γ(n+α +1) ∼ n!nα , α >

−1, we obtain by standard computations:

δk ∼
√

k. (4.5)

Now, the relations (4.4) and (4.5), together with the estimate

‖P(α ,β )
k ‖ ∼ kμ ,
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with μ = max

{
max{α,β},−1

2

}
, [11], give

‖e(α ,β )
k ‖ ∼ kμ+1/2

which, combined with (4.2) and (4.3), leads to the inequalities:

‖Un f‖ � M5n
μ+3/2‖ f‖; n � 0, f ∈C.

So, we conclude:
‖Un‖ � M5n

μ+3/2. (4.6)

We are in a position to prove the following statement.

THEOREM 4.1. Suppose that {Un : n � 0} is the family of the least-squares pro-
jections of integral-type, defined by (4.1).

1◦ The set of unbounded divergence UD(C) of the family {Un : n � 0} is super-
dense in the Banach space (C,‖ · ‖) .

2◦ If w is the Jacobi-weight and r � μ + 3/2 , then the sequence (Un)n�0 is
convergent on Cr .

Proof. The assertion 1◦ is a direct consequence of Theorem 3.2, since (Un)n�0

are projection operators. The assertion 2◦ follows from (4.6) and Theorem 3.1(1◦) ,

because the hypothesis r � μ+
3
2

implies ‖Un‖ = O(nr) .

B. Projection operators of discrete type
The most classic problem in the theory of deformable models is the so-called “best

fitting”, given the position of a curve at a collection of points (si, f (si)) , 1 � i � m , at
known values of the parameter si , [4]. We can interpret physically this problem as a
spring connecting a point (Un f )(si) of the curve (γ) and a given point Ai(si, f (si)) .
From mathematical point of view, writing xi instead of si , this problem can be de-
scribed as follows.

B1. Least squares projections of discrete type
Given f ∈C , the points {x0,x1,x2,x3, . . . ,xm} ⊆ [−1,1] and the weights wj , 0 �

j � m , let us find a polynomial g = Un f ∈ Pn , n < m , so that

m

∑
j=0

wj[(Un f )(x j)− f (x j)]2 = inf

{
m

∑
j=0

wj[P(x j)− f (x j)]2 : P ∈ Pn

}

Similarly to the integral case, we consider a set of orthonormal polynomials pn ,
n � 0, with respect to the weights wj , 0 � j � m (such as Chebyshev or Krawtchouk
polynomials, [6]), and deduce

Un f =
n

∑
k=0

〈 f , pk〉pk, n � 0 (4.7)
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with 〈 f , pk〉 =
m

∑
j=0

wj f (x j)pk(x j) .

Analogous to the integral case, but performing larger computations, we can ob-
tain estimates concerning the norm of Un f − f , n � 0. In this paper, we restrict to
emphasize the following divergence result, which follows from Theorem 3.2.

THEOREM 4.2. The set of unbounded divergence UD(C) , associated to the fam-
ily of projection operators {Un : n � 0} given by (4.7), is superdense in the Banach
space (C,‖ · ‖) .
B2. Discrete best approximation projections

Given an integer m = m(n) � n + 1, n ∈ N
∗ , a node matrix M = {xk

m : 1 �
k � m, m � 1} ⊆ [−1,1] and a function f in C , we search a polynomial Un f ∈ Pn

satisfying the condition

max{|(Un f )(xk
m)− f (xk

m)| : 1 � k � m}
= min{max{|P(xk

m)− f (xk
m)| : 1 � k � m} : P ∈ Pn}.

In this paper, we shall consider the cases m = n+1 and m = n+2.
If m = n + 1, it is clear that the solution is given by the Lagrange interpolation

projections, i.e.:

Un f = Ln f =
n+1

∑
k=1

f (xk
n+1)l

k
n+1, n � 0 (4.8)

where lkn+1 , n � 1, 1 � k � n+1, are the fundamental polynomials of Lagrange inter-
polation with respect to the node matrix M .

If m = n+2, n � 0, let us denote by an+1( f )= an+1(M ; f ) the leading-coefficient
of Lagrange polynomial Ln+1 f , which interpolates f at the points xk

n+2 , 1 � k � n+2
and consider a function σn+2 ∈ C satisfying the relations σn+2(xk

n+2) = (−1)k , 1 �
k � n+2; it is easily seen that an+1(σn+2) �= 0.

Firstly, let us prove the equality

Un f = Ln+1 f − an+1( f )
an+1(σn+2)

Ln+1σn+2; n � 0, f ∈C. (4.9)

Denote by Tn f the polynomial of the right-hand of (4.9). Clearly, Tn f ∈ Pn ,
∀ f ∈C and TnP = P , ∀ P ∈ Pn (because an+1(P) = 0 and Ln+1P = P); moreover,

(Tn f )(xk
n+2)− f (xk

n+2) = (−1)k+1 an+1( f )
an+1(σn+2)

, 1 � k � n+2.

Taking into account these relations we deduce, by using Theorem of Charles de la
Vallée-Poussin, [6], [9], the equality Tn f = Un f , so that (4.9) is true.

Now, let us estimate the norm of the linear operators Un f of (4.9). We deduce
from (4.9):

(Un f )(x) =
n+2

∑
k=1

[
f (xk

n+2)+
an+1( f )

an+1(σn+2)
(−1)k+1

]
lkn+2(x), |x| � 1,
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which leads to the inequality

|(Un f )(x)| �
n+2

∑
k=1

(
‖ f‖+

|an+1( f )|
|an+1(σn+2)|

)
|lkn+2(x)|, |x| � 1. (4.10)

Denoting un+2(x) = (x− x1
n+2)(x− x2

n+2) . . . (x− xn+2
n+2) , we obtain:

an+1( f ) =
n+2

∑
k=1

f (xk
n+2)

u′n+2(x
k
n+1)

; an+1(σn+2) =
n+2

∑
k=1

(−1)k

u′n+2(x
k
n+2)

and signu′n+2(x
k
n+2) = (−1)n−k , 1 � k � n+2, so:

|an+1( f )| � |an+1(σn+2)| · ‖ f‖; f ∈C, n � 1. (4.11)

The relations (4.10) and (4.11) give:

‖Un f‖ � 2λn+1‖ f‖; n � 0, f ∈C (4.12)

where

λn+1 = max

{
n+2

∑
k=1

|lkn+2(x)| : |x| � 1

}
, n � 0,

are the Lebesgue constants.
The inequalities (4.12) prove the continuity of Un , n � 0, and together with the

standard relations [2], [9]:
λn = ‖Ln‖; n � 0 (4.13)

give:
‖Un‖ � 2‖Ln+1‖, n � 0. (4.14)

Now, by using Theorems 3.1 and 3.2, we can state

THEOREM 4.3. If M is an arbitrary node matrix of [−1,1] and {Un : n � 0}
is the family of projections defined by (4.8) or (4.9), then the corresponding set of
unbounded divergence UD(C) is superdense in the Banach space (C,‖ · ‖) .

THEOREM 4.4. Let M α , α > −1 , be the Jacobi ultraspherical node matrix

(namely, its rows are the roots of the ultraspherical Jacobi polynomials P(α)
n ) and let

{Un : n � 0} be the family of projections given by (4.8) or (4.9).
1◦ The sequence (Un)n�0 is convergent on the space Cr in the following situa-

tions:

(i) α � −1
2

, r � 1 ;

(ii) α > −1
2

, r � α +
1
2

.

2◦ If α �−1
2

, then the sequence (Un)n�0 is convergent on the subset DL(C)⊆C

of all functions f ∈C which satisfy a Dini-Lipschitz condition lim
δ↘0

ω( f ;δ ) lnδ = 0 .
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Proof. Indeed, we deduce from (4.13) and (4.14):

‖Un‖ = λn for (4.8) and ‖Un‖ � 2λn+1 for (4.9). (4.15)

On the other hand, we obtain from [1]:

λn =

⎧⎨
⎩

O(lnn+‖P(α)
n ‖√n), if α > − 1

2

O(lnn), if α � − 1
2

(4.16)

The relations (4.15) and (4.16), combined with the estimate ‖P(α)
n ‖ ∼ nα , α �

−1
2

, [11], prove the assertion 1◦ , because ‖Un‖ = O(nr) . Moreover, if r = 0 and α �

−1
2

, the second relation of (4.16) is used. Now, apply Theorem 3.1, which completes

the proof.
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