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Abstract. We survey the most used bounds for positive roots of polynomials and discuss their
efficiency. We obtain new inequalities on roots of polynomials. Then we give new inequalities
on roots of orthogonal polynomials, obtained from the differential equations satisfied by these
polynomials.

1. Introduction

Polynomials are among the most frequently used mathematical objects. They ap-
pear in all branches of Mathematics and have strong computational features. In this
paper we discuss inequalities concerning the real roots of univariate polynomials with
real coefficients.

We present new methods for estimating bounds for positive roots. In particular
the estimation of lower bounds is a key step in real root isolation. This is realized by
obtaining new inequalities satisfied by the largest positive roots.

Several bounds exist for the absolute values of the roots of a univariate polynomial
with complex coefficients. These bounds are expressed as functions of the degree and
of the coefficients, and naturally they can be used also for the roots (real or complex)
of polynomials with real coefficients.

However, for the real roots of polynomials with real coefficients there also exist
some specific bounds. We briefly survey here the most often used bounds for positive
roots and discuss their efficiency in particular cases, emphasizing the classes of orthog-
onal polynomials. We then obtain new inequalities on the positive roots of polynomials.
We also give new inequalities on roots of orthogonal polynomials derived from the dif-
ferential equations satisfied by these polynomials.
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2. Bounds for polynomial roots

The computation of bounds for roots of polynomials is important for computation
of roots and for estimation of polynomial sizes.

Several bounds exist for the absolute values of the roots of a univariate polynomial
with complex coefficients. They are expressed as functions of the degree and of the
coefficients (see [10], ch. 2).

Bounds for real roots of polynomials

The computation of the real roots of univariate polynomials with real coefficients
is based on their isolation. To isolate the real positive roots, it is sufficient to estimate
the smallest positive root. This can be frequently achieved through the consideration
of the reciprocal polynomial and the computation of accurate estimates for positive
dominant roots.

For obtaining bounds of the largest positive roots we can use the known bounds
for univariate polynomials with complex coefficients. But there also exist some specific
bounds. The classical bound for the largest positive root was given by the following

THEOREM 1. (Lagrange, [7]) Let P(X) = a0Xd + · · ·+amXd−m−am+1Xd−m−1±
·· ·±ad ∈ R[X ] , with all ai � 0 , a0,am+1 > 0 . Let

A = max
{

ai ; coeff(Xd−i) < 0
}

.

The number

1 +
(

A
a0

)1/(m+1)

is an upper bound for the positive roots of P .

Theorem 1 returns only numbers larger than one. For polynomials with subunitary
real roots (like Legendre orthogonal polynomials) it is recommended to use the more
recent bounds of Kioustelidis [4] and Ştefănescu [12].

The bound of Kioustelidis (1986)

J. B. Kioustelidis [4] gives the following upper bound for the positive real roots:

THEOREM 2. (Kioustelidis [4]) Let P(X)= Xd−b1Xd−m1−·· ·−bkXd−mk +g(X) ,
with g(X) having positive coefficients and b1 > 0 , . . . , bk > 0 . The number

K(P) = 2 ·max{b1/m1
1 , . . . ,b1/mk

k }

is an upper bound for the positive roots of P .
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A bound of Ştefănescu (2005, 2008)

For polynomials with an even number of variations of sign, we proposed in [12]
another bound. Our method can be applied also to polynomials having at least one sign
variation and gives the following

THEOREM 3. Let P(X) ∈ R[X ] and suppose that P has at least one sign varia-
tion. If

P(X) = c1X
d1 −b1X

m1 + c2X
d2 −b2X

m2 + · · ·+ ckX
dk −bkX

mk +g(X) ,

with g(X) ∈ R+[X ] , ci > 0 , bi > 0 , di > mi for all i , the number

S(P) = max

{(
b1

c1

)1/(d1−m1)

, . . . ,

(
bk

ck

)1/(dk−mk)
}

is an upper bound for the positive roots of P .

NOTATION.

• The bound of Lagrange will be denoted by L1(P) .

• The bound of Kioustelidis from Theorem 2 is denoted by K(P) .

EXAMPLE. Let P(X) = 2X7−3X4−X3−2X +1 ∈ R[X ] . We use two represen-
tations of P :

P(X) = P1(X) = (X7−3X4)+ (0.5X7−X3)+ (0.5X7−2X)+1,

P(X) = P2(X) = (1.1X7−3X4)+ (0.4X7−X3)+ (0.5X7−2X)+1.

and obtain the bounds

S1(P) = 1.442 , S2(P) = 1.397 .

Note that the largest positive root of P is 1.295.

Other bounds give

K(P) = 2.289 , L1(P) = 2.404 .

Note that both S1(P) and S2(P) are smaller than L1(P) and K(P) .

We obtain a more general bound in the next

THEOREM 4. Let

P(X) = a1X
d1 +a2X

d2 + · · ·+asX
ds −b1X

e1 −b2X
e2 −·· ·−bsX

et ∈ R[X ] ,
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where ai > , b j > 0 , d1 = deg(P) and d1 > d2 � · · · � ds . An upper bound for the
positive roots of P is given by

max
1�i�s
1� j�t
β j �=0

(
γ jib j

β jai

) 1
di− e j

for any β j � 0 , γ jk � 0 such that

∑t
j=1β j = 1 ,

∑s
i=1 γ ji , = 1 with γ ji = 0 if di < e j .

Proof. For x > 0 we have

P(x) =
s

∑
i=1

aix
di −

t

∑
j=1

b jx
e j

=

(
t

∑
j=1

β j

)
·
(

s

∑
i=1

aix
di

)
−
(

t

∑
j=1

b jx
e j

)

=
t

∑
j=1

(
s

∑
i=1

β j aix
di −b jx

e j

)

=
t

∑
j=1

(
s

∑
i=1

β j aix
di −

(
s

∑
i=1

γ ji

)
b jx

e j

)

=
t

∑
j=1

xej
s

∑
i=1

(
β j aix

di−e j − γ ji b j

)
.

(1)

It follows that P(x) > 0 as soon as

x >

(
γ jib j

β jai

) 1
di− e j

for all j = 1,2, . . . ,t , i = 1,2, . . . ,s , β j �= 0 ..
Which gives our bound. �

3. Applications

We compare the bounds given by Theorem 4 with the following bounds:
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L1(P) = 1+
(

A
a0

)1/(m+1)

Lagrange [7]

L2(P) = 1+
A

a0 +a1 + · · ·+am
Longchamp [9]

K(P) = 2max{b1/(d−e j)
j } Kioustelidis [4]

S1(P) = 1+max

{(
A

2a0

)1/(m+1)

,

(
A

2(a0 +a1)

)1/m
}

Ştefănescu [13]

The computations were done using the gp-pari package.
We consider the polynomial

P(X) = X7 +X6−3X2−2X2−3 .

We note that our Theorem 2 from [12] cannot be applied. We use instead Theorem 4.
We consider

1) β1 = β2 = β3 = 1
3 , γi j = 1

2 .
Thus gives the bound 1.651. We denote it by BP1(P)
2) Representing P as

P(X) = 0.5X7 +0.5X7 +X6−3X3−2X2−3

we take
i. β1 = β2 = 0.5, γ1 j = 1, γ2 j = γ3 j = 0 and denote the bound by BP2(P) .
ii. β1 = 0.7, β2 = 0.3, γ1 j = 1, γ2 j = γ3 j = 0 and denote the bound by BP3(P) .

So we obtain the bounds

L1 L2 K BP1 BP2 BP3 LPR
2.246 2.5 2.632 1.651 1.565 1.461 1.346

4. Inequalities on the largest zeros of orthogonal polynomials

Classical orthogonal polynomials have real coefficients and all their zeros are real,
distinct, simple and located in the interval of orthogonality. For some classes of orthog-
onal polynomials (e. g. for Legendre polynomials) the largest zeros are very ”dense”
as the degree increases.

The polynomials Pn , Hn and Un

We reming the algebraic expression of the orthogonal polynomials of Legendre,
Hermite and Gegenbauer:
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Pn(X) =
�n/2�
∑
k=0

(−1)k (2n−2k)!
k!(n− k)!(n−2k)!

Xn−2k,

Hn(X) =
�n/2�
∑
k=0

(−1)k n!
k!(n−2k)!

(2X)n−2k ,

Cα
n (X) =

(−1)n

n!2n (1−X2)
−α dn

dXn (1−X2)
α +n

Bounds for Pn and Hn can be deduced form our Theorem 3. Other bounds can be
derived from Newton’s inequality:

THEOREM 5. (Newton [11]) If the polynomial

P(X) = Xn +a1X
n−1 +a2X

n−2 + · · ·+an ∈ R[X ]

is hyperbolic (has only real roots), the number

Nw(P) =
√

a2
1−2a2 .

is an upper bound for the positive roots.

The Hessian of Laguerre

Another approach for estimating the largest positive root of an orthogonal poly-
nomial is the study of inequalities derived from the positivity of the Hessian associated
to an orthogonal polynomial. They will allow us to obtain better bounds than estima-
tions derived form those on genereal univariate polynomials with real coefficients. If
we consider

f (X) =
n

∑
j=1

a j X
j ,

a univariate polynomial with real coefficients, its Hessian (of Laguerre [8]) is

H( f ) = (n−1)2 f ′2 −n(n−1) f f ′ � 0 .

5. Applications of the inequality of Laguerre

The inequality of Lagurerre H( f ) � 0 is a strong tool for obtaining refined bounds
for the dominant roots of orthogonal polynomials. We discuss applications to Legendre,
Hermite and Gegenbauer (ultraspherical) polynomials.
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An inequality of Laguerre

Let f ∈ R[X ] be a polynomial of degree n � 2 which satisfies the differential
equation

p(x)y′′ +q(x)y′+ r(x)y = 0 , (2)

with p , q and r univariate polynomials with real coefficients, p(x) �= 0. We recall the
following

THEOREM 6. (Laguerre [8]) If all the roots of f are simple and real, we have

4(n−1)
(
p(α)r(α)+ p(α)q′(α)− p′(α)q(α)

)
− (n+2)q(α)2 � 0 (3)

for any root α of f .

The inequality (3) can be applied successfully for finding upper bounds for the
roots of orthogonal polynomials.

EXAMPLE. Consider the Legendre polynomial Pn , which satisfies the differential
equation

(1− x2)y′′ −2xy′+n(n+1)y = 0 .

From (2) it follows that La(n) = (n− 1)

√
n+2

n(n2 +2)
is a bound for the roots of Pn .

We have thus the following bounds for the largest zeros of Legendre polynomials:

n La(P) LPR
8 0.96334 0.96028
15 0.98922 0.98799
55 0.99917 0.99906
100 0.99975 0.99971

EXAMPLE. Consider the Hermite polynomial Hn , which satisfies the differential
equation

y′′ −2xy′+2ny = 0 .

From (2) it follows that He(n) = (n− 1)

√
2

n+2
is a bound for the roots of Hn . We

have the following bounds for the largest zeros of Hermite polynomials:

n He(P) LPR
3 1.264 1.224
8 3.130 2.930
12 4.156 3.889
50 9.609 9.182
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A new inequality

THEOREM 7. Let f ∈ R[X ] be a polynomial of degree n � 2 that satisfies the
second order differential equation

p(x)y′′ +q(x)y′+ r(x)y = 0 , (4)

with p, q and r univariate polynomials with real coefficients, p(x) �= 0 .

If all the roots of f are simple and real we have

8(n−3)q2(α)2 +9(n−2)q(α)q3(α) � 0 ,

where

q2 = q2 + p′q− pq′ − pr ,
q3 = (2p′+q)

(−q2− p′q+ pq′ − pr
)− pq(p′′ +2q′+ r)− p2 (q′′ +2r′) .

for any root α of f .

We derive a new bound for Hermite polynomials:

Se(Hn) =

√
2n2 +n+6+

√
(2n2 +n+6+32(n+6)(n3−5n2 +7n−3)

4(n+6)
.

Considering also the Bound of Laguerre

He(Hn) = (n−1)

√
2

n+2

we obtain
n He(Hn) Se(Hn) LPR
3 1.264 1.224 1.224
25 6.531 6.382 6.164
60 10.596 10.478 10.159
120 15.236 15.146 14.776
200 19.801 19.729 19.339

Other bounds for the largest positive roots of Hermite polynomials are:

Bott(Hn) =

√
2n−2 3

√
n
3

O. Bottema [2]

Venn(Hn) =
√

2(n+1)−2(5/4)2/3(n+1)1/3 S. C. Van Venn [15]

Kras(Hn) =
√

2n−2 I. Krasikov [5]

FoKr(Hn) =

√
4n−3n1/3−1

2
W. H. Foster–I. Krasikov [3]

but our bound Se(H,n) is sharper.
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Bounds for zeros of Gegenbauer polynomials

Theorem 7 can be applied also to other orthogonal polynomials. For example, for
Gegenbauer polynomials we obtain

n α Bu(P) LPR
5 1 0.873 0.866
5 2 0.810 0.798
8 1.5 0.927 0.919
50 2.5 0.996 0.995
80 2.5 0.998 0.998
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