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Abstract. We prove a new discrete Hardy-type inequality ‖A f‖q,u � C‖ f‖p,v , where the matrix

operator A is defined by (A f )i :=
i
∑
j=1

ai, j f j , ai, j � 0 . Moreover, we study the problem of

compactness of the operator A , and the dual result is stated.

1. Introduction

Hardy’s original motivation in the period 1915–1925 until he finally stated and
proved this famous inequality in [6] was to find an elementary proof of (discrete)
Hilbert’s inequality (see [8]). After that almost all development has been performed
for the continuous case (see e.g. the books [7] and [9] and the references there) and
surprisingly little has been done for the discrete case (however, see Chapter 6 of [7] and
our description below). In this paper we will prove a new discrete Hardy type inequality
involving a kernel which is of much more general form than studied before.

Let 1 < p,q <∞ and u = {ui}∞i=1, v = {vi}∞i=1 be positive sequences of real num-
bers, which we in the sequel call weight sequences. Let lp,v denote the space of se-
quences of real numbers f = { fi}∞i=1 such that

‖ f‖p,v :=

(
∞

∑
i=1

|vi fi|p
) 1

p

< ∞, 1 < p < ∞.

Moreover, (ai, j) is a non-negative triangular matrix with entries ai, j � 0 when
i � j � 1 and ai, j = 0 when i < j .

We will study inequalities of the following form

‖A f‖q,u � C‖ f‖p,v, ∀ f ∈ lp,v, (1.1)

where the matrix operator A is defined by

(A f )i :=
i

∑
j=1

ai, j f j, i � 1. (1.2)
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and C is positive finite constant not depending on f .
When ai, j = 1, i � j � 1, the operator (1.2) coincides with the discrete Hardy

operator and the inequality (1.1) with the operator (1.2) was studied in [1]-[5] and
[13] for the cases 0 < q < ∞ , 1 � p < ∞ . The case ai, j = αiβ j , i � j � 1, where
α = {αi}∞i=1 and β = {βi}∞i=1 are positive sequences, was considered a.o. in [14].

In [11], [12] necessary and sufficient conditions for the validity (1.1) was obtained
for the case 1 < p,q < ∞ under the assumption that there exists d � 1 such that the
inequality

1
d
(ai,k +ak, j) � ai, j � d(ai,k +ak, j), i � k � j � 1. (1.3)

holds.
The sequence {ai}∞i=1 is called the almost non-decreasing (non-increasing) se-

quence, if there exists c > 0 such that cai � ak (ak � ca j ) for all i � k � j � 1.
Let (ai, j) is a non-negative triangular matrix, i.e. the entries of matrix ai, j � 0

when i � j � 1 and ai, j = 0 when i < j . If a = {ai}∞i=1 is non-decreasing sequence
and α � 0, then the inequality (1.3) holds e.g. for ai, j = (ai −a j)α , i � j � 1, but in
the case ai, j = (ai −b j)α when i � j � 1, where b = {b j}∞j=1 is a arbitrary sequence,
such that ai � max

1� j�i
b j the inequality (1.3) does not hold, in particular, when

ai, j =
(

ln
ai

b j

)α
, where

ai

b j
� 1, i � j � 1

and

ai, j =

(
ni

∑
τ=mj

cτ

)α

, when i � j � 1,

where {mj}∞j=1 is arbitrary sequence of integer numbers, {ni}∞i=1 is non-decreasing

sequence of integer numbers, such that ni � max
1� j�i

m j and {ci}+∞
i=−∞ is sequence of

non-negative numbers. To investigate such and more general cases we will consider
the inequality (1.1) under following assumption, which is strictly weaker than (1.3):

ASSUMPTION 1.1. There exists d � 1, a sequence of positive numbers {ωk}∞k=1
and a non-negative matrix (bi, j) , where bi, j is almost non-decreasing in i and almost
non-increasing in j such that

1
d
(bi,kω j +ak, j) � ai, j � d(bi,kω j +ak, j), (1.4)

for all i � k � j � 1.

We remark that in particular the above stated examples satisfy Assumption 1.1.
We also note that from (1.4) it follows that

dai, j � bi,kω j, (1.5)
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dai, j � ak, j, (1.6)

when i � k � j � 1.
A continuous analogue of (1.3)–(1.4) even in a slightly more general form was

considered R.Oinarov in [10].
Moreover, we study the problem of compactness of the operator (1.2) from lp,v

into lq,u .
Convention: The symbol M � K means that M � cK , where c > 0 is a con-

stant depending only on unessential parameters. If M �K �M , then we write M ≈K .

For the proof of our main results we need the following well-known result for the
discrete weighted Hardy inequality (see [13], Theorem 7) and the criteria on precom-
pactness of sets in lp (see [15], p. 32). For better presentation let us state these results
here:

THEOREM 1.1. Let 1 < p � q < ∞ . Then the inequality(
∞

∑
i=1

(
i

∑
j=1

ω j f j

)q

uq
i

) 1
q

� C

(
∞

∑
i=1

|vi fi|p
) 1

p

, 0 � f ∈ lp,v (1.7)

holds if and only if

H1 := sup
n�1

(
∞

∑
i=n

uq
i

) 1
q
(

n

∑
j=1

ω p′
j v−p′

j

) 1
p′

< ∞.

Moreover, H1 ≈C, where C is the best constant in (1.7).

THEOREM 1.2. Let T be a set from lp , 1 � p < ∞ . The set T is compact if
and only if T is bounded and for all ε > 0 there exists N = N(ε) such that for all
x = {xi}∞i=1 ∈ T the following inequality

∞

∑
i=N

|xi|p < ε

holds.

2. Main results

Our first result reads:

THEOREM 2.1. Let 1 < p � q < ∞ and the entries of the matrix (ai, j) satisfy
Assumption 1.1. Then the inequality (1.1) holds if and only if F = max{F0, F1} < ∞ ,
where

F0 = sup
n�1

(
∞

∑
i=n

bq
i,nu

q
i

) 1
q
(

n

∑
j=1

ω p′
j v−p′

j

) 1
p′

,
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and

F1 = sup
n�1

(
∞

∑
i=n

uq
i

) 1
q
(

n

∑
j=1

ap′
n, jv

−p′
j

) 1
p′

.

Moreover F ≈C, where C is the best constant in (1.1)

Proof. Necessity. Let us assume that (1.1) holds for a finite constant C . Let r � 1

and take a test sequence f̃r = { f̃r,s}∞s=1 such that f̃r,s = ω p′−1
s v−p′

s , 1 � s � r , and
f̃r,s = 0, s > r .

Applying the test sequence to the right hand side of (1.1), we have that

‖ f̃r‖p,v =

(
∞

∑
s=1

|vs f̃r,s|p
) 1

p

=

(
r

∑
s=1

ω p′
s v−p′

s

) 1
p

. (2.1)

Substituting f̃r in the left hand side of the inequality (1.1) and using (1.5) we have
that

‖A f̃r‖q,u =

(
∞

∑
i=1

(
i

∑
s=1

ai,s f̃r,s

)q

uq
i

) 1
q

�
(

∞

∑
i=r

(
r

∑
s=1

ai,sω p′−1
s v−p′

s

)q

uq
i

) 1
q

� 1
d

(
∞

∑
i=r

bq
i,ru

q
i

) 1
q
(

r

∑
s=1

ω p′
s v−p′

s

)
. (2.2)

From (1.1), (2.1) and (2.2) it follows that(
∞

∑
i=r

bq
i,ru

q
i

) 1
q
(

r

∑
s=1

ω p′
s v−p′

s

) 1
p′
�C

for all r � 1. Therefore

F0 �C. (2.3)

Now we assume that f̂r = { f̂r,s}∞s=1 , where f̂r,s = ap′−1
r,s v−p′

s , 1 � s � r , and f̂r,s =
0, s > r , and apply this sequence to (1.1). Substituting f̂r in the left hand side of the
inequality (1.1) and using (1.6) we find that

‖A f̂r‖q,u =

(
∞

∑
i=1

(
i

∑
s=1

ai,s f̂r,s

)q

uq
i

) 1
q

�
(

∞

∑
i=r

uq
i

) 1
q
(

r

∑
s=1

ap′
r,sv

−p′
s

)
. (2.4)
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For the right hand side of (1.1) it yields that

‖ f̂r‖p,v =

(
∞

∑
s=1

|vs f̂r,s|p
) 1

p

=

(
r

∑
s=1

ap′
r,sv

−p′
s

) 1
p

. (2.5)

According to (1.1), (2.4), (2.5) and since r � 1 is arbitrary we have that F1 �C , which
together with (2.3) gives that

F = max{F0, F1}�C. (2.6)

The proof of the necessity is complete.

Sufficiency. Let F < ∞ and 0 � f ∈ lp,v .
For all i � 1 we define the following set of positive numbers:

Ti = {k ∈ Z : (d +1)k � (A f )i},
where d is the constant from (1.4), Z is the set of integers and we assume that ki =
maxTi . Then

(d +1)ki � (A f )i < (d +1)ki+1, i � 1. (2.7)

Let m1 = 1 and M1 = {i ∈ N : ki = k1 = km1} . Suppose that m2 is such that
supM1 +1 = m2 . Obviously m2 > m1 and if the set M1 is upper bounded, then m2 <∞
and m2 − 1 = maxM1 = supM1 . Let us inductively define numbers 1 = m1 < m2 <
.. . < ms < ∞ , s � 1. To define ms+1 we assume that ms+1 = supMs +1, where Ms =
{i ∈ N : ki = kms} .

Let N0 = {s ∈ N : ms < ∞} . Further, we assume that kms = ns, s ∈ N0 . From the
definition of ms and from (2.7) it follows that, for s ∈ N0 ,

(d +1)ns � (A f )i < (d +1)ns+1, ms � i � ms+1−1 (2.8)

and
N =

⋃
s∈N0

[ms,ms+1).

Therefore

‖A f‖q
q,u = ∑

s∈N0

ms+1−1

∑
j=ms

(A f )q
j u

q
j . (2.9)

We assume that
ms+1−1

∑
j=ms

= 0, if ms =∞ . Then we can rewrite the expression (2.9) in the

following form:

‖A f‖q
q,u = ∑

s∈N0

ms+1−1

∑
j=ms

(A f )q
ju

q
j =

m2−1

∑
j=m1

(A f )q
j u

q
j

+
m3−1

∑
j=m2

(A f )q
j u

q
j +∑

s�3

ms+1−1

∑
j=ms

(A f )q
j u

q
j .

(2.10)
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Since m1 = 1 ∈ N0 and by using (2.8) we find that

m2−1

∑
j=m1

(A f )q
j u

q
j �

m2−1

∑
j=1

(d +1)(n1+1)quq
j � (d +1)q(d +1)n1q

∞

∑
j=1

uq
j

� (d +1)q (A f )q
1

∞

∑
j=1

uq
j �

(
1

∑
s=1

ap′
1,sv

−p′
s

) q
p′ ∞

∑
j=1

uq
j‖ f‖q

p,v

� Fq
1 ‖ f‖q

p,v.

(2.11)

If m2 = ∞ , then mi = ∞ for all i � 2 and, according to (2.10) and (2.11), we find
that

‖A f‖q,u � F‖ f‖p,v. (2.12)

If m2 < ∞ , i.e. 2 ∈ N0 , then arguing as before in (2.11), we obtain that

m3−1

∑
j=m2

(A f )q
j u

q
j � (d +1)q(d +1)n2q

∞

∑
j=m2

uq
j

� (A f )q
m2

∞

∑
j=m2

uq
j =

(
m2

∑
i=1

am2,i fi

)q ∞

∑
i=m2

uq
j

�
(

m2

∑
i=1

ap′
m2,i

vp′
i

) q
p′ ∞

∑
j=m2

uq
j

(
m2

∑
i=1

|vi fi|p
) q

p

� Fq
1 ‖ f‖q

p,v.

(2.13)

If m3 = ∞ , then by combing (2.10), (2.11) and (2.13) we get (2.12).

For s � 3 and s ∈ N0 , by using (2.8), (1.4) and ns−2 +1 � ns −1, which follows
from the inequality ns−2 < ns−1 < ns , we can estimate the value (d+1)ns−1 as follows:

(d +1)ns−1 = (d +1)ns −d(d +1)ns−1 � (d +1)ns −d(d +1)ns−2+1

< (A f )ms
−d (A f )ms−1−1 =

ms

∑
i=1

ams,i fi −d
ms−1−1

∑
i=1

ams−1−1,i fi

=
ms

∑
i=ms−1

ams,i fi +
ms−1−1

∑
i=1

[ams,i −dams−1−1,i] fi

�
ms

∑
i=ms−1

ams,i fi +
ms−1−1

∑
i=1

[d(bms,ms−1−1ωi +ams−1−1,i)−dams−1−1,i] fi

=
ms

∑
i=ms−1

ams,i fi +dbms,ms−1−1

ms−1−1

∑
i=1

ωi fi.

(2.14)
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By now using (2.8) and (2.14), we can estimate the summand on the left hand side in
(1.1) for s � 3 in the following way:

∑
s�3

ms+1−1

∑
j=ms

(A f )q
j u

q
j < ∑

s�3

ms+1−1

∑
j=ms

(d +1)(ns+1)quq
j

= (d +1)2q∑
s�3

(d +1)(ns−1)q
ms+1−1

∑
j=ms

uq
j

� ∑
s�3

(
ms

∑
i=ms−1

ams,i fi +dbms,ms−1−1

ms−1−1

∑
i=1

ωi fi

)q ms+1−1

∑
j=ms

uq
j

� ∑
s�3

(
ms

∑
i=ms−1

ams,i fi

)q ms+1−1

∑
j=ms

uq
j

+∑
s�3

bq
ms,ms−1−1

(
ms−1−1

∑
i=1

ωi fi

)q ms+1−1

∑
j=ms

uq
j := S1 +S2.

(2.15)

Estimate of S1 and S2 :
To estimate S1 we apply Hölder’s and Jensen’s inequalities and find that

S1 = ∑
s�3

(
ms

∑
i=ms−1

ams,i fi

)q ms+1−1

∑
j=ms

uq
j

� ∑
s�3

(
ms

∑
i=ms−1

ap′
ms,i

v−p′
i

) q
p′
(

ms

∑
i=ms−1

| fivi|p
) q

p ms+1−1

∑
j=ms

uq
j

�

⎡⎣sup
k�1

(
k

∑
i=1

ap′
k,iv

−p′
i

) 1
p′
(

∞

∑
j=k

uq
j

) 1
q
⎤⎦q

∑
s�3

(
ms

∑
i=ms−1

| fivi|p
) q

p

� Fq
1

(
∑
s�3

ms

∑
i=ms−1

| fivi|p
) q

p

� Fq
1 ‖ f‖q

p,v.

(2.16)

We introduce the sequence {Δi}∞i=1 such that Δi = bq
ms,ms−1−1

ms+1−1

∑
j=ms

uq
j , i =ms−1−

1, s � 3 and Δi = 0, i 	= ms−1 −1, s � 3. Hence, we can rewrite S2 in the following
form:

S2 = ∑
s�3

(
ms−1−1

∑
j=1

ω j f j

)q

bq
ms−1,ms−1−1

ms+1−1

∑
j=ms

uq
j =

∞

∑
i=1

(
i

∑
j=1

ω j f j

)q

Δi. (2.17)

Thus, in view of Theorem 1.1, we have that

S2 � H̃q
1‖ f‖q

p,v, (2.18)
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where

H̃1
q
= sup

k�1

(
∞

∑
i=k

Δi

) 1
q
(

k

∑
j=1

ω p′
j v−p′

j

) 1
p′

. (2.19)

Since, by Assumption 1.1, bi, j is almost non-decreasing in i and almost non-increasing
in j , we find that

∞

∑
i=k

Δi = ∑
ms−1−1�k

bq
ms,ms−1−1

ms+1−1

∑
j=ms

uq
j

� ∑
ms−1−1�k

ms+1−1

∑
j=ms

bq
j,ku

q
j �

∞

∑
j=k

bq
j,ku

q
j .

(2.20)

By combining (2.18), (2.19) and (2.20), we obtain that

S2 � Fq
0 ‖ f‖q

p,v. (2.21)

Thus, from (2.10), (2.11), (2.13), (2.15), (2.16) and (2.21) it follows that

‖A f‖q,u � F‖ f‖p,v, f � 0,

i.e the inequality (1.1) is valid and we see that the best constant in (1.1) C � F , which
together with (2.6) gives that C ≈ F .
The proof is complete.

The inequality (1.1) holds if and only if the following dual inequality

‖A∗g‖p′,v−1 � C‖g‖q′,u−1 , g ∈ lq′,u−1 (2.22)

holds for the conjugate operator

(A∗g) j =
∞

∑
i= j

ai, jgi, j � 1. (2.23)

Moreover, the best constants in (1.1) and (2.22) coincides.
Indeed,

C = sup
0 	= f∈lp,v

‖A f‖q,u

‖ f‖p,v
= sup

0 	= f∈lp,v

sup
0 	=g∈lq′,u−1

∞
∑
i=1

gi(A f )i

‖ f‖p,v‖g‖q′,u−1

= sup
0 	=g∈lq′,u−1

sup
0 	= f∈lp,v

∞
∑
j=1

(A∗g) j f j

‖g‖q′,u−1‖ f‖p,v
= sup

0 	=g∈lq′,u−1

‖A∗g‖p′,v−1

‖g‖q′,u−1
.

Therefore using Theorem 2.1 with p′,q′,v−1 and u−1 replaced by q, p,u and v , re-
spectively, we obtain the following dual version of Theorem 2.1:
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THEOREM 2.2. Let 1 < p � q < ∞ and the entries of the matrix (ai, j) satisfy
Assumption 1.1. Then the inequality

‖A∗ f‖q,u � C‖ f‖p,v, ∀ f ∈ lp,v (2.24)

holds if and only if F∗ = max{F∗
0 ,F∗

1 } < ∞ , where

F∗
0 = sup

k�1

(
∞

∑
i=k

bp′
i,kv

−p′
i

) 1
p′
(

k

∑
j=1

ωq
j u

q
j

) 1
q

and

F∗
1 = sup

k�1

(
∞

∑
i=k

v−p′
i

) 1
p′
(

k

∑
j=1

aq
k, ju

q
j

) 1
q

.

Moreover F∗ ≈C, where C is the best constant in (2.24).

Now we state our compactness result for the operator (1.2) from lp,v into lq,u .

THEOREM 2.3. Let 1 < p � q < ∞ and the entries of the matrix (ai, j) satisfy
Assumption 1.1. Then the operator (1.2) is compact from lp,v into lq,u if and only if

lim
r→∞

(F0)r = 0, (2.25)

lim
r→∞

(F1)r = 0. (2.26)

where

(F0)r =

(
∞

∑
i=r

bq
i,ru

q
i

) 1
q
(

r

∑
j=1

ω p′
j v−p′

j

) 1
p′

,

(F1)r =

(
∞

∑
i=r

uq
i

) 1
q
(

r

∑
j=1

ap′
r, jv

−p′
j

) 1
p′

.

Proof. Necessity. Let the operator (1.2) be compact from lp,v into lq,u . For all
r � 1 we introduce the following sequence:

gr = {gr, j}∞j=1 : gr, j =
fr, j

‖v fr‖lp
,

where fr = { fr, j}∞j=1 : fr, j =

{
ap′−1

r, j v−p′
j , 1 � j � r,

0, j > r.
It is obvious that ‖gr‖p,v = 1. Since the operator (1.2) is compact from lp,v into

lq,u , it yields that the set {uAϕ ,‖ϕ‖p,v = 1} is precompact in lq . Hence from criteria
on precompactness of the sets in lp (see Theorem 1.2) we conclude that

lim
r→∞

sup
‖ϕ‖p,v=1

(
∞

∑
i=r

uq
i (Aϕ)q

i

) 1
q

= 0. (2.27)
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Moreover, by using (1.6) we have that

sup
‖ϕ‖p,v=1

(
∞

∑
i=r

uq
i (Aϕ)q

i

) 1
q

�
(

∞

∑
i=r

uq
i (Agr)

q
i

) 1
q

=

(
∞

∑
i=r

uq
i

(
i

∑
j=1

ai, j
fr, j

‖v fr‖p

)q) 1
q

�
(

∞

∑
i=r

uq
i

(
r

∑
j=1

ai, j
fr, j

‖v fr‖p

)q) 1
q

� 1
d

(
∞

∑
i=r

uq
i

(
r

∑
j=1

ap′
r, jv

−p′
j

)q) 1
q
(

r

∑
j=1

ap′
r, jv

−p′
j

)− 1
p

=
1
d

(
∞

∑
i=r

uq
i

) 1
q
(

r

∑
j=1

ap′
r, jv

−p′
j

) 1
p′

=
1
d

(F1)r.

(2.28)

Obviously, (2.26) follows from (2.27) and (2.28).
To prove (2.25) for all r � 1 we introduce the following sequence

g̃r = {g̃r, j}∞j=1 : g̃r, j =
f̃r, j

‖v f̃r‖lp

,

where f̃r = { f̃r, j}∞j=1 : f̃r, j =

{
ω p′−1

j v−p′
j , 1 � j � r,

0, j > r.
Using (1.5) in (2.27) we find that

sup
‖ϕ‖p,v=1

(
∞

∑
i=r

uq
i (Aϕ)q

i

) 1
q

�
(

∞

∑
i=r

uq
i

(
i

∑
j=1

ai, j
f̃r, j

‖v f̃r‖p

)q) 1
q

� 1
d

(
∞

∑
i=r

uq
i

(
i

∑
j=1

bi,rω j f̃r, j

)q) 1
q
(

r

∑
j=1

ω p′
j v−p′

j

)− 1
p

=
1
d

(
∞

∑
i=r

bq
i,ru

q
i

) 1
q
(

r

∑
j=1

ω p′
j v−p′

j

) 1
p′

=
1
d

(F0)r.

(2.29)

According to (2.27) and (2.29) we find that (2.25) holds and the proof of necessity is
complete.

Sufficiency. Assume that (2.25) and (2.26) hold. Then, by Theorem 2.1, the oper-
ator (1.2) is bounded from lp,v into lq,u . Consequently, the set {uA f , ‖ f‖p,v � 1} is
bounded in lq . Let us show that this set is precompact in lq . By the criteria on pre-
compactness of the sets in lq (see Theorem 1.2), the bounded set {uA f , ‖ f‖p,v � 1} is
compact in lq , if

lim
r→∞

sup
‖ f‖p,v�1

(
∞

∑
i=r

uq
i |(A f )i |q

) 1
q

= 0. (2.30)
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For all r > 1 we assume that ũ = {ũi}∞i=1 : ũi =
{

0, 1 � i � r−1
ui, r � i

.

Then, by Theorem 2.1, we have that

sup
‖ f‖p,v�1

(
∞

∑
i=r

uq
i |(A f )q

i

) 1
q

= sup
‖ f‖p,v�1

(
∞

∑
i=1

ũq
i |(A f )i|q

) 1
q

� F̃(r), (2.31)

where
F̃(r) = max{F̃0(r), F̃1(r)},

F̃0(r) = sup
n�1

(
∞

∑
i=n

bq
i,nũ

q
j

) 1
q
(

n

∑
j=1

ω p′
j v−p′

j

) 1
p′

,

F̃1(r) = sup
n�1

(
∞

∑
i=n

ũq
j

) 1
q
(

n

∑
j=1

ap′
n, jv

−p′
j

) 1
p′

.

According to that ũi = 0 if 1 � i � r−1 we have that

F̃0(r) = sup
n�r

(
∞

∑
i=n

bq
i,nu

q
i

) 1
q
(

n

∑
j=1

ω p′
j v−p′

j

) 1
p′

= sup
n�r

(F0)n , (2.32)

F̃1(r) = sup
n�r

(
∞

∑
i=n

uq
i

) 1
q
(

n

∑
j=1

ap′
n, jv

−p′
j

) 1
p′

= sup
n�r

(F1)n . (2.33)

From (2.25), (2.26), (2.32) and (2.33) we find that

lim
r→∞

F̃0(r) = lim
r→∞

sup
n�r

(F0)n = lim
r→∞

(F0)r = lim
r→∞

(F0)r = 0,

lim
r→∞

F̃1(r) = lim
r→∞

sup
n�r

(F1)n = lim
r→∞

(F1)r = lim
r→∞

(F1)r = 0.

Hence, by using (2.31) we obtain (2.30) and the proof is complete.
Since the compactness of the operator A from lp,v into lq,u is equivalent of the

compactness of the operator A∗ from lq′,u−1 into lp′,v−1 , then if we change q′ by p , p′

by q , u−1 by v , and v−1 by u from Theorem 2.3 we have the following dual version
of this theorem:

THEOREM 2.4. Let 1 < p � q < ∞ and the entries of the matrix (ai, j) satisfy
Assumption 1.1. Then the operator (2.23) is compact from lp,v into lq,u if and only if

lim
r→∞

(F∗
0 )r = 0, (2.34)

lim
r→∞

(F∗
1 )r = 0, (2.35)
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where

(F∗
0 )r =

(
∞

∑
i=r

bp′
i,rv

−p′
i

) 1
p′
(

r

∑
j=1

ωq
j u

q
j

) 1
q

,

(F∗
1 )r =

(
∞

∑
i=r

v−p′
i

) 1
p′
(

r

∑
j=1

aq
r, ju

q
j

) 1
q

.
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