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Abstract. In 1985 Godunova and Levin have considered the following class of functions. A
function f : I → R is said to belong to the class Q(I) if it is nonnegative and for all x,y ∈ I
and t ∈ (0,1) , satisfies the inequality:

f ((1− t)x+ ty) � f (x)
1− t

+
f (y)
t

Here I is an interval of R .
It is known that all nonnegative quasiconvex functions belong to this class and this class of

functions coincides with the class of Schur functions S (I) , that is, with the class of nonnegative
functions that satisfy the inequality

∑ f (x) (x− y) (x− z) � 0 for every x,y,z ∈ I

The aim of this paper is to survey some important properties of functions belonging to these
classes of functions and to prove some new results concerning properties of functions from them.

1. Introduction

The following inequality is known as the Schur inequality.
Theorem. Let x,y,z be nonnegative real numbers. Then for every r > 0 the fol-

lowing inequality holds:

xr (x− y)(x− z)+ yr (y− z)(y− x)+ zr (z− x)(z− y) � 0 (1.1)

Equality holds if and only if x = y = z or if two of x,y,z are equal and the third is zero.
In case the exponent r is an even number then inequality (1.1) holds for every

x,y,z real numbers.
One of the reasons for which Schur’s inequality is studied is related to its applica-

tions to geometric programming.
Geometric programming is a part of nonlinear programming where both the objec-

tive function and constraints are polynomials with positive coefficients (posynomials),
that is

P(x1,x2, ...,xn) = ∑
|α |�m

aαxα1
1 xα2

2 ...xαn
n
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where α = (α1,α2, ...,αn) is a n -dimensional vector with components natural num-
bers, |α| = α1 +α2 + ....+αn and all coefficients aα are nonnegative numbers. Ex-
panding terms in (1.1) we get

∑xr+2 + xyz
(
∑xr−1)�∑xr+1y+∑xr+1z

Therefore Schur’s inequality is equivalent to an inequality between two posynomials.

DEFINITION 1.1. Let D be a subset of R containing at least two elements and
f : D → R be a map. Denote by S( f ,x,y,z) the sum

f (x) (x− y)(x− z)+ f (y)(y− z)(y− x)+ f (z) (z− x)(z− y)

We shall say that a function f : D → R belongs to the class S (D) of Schur functions
if the following inequality holds:

S( f ,x,y,z) � 0 for every x,y,z ∈ D (1.2)

One can easily see that all the functions from S (D) are nonnegative.

In [7] E. M. Wright had generalized the Schur’s inequality, showing that the in-
equality (1.1) holds if the function f (x) = xr is replaced with a nonnegative convex
function or with a nonnegative monotone function.

Consequently nonnegative convex functions and nonnegative monotone functions
belong to the class of Schur functions defined on some interval D .

In [2] Godunova and Levin had introduced the following class of functions:

If D is an interval of R a function f : D → R is said to belong to the class Q(D)
if it is nonnegative and for all x,y ∈ D and t ∈ (0,1) , the following inequality holds:

f ((1− t)x+ ty) � f (x)
1− t

+
f (y)
t

(1.3)

Of course one can extend the definition of the Godunova and Levin class of func-
tions Q(D) in the case D is a subset of R containing at least two elements. Therefore
we shall say that a function f : D → R is said to belong to the class Q(D) if it is non-
negative and for all x,y ∈ D and t ∈ (0,1) , such that (1− t)x+ ty ∈ D the inequality
(1.3) holds.

In [2] Godunova and Levin have shown that S (D) , the class of all Schur functions
defined on D , coincides with the Godunova-Levin class of functions Q(D) .

In the second paragraph we shall survey some important properties of the functions
belonging to the Godunova-Levin-Schur class of functions.

In the third paragraph we shall prove some new properties of Godunova-Levin-
Schur functions.
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2. A survey of the properties of the Godunova-Levin-Schur functions

In the present paragraphwe shall denote by D a subset of R containing at least two
elements. We shall denote with S (D) the class of Godunova-Levin-Schur functions
defined on D . The class of the Godunova-Levin-Schur functions was studied in a series
of papers [1], [3], [4, pp. 410–413], [5] and [6].

In [6] Varošanec had introduced a very general class of functions known as the
class of h -convex functions. More precisely, let I be an interval of R and h : (0,1)→
R be a nonnegative function with the property that there exists t0 ∈ (0,1) such that
h(t0) > 0. A function f : I → R is called a h -convex function if f is nonnegative and
for all x,y ∈ I,α ∈ (0,1) we have

f (αx+(1−α)y) � h(α) f (x)+h(1−α) f (y) (2.1)

If inequality in (2.1) is reversed, then f is said to be h -concave. Denote by
SX (h, I) the class of all h -convex functions. The notion of h -convex function is of
course more general than the notion of Godunova-Levin-Schur function. The class of
h -convex functions contains in case that special selections are made for the function
h some important classess of functions. Obviously, if h(α) = α,α ∈ (0,1) then all
nonnegative convex functions are h -convex functions. If h(α) = 1

α ,α ∈ (0,1) then
SX (h, I) = S (I) . If h(α) = 1,α ∈ (0,1) then SX (h, I) contains the class P(I) of all
P− functions defined on I . By a P− function we understand a nonnegative function
f : I → R with the property that

f (αx+(1−α)y) � f (x)+ f (y) for all x,y ∈ I

The paper [6] contains many interesting properties of the h -convex functions.
In [3], was proved the following version of the famous Jensen inequality for con-

vex functions.

THEOREM 2.1. Let D be an interval of R , n � 2 , w1,w2, ...,wn be real numbers
and f ∈S (D). If vn = w1 +w2 + ...+wn then for every x1,x2, ...,xn ∈ I the following
inequality holds

f

(
1
vn

n

∑
i=1

wixi

)
� vn

n

∑
i=1

f (xi)
wi

Let I = [a0,bo] be an interval of the real line, a,b ∈ I, a < b and f : I → R be a
convex function. The following inequality is known as the Hadamard’s inequality:

f

(
a+b

2

)
� 1

b−a

∫ b

a
f (x)dx � f (a)+ f (b)

2

In [1] were proved two sharp integral inequalities of Hadamard type for the Godunova-
Levin-Schur functions.

THEOREM 2.2. [1] Let I be an interval of R , a,b ∈ I, a < b and f ∈ S (I) a
function integrable on [a,b] .Then the following inequalities hold:

f

(
a+b

2

)
� 4

b−a

∫ b

a
f (x)dx 2.2
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and
1

b−a

∫ b

a
p(x) f (x)dx � f (a)+ f (b)

2
(2.3)

where p(x) = (b−x)(x−a)
(b−a)2

,x ∈ I.

The constant 4 in (2.2) is the best possible.

In [5] were proved the following properties of the Godunova-Levin-Schur func-
tions:

PROPOSITION 2.1. [5] The following assertions hold:
10 If f ∈ S (D) then f � 0 .
20 If f ∈ S (D) and for some a,b ∈ D,a < b, we have f (a) = f (b) = 0 then

f (x) = 0 for every x ∈ [a,b]∩D.
30 If there exists a,b ∈ D, a < b, such that a+b

2 ∈ D and

f

(
a+b

2

)
> 2 f (a)+2 f (b)

then f /∈ S (D) .

PROPOSITION 2.2. [5] Let f : D → R be a map. Suppose that there exist two
positive constants m, M such that:

0 < m � f (x) � M � 4m for every x ∈ D

Then f is a Godunova-Levin-Schur map on D.

PROPOSITION 2.3. [5] Let f : D → R, be a map. Suppose that there exist two
positive constants m, M such that:

0 < m � f (x) � M for every x ∈ D

For every a � 0 consider the map fa : D → R , fa (x) = f (x)+a, x ∈ D.
Then for every a � max

(
M−4m

3 ,0
)

the map fa is a Godunova-Levin-Schur map
on D.

PROPOSITION 2.4. [5] Let f (x) =
(
x2−1

)2
, x ∈ R. For every a � 0 consider

the map fa : R → R , fa (x) = f (x)+a, x ∈ R. Then the following assertions hold:
10 For every a ∈ [0, 1

3 ), fa /∈ S (R) .
20 For every a ∈ [1,∞) , fa ∈ S (R)
30 For every a ∈ R, fa is not quasiconvex and is not the sum of two positive

monotone functions.

PROPOSITION 2.5. [5] Let φ : R → R be a map with the property that f ◦φ ∈
S (R) for every f ∈ S (R). Then φ is monotone.
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PROPOSITION 2.6. [5] Let f :
[
0, 2

3

]→ R, f (x) = x− x2 , x ∈ [0, 2
3

]
. Then

f ∈ S
([

0, 2
3

])
.

3. Some new properties of the Godunova-Levin-Schur functions

In this paragraph we shall prove some new properties of Schur functions. We shall
denote by D a subset of R containing at least two elements.

PROPOSITION 3.1. Suppose that infD =−∞. Let a∈D, f ∈S (D) be such that
f (x) = 0 for every x ∈ (−∞,a]∩D. Then f is increasing on D

Proof. Let x,y,z ∈ D be such that x � a < y < z. Since f ∈ S (D) we have

0 � S( f ,x,y,z) = f (y)(y− z)(y− x)+ f (z) (z− x)(z− y)

hence
f (z) (z− x)− f (y)(y− x) � 0 for every x ∈ (−∞,a]∩D

thus

x( f (y)− f (z))+ z f (z)− y f (y) � 0 for every x ∈ (−∞,a]∩D

Letting x→−∞ in the preceding inequality we obtain f (y)� f (z) . Consequently
we proved that f is increasing. �

PROPOSITION 3.2. Suppose that supD = +∞. Let a ∈ D, f ∈ S (D) be such
that f (x) = 0 for every x ∈ [a,+∞)∩D. Then f is decreasing on D.

Proof. Let x,y,z ∈ D be such that x � a > y > z. Since f ∈ S (D) we have

0 � S( f ,x,y,z) = f (y)(y− z)(y− x)+ f (z) (z− x)(z− y)

hence
f (z) (z− x)− f (y)(y− x) � 0 for every x ∈ [a,+∞)∩D

thus

x( f (y)− f (z))+ z f (z)− y f (y) � 0 for every x ∈ [a,+∞)∩D

Letting x→+∞ in the preceding inequality we obtain f (y)� f (z) . Consequently
we proved that f is decreasing. �

PROPOSITION 3.3. Suppose that infD = −∞ and supD = +∞. Let ϕ : D → R

be a map with the property that ϕ · f ∈ S (D) for every f ∈ S (D). Then ϕ is a
nonnegative constant map.
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Proof. For every a ∈ D consider the maps fa : D → R and ga : D → R

fa (x) =
{

1 if x ∈ [a,+∞)∩D
0 if x ∈ (−∞,a)∩D

ga (x) = 1− fa (x) for every x ∈ D. Note that fa is increasing and ga is decreas-
ing. Consequently fa,ga ∈ S (D). Hence ϕ · fa ∈ S (D) and ϕ · ga ∈ S (D). By
proposition 3.1. it follows that the map ϕ · fa is monotone increasing for every a ∈ D ,
hence the map ϕ is increasing. By proposition 3.2. it follows that the map ϕ · ga is
monotone decreasing for every a ∈ D , hence the map ϕ is decreasing. Hence ϕ is a
constant map. �

PROPOSITION 3.4. Let f ∈ S (R) be a map with the property

lim
x→−∞ f (x) = lim

x→+∞
f (x) = 0 (3.1)

Then f = 0.

Proof. Let z ∈ R, a = b = 1
2 . By (1.3) we have

f (z) = f (a(z+ x)+b(z− x)) � f (z+ x)
a

+
f (z− x)

b
= 2 f (z+ x)+2 f (z− x)

hence

f (z) = lim
x→+∞

[2 f (z+ x)+2 f (z− x)] = 2 lim
x→+∞

f (x)+2 lim
x→−∞ f (x) = 0 �

PROPOSITION 3.5. Let f ∈ S (D) and x0 ∈ D. Suppose that there exists a se-
quence (xn)n�1 in D such that lim

n→∞
xn = +∞ and lim

n→∞
xn f (xn) = 0 . Then f = 0 on

[x0,+∞)∩D.

Proof. Let x0 < x . Then there exists a natural number nx such that x < xn for
every n � nx . Denote

an =
xn− x
xn − x0

, bn =
x− x0

xn− x0
, for every n � nx.

Note that an , bn ∈ (0,1) , an+ bn = 1 and x = anx0 + bxn for every n � nx. Since
f ∈ S (D) we have

f (x) = f (anx0 +bxn) � f (x0)
an

+
f (xn)
bn

=
f (xn)
bn

= f (xn)
xn − x0

x− x0

whence

f (x) � xn f (xn)
1− (x0/xn)

x− x0

Letting n → ∞ in the preceding inequality we obtain f (x) = 0. �
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PROPOSITION 3.6. Let f ∈S (D). Then the following assertions are equivalent:

10 f is a quasiconvex map.

20 There exists a sequence (αk)k�1 of positive numbers such that lim
k→∞

αk = +∞

and f αk ∈ S (D) for every k � 1.

Proof. To prove that 10 implies 20 suppose that f is a quasiconvex map. This
implies that f α is quasiconvex for every α > 0.Hence for every sequence (αk)k�1 of
positive numbers such that lim

k→∞
αk = +∞ we have that f αk is quasiconvex. Conse-

quently f αk ∈ S (D) for every k � 1.

To prove that 20 implies 10 suppose that there exists a sequence (αk)k�1 of posi-
tive numbers such that lim

k→∞
αk = +∞ and f αk ∈ S (D) for every k � 1. Let x,y ∈ D

be such that 0 � f (x) � f (y) .We shall prove that f is a quasiconvex map on [x,y]∩D.
We shall study two cases: the case f (y) = 0 and the case f (y) > 0.

If f (y) = 0 then f (t) = 0 for every t ∈ [x,y]∩D.

If f (y) > 0 and a,b ∈ (0,1) , a+b = 1 and ax+by∈ D then

f αk (ax+by) � f αk (x)
a

+
f αk (y)

b

If we divide the preceding inequality by f αk (y) we obtain

[
f (ax+by)

f (y)

]αk

� 1
a

[
f (x)
f (y)

]αk

+
1
b

� 1
a

+
1
b

hence

f (ax+by)
f (y)

� lim
k→∞

(
1
a

+
1
b

) 1
αk

= 1

Thus f (ax+by) � f (y) = max( f (x) , f (y)) . �

PROPOSITION 3.7. Let f : R → R be a periodic map. Then the following asser-
tions are equivalent:

10 f ∈ S (R)
20 0 � sup f � 4inf f

Proof. To prove that 10 implies 20 suppose that f ∈ S (R) and x,y ∈ R . Denote

by T the period of f , n0 =
[ |x−y|

T

]
+1. By [c] we denoted the greatest integer less or

equal to c. Consider the sequences (an)n�1 and (bn)n�1 , an = x−y+nT
2nT , bn = 1−an ,

n � 1. Note that an , bn ∈ (0,1) for every n � n0 and lim
n→∞

an = lim
n→∞

bn = 1
2 . Letting

n → ∞ in the following inequality
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f (y) = f (an (x−nT)+bn (x+nT))

� f (x−nT)
an

+
f (x+nT)

bn
=

f (x)
an

+
f (x)
bn

=
f (x)
anbn

we obtain f (y) � 4 f (x) . Since x and y were chosen arbitrarily it follows that sup f �
4inf f

To prove that 20 implies 10 suppose that 0 � sup f � 4inf f .
Let x,y ∈ R , a,b ∈ (0,1) , a+b = 1. From the inequalities

f (ax+by) � sup f � 4inf f �
(

1
a

+
1
b

)
inf f � f (x)

a
+

f (x)
b

it follows that f ∈ S (R). �

THEOREM 3.8. Let f : R → R be a function of class C1 with the following prop-
erties:

lim
x→−∞ f ′ (x) = −∞ and lim

x→+∞
f ′ (x) = +∞ (3.2)

For every a ∈ R consider the map fa : R → R , fa (x) = f (x)+ a, x ∈ R . Then
there exists a ∈ R such that fa ∈ S (R).

Proof. If t ∈ R denote t+ = t+|t|
2 and t− = |t|−t

2 . Then f ′ = ( f ′)+ − ( f ′)− .
Let g,h : R → R be functions of class C1 such that g ′ = ( f ′)+ and h ′ = −( f ′)− ,
g(0) = h(0) .

From (3.2) it follows that there exists c > 0 such that ( f ′)+ = 0 on (−∞,−c]
and ( f ′)− = 0 on (c,+∞) . Consequently g =constant on (−∞,−c] and h =constant
on (c,+∞) . Since g is monotone increasing and h is monotone decreasing it follows
that g and h are bounded from below. Consequently there exists a ∈ R such that g+ a

2
and h+ a

2 are nonnegative, hence they belong to S (R). Since

fa =
(
g+

a
2

)
+
(
h+

a
2

)
it follows that fa ∈ S (R). �

THEOREM 3.9. Let f : R → R be a rational function of the following type

f (x) =
P(x)
Q(x)

where P and Q are polynomial functions generated by monic polynomials and Q(x)
> 0 for every x ∈R. Denote m = degP, n = degQ. For every a∈ R consider the map
fa : R → R , fa (x) = f (x)+a, x ∈ R .

Then the following assertions hold:
10 If 0 � m < n, there exists x0 ∈ R such that f (x0) > 0 and f is nonnegative

then f /∈ S (R).
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20 If m = n then there exists a ∈ R such that fa ∈ S (R).
30 If m > n and m−n is even then there exists a ∈ R such that fa ∈ S (R).
40 If m > n and m−n is odd then for every a ∈ R we have that fa /∈ S (R).

Proof. To prove 10 note that 0 � m < n implies that (3.1) holds. By proposition
3.4. it results that f /∈ S (R). Suppose now that m = n . Since

lim
x→−∞ f (x) = lim

x→+∞
f (x) = 1

it follows that f is bounded on R. Let M1 and M2 be such that M1 � f (x) � M2 for
every x ∈ R. We shall prove that

a > max

[
|M1| , 1

3
(M2−4M1)

]
(3.3)

implies that fa ∈ S (R). Note that (3.3) implies 0 < M1 + a � f (x)+ a � M2 + a �
4(M1 +a) . From proposition 2.2. fa is a Godunova-Levin-Schur map on R. Thus
assertion 20 is proved.

To prove 30note that m > n and m−n is even implies that

lim
x→−∞ f ′ (x) = lim

x→−∞
f (x)
x

= lim
x→−∞

P(x)
xQ(x)

= −∞

lim
x→+∞

f ′ (x) = lim
x→+∞

f (x)
x

= lim
x→+∞

P(x)
xQ(x)

= +∞

By theorem 3.8. there exists a ∈ R such that fa ∈ S (R).
If m > n and m−n is odd then for every a ∈ R we have lim

x→−∞ fa (x) = −∞.This

implies that fa fails to be nonnegative, hence fa /∈ S (R). �
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