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OVERVIEW OF MIXED MEANS, OPERATOR NORMS OF AVERAGING

OPERATORS AND MAXIMAL FUNCTIONS, AND SOME NEW RESULTS

IVAN PERIĆ

Abstract. We overview the so-called mixed-means inequalities, that is, inequalities for mixed
power means for averaging operators which average functions over several scaled families of
subsets of R

n , such as rectangles, balls, spheres and similar. A general case of such inequalities
related to rectangles with sides parallel to coordinate hyperplanes and ellipsoids centered at the
origin is proved. Motivation for considering these families can be found in considering collection
of subsets of R

n which differentiate suitable functions on R
n . Guided by this motivation we

distinguish centered and uncentered cases. As a direct consequence of the obtained mixed-means
inequalities, the Hardy type inequalities, that is, the operator norms of the averaging operators on
Lp spaces are deduced. An interesting and important feature of these norms is that they are lower
bounds for operator norms of appropriate maximal functions. Further, they can give asymptotic
behavior of the operator norms of maximal functions for large n and fixed p > 1 .

Mathematics subject classification (2000): 26D10, 26D15.
Keywords and phrases: Integral power means, mixed-means inequalities, averaging operators, scaled

family of rectangles, balls, spheres, Hardy’s inequality, maximal functions, lower bounds for operator norms.

RE F ER EN C ES

[1] M. CHRIST AND L. GRAFAKOS, Best constants for two nonconvolution inequalities, Proc. Amer.
Math. Soc., 123, 6 (1995), 1687–1693.
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