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Abstract. We overview the so-called mixed-means inequalities, that is, inequalities for mixed
power means for averaging operators which average functions over several scaled families of
subsets of R

n , such as rectangles, balls, spheres and similar. A general case of such inequalities
related to rectangles with sides parallel to coordinate hyperplanes and ellipsoids centered at the
origin is proved. Motivation for considering these families can be found in considering collection
of subsets of R

n which differentiate suitable functions on R
n . Guided by this motivation we

distinguish centered and uncentered cases. As a direct consequence of the obtained mixed-means
inequalities, the Hardy type inequalities, that is, the operator norms of the averaging operators on
Lp spaces are deduced. An interesting and important feature of these norms is that they are lower
bounds for operator norms of appropriate maximal functions. Further, they can give asymptotic
behavior of the operator norms of maximal functions for large n and fixed p > 1 .

1. Introduction

The basic idea underlying investigations of integral mixed-means inequalities for
power means in the series of papers [2, 4, 5, 6, 12] can be found in a remark of A. E.
Ingham (see [9]), that the one-dimensional Hardy’s inequality is a simple consequence
of the inequality

[
1
b

∫ b

0

(
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x

∫ x

0
f (t)dt

)p

dx

] 1
p

� 1
b

∫ b

0

(
1
t

∫ t

0
f p(x)dx

) 1
p

dt, p � 1, f � 0, (1)

which can be easily proved by Minkowski’s inequality (see [9]). Inequality (1) can be
written as the mixed-means inequality

Mp [M1 [ f ;(0,x)] ,(0,b)] � M1 [Mp [ f ;(0,x)] ,(0,b)] , (2)

where Mp [ f ;Ω] =
(

1
μ(Ω)

∫
Ω f p(x)dμ(x)

) 1
p
, p ∈ R , p �= 0, and M0 [ f ;Ω] =

exp
(

1
μ(Ω)

∫
Ω log f (x)dμ(x)

)
, f � 0.
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In deducing mixed-means inequalities of type (2) in more general settings, it is
of crucial importance to find a suitable averaging operator. M. Christ and L. Grafakos
introduced in [1] the following averaging operator particularly suitable for deriving
mixed-means inequalities:

(
Tc
δ f
)
(x) =

1
|B(x,δ |x|)|

∫
B(x,δ |x|)

f (y)dy, f ∈ L1
loc (Rn) ,

where δ > 0, B(x,r) is the ball in R
n centered at x ∈ R

n and of radius r > 0, |x| is
the Euclidean norm of x ∈ R

n and |A| is the Lebesgue measure of a measurable set
A ⊂ R

n . In the same paper they proved Hardy’s inequality for the operator Tc
δ , using

Young’s inequality for the convolution on the group (R+,dt/t) .
An important property of the operator norm (on Lp spaces) of Tc

δ , deduced from
Hardy’s inequality for this operator, is that it is a lower bound for the operator norm of
the Hardy-Littlewood (centered) maximal function

(Mc f ) (x) = supr>0
1

|B(x,r)|
∫

B(x,r)
f (y)dy.

Our motivation for the investigations is that a maximal function can be defined for
various collections C of sets, C = {C : C ⊆ R

n} , by

(MC f ) (x) = sup
C∈C ,x∈C

1
|C|

∫
C

f (x−y)dy.

We deal with scaled families of sets defined in a similar way as the family of balls in
the definition of the operator Tc

δ . Having in mind different behaviors of the operator
norm of maximal functions in centered and in uncentered case (see for example [13]),
it is natural to introduce the operator

(
Tunc
δ f

)
(x) =

1
|B(δx, |1− δ | |x|)|

∫
B(δx,|1−δ | |x|)

f (y)dy, f ∈ L1
loc (Rn) ,

where δ ∈ R , δ �= 1, and S(a,r) denotes the (n−1)−dimensional sphere in R
n cen-

tered at a ∈ R
n and of radius r > 0. Using the same method as in [6] it can be proved

that

Mp [M1 [ f ;B(δx, |1− δ | |x|)] ;B(R)]
� M1 [Mp [ f ;B(|x|)] ;B(δRe, |1− δ |R)] , (3)

where p � 1, R > 0, B(R) = B(0,R) , δ ∈ R , δ �= 1, f is a non-negative function
on B((|δ |+ |1− δ |)R) , and e ∈ R

n , |e| = 1, is arbitrary. From this, in the standard
manner, Hardy’s inequality can be deduced and

‖Tunc
δ ‖p =

1
|B(δe, |1− δ |)|

∫
B(δe,|1−δ |)

|x|− n
p dx.

It can be shown that ‖Tunc
1/2 ‖p has exponential growth for fixed p > 1 and large n .
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Analogues of operators Tc
δ and Tunc

δ for the case of averaging functions over hy-
perspheres in R

n were investigated in [12], where appropriate mixed-means inequali-
ties were proved and the operator norms were deduced. Asymptotic behavior of these
norms was also investigated.

In [3], an interested reader can find additional information on mixed-means in-
equalities.

In this paper we investigate mixed-means inequalities for scaled families of rectan-
gles in R

n with sides parallel to coordinate hyperplanes, �1− balls (non-scaled) in R
n

centered at the origin and ellipsoids centered at the origin (non-scaled) with axes par-
allel to coordinate axes. In this sense, the case of rectangles is completely solved. The
general problem of establishing mixed-means inequalities for operators defined anal-
ogously as Tc

δ and Tunc
δ for scaled �α−balls, α �= 2, and scaled ellipsoids, remains

open. Notice that in the contrast to balls and spheres, these sets are not rotationally
invariant.

2. Mixed means and Hardy-type inequalities for rectangles in R
n

2.1. Mixed means for rectangles in R
n

The mixed-means inequalities for non-scaled rectangles are given in [4].

For given b1,b2 ∈ R
n , we denote by B∞ (b1,b2) the rectangle in R

n with sides
parallel to coordinate hyper-planes and with the main diagonal determined by b1 and
b2 . In the case b1 = −b2 = b , we write B∞ (±b) . Set 1 = (1, . . . ,1) .

For x = (x1, . . . ,xn),y = (y1, . . . ,yn)∈R
n , we set x◦y = (x1y1, . . . ,xnyn) , max{x,y}=

(max{x1,y1}, . . . ,max{xn,yn}) and
1
x

=
(

1
x1

, . . . ,
1
xn

)
if xi �= 0 for i = 1, . . . ,n .

THEOREM 1. (General case) Let b ∈ R
n
+ , p � 1 , δδδδ 1 = (δ11, . . . ,δ1n) ∈ R

n , δδδδ 2 =
(δ21, . . . ,δ2n) ∈ R

n , δ1i �= δ2i , i = 1, . . .n. If f : B∞ (±(max{|δ1i| , |δ2i|})◦b) → R is
a non-negative function, then

[
1

|B∞ (±b)|
∫

B∞(±b)

(
1

|B∞ (δδδδ 1 ◦ x,δδδδ2 ◦ x)|
∫

B∞(δδδδ 1◦x,δδδδ2◦x)
f (y)dy

)p

dx
] 1

p

� 1
|B∞ (δδδδ 1 ◦b,δδδδ2 ◦b)|

∫
B∞(δδδδ 1◦b,δδδδ 2◦b)

(
1

|B∞ (±y)|
∫

B∞(±y)
f p(x)dx

) 1
p

dy.

(4)

Inequality (4) is sharp and equality holds for functions of the form f (x) =C∏n
i=1 |xi|αi ,

α1, . . . ,αn ∈ R , C � 0 .
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Proof. By using obvious transformations and Minkowski’s inequality, we have

[
1

2n∏n
i=1 bi

∫
B∞(±b)

(
1

∏i |δ2i − δ1i| |xi|
∫

B∞(δδδδ 1◦x,δδδδ2◦x)
f (y)dy

)p

dx
] 1

p

=
(

1
2n∏n

i=1 bi

) 1
p 1

∏i |δ2i− δ1i|
[∫

B∞(±b)

(∫
B∞(δδδδ 1◦1,δδδδ 2◦1)

f (x ◦ y)dy
)p

dx
] 1

p

�
(

1
2n∏n

i=1 bi

) 1
p 1

∏i |δ2i− δ1i|
∫

B∞(δδδδ 1◦1,δδδδ2◦1)

(∫
B∞(±b)

f p(x ◦ y)dx
) 1

p

dy

=
(

1
2n∏n

i=1 bi

) 1
p 1

∏i |δ2i− δ1i|bi

∫
B∞(δδδδ 1◦b,δδδδ 2◦b)

(∫
B∞(±b)

f p
(

1
b
◦ x ◦ y

)
dx
) 1

p

dy

=
1

∏i |δ2i − δ1i|bi

∫
B∞(δδδδ 1◦b,δδδδ 2◦b)

(
1

2n∏i |yi|
∫

B∞(±y)
f p (x)dx

) 1
p

dy,

by which inequality (4) is proved.

In the following corollaries we give the precise meaning of the main cases of the
scaled families which we are interested in: origin-centered case, centered case and
uncentered case.

COROLLARY 1. (Origin-centered case) Let b ∈ R
n
+ , p � 1 . If f : B∞ (±b) → R

is a non-negative function, then

[
1

|B∞ (±b)|
∫

B∞(±b)

(
1

|B∞ (±x)|
∫

B∞(±x)
f (y)dy

)p

dx
] 1

p

� 1
|B∞ (±b)|

∫
B∞(±b)

(
1

|B∞ (±y)|
∫

B∞(±y)
f p(x)dx

) 1
p

dy. (5)

Inequality (5) is sharp and equality holds for functions of the form f (x) =C∏n
i=1 |xi|αi ,

α1, . . . ,αn ∈ R , C � 0 .

COROLLARY 2. (Uncentered case) Let b ∈ R
n
+ , p � 1 , δ ∈ R , δ �= 1 . If f :

B∞ (±δb) → R is a non-negative function, then

[
1

|B∞ (±b)|
∫

B∞(±b)

(
1

|B∞ (δx,x)|
∫

B∞(δx,x)
f (y)dy

)p

dx
] 1

p

� 1
|B∞ (δb,b)|

∫
B∞(δb,b)

(
1

|B∞ (±y)|
∫

B∞(±y)
f p(x)dx

) 1
p

dy. (6)

Inequality (6) is sharp and equality holds for functions of the form f (x) =C∏n
i=1 |xi|αi ,

α1, . . . ,αn ∈ R , C � 0 .
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COROLLARY 3. (Centered case) Let b∈R
n
+ , p � 1 , δ > 0 . If f : B∞ (±(1+ δ )b)→

R is a non-negative function, then

[
1

|B∞ (±b)|
∫

B∞(±b)

(
1

|B∞ ((1− δ )x,(1+ δ )x)|
∫

B∞((1−δ )x,(1+δ )x)
f (y)dy

)p

dx
] 1

p

� 1
|B∞ ((1− δ )b,(1+ δ )b)|

∫
B∞((1−δ )b,(1+δ )b)

(
1

|B∞ (±y)|
∫

B∞(±y)
f p(x)dx

) 1
p

dy.

(7)

Inequality (7) is sharp and equality holds for functions of the form f (x) =C∏n
i=1 |xi|αi ,

α1, . . . ,αn ∈ R , C � 0 .

2.2. Hardy-type inequalities for rectangles in R
n

The general Hardy-type inequality for rectangles is given in the following theorem.
We omit the proof, since it is analogous to the proofs given in [4, 5, 6, 12].

THEOREM 2. (General case) Let b ∈ R
n
+ , p > 1, δδδδ 1 = (δ11, . . . ,δ1n)∈ R

n , δδδδ 2 =
(δ21, . . . ,δ2n) ∈ R

n , δ1i �= δ2i , i = 1, . . .n . If f : B∞ (±(max{|δ1i| , |δ2i|})◦b) → R is
a non-negative function, then

[∫
B∞(±b)

(
1

|B∞ (δδδδ 1 ◦ x,δδδδ2 ◦ x)|
∫

B∞(δδδδ 1◦x,δδδδ2◦x)
f (y)dy

)p

dx
] 1

p

� C∞ (n, p;δδδδ 1,δδδδ 2)
(∫

B∞(±max{δδδδ 1,δδδδ 2}◦b)
f p(x)dx

) 1
p

,

(8)

where

C∞ (n, p;δδδδ1,δδδδ 2) =
1

|B∞ (δδδδ 1 ◦ 1,δδδδ2 ◦ 1)|
∫

B∞(δδδδ 1◦1,δδδδ2◦1)

(
n

∏
i=1

|yi|
)− 1

p

dy (9)

is the best possible constant.

Notice that

C∞ (n, p;δδδδ1,δδδδ 2) =
n

∏
i=1

(
1

|δ2i − δ1i|
∫

(δ1i,δ2i)
|yi|−

1
p dyi

)
. (10)

We emphasize some cases where the best possible constants can be easily com-
puted:

1. Rectangles centered at the origin: δ1i = −1,δ2i = 1, i = 1, . . . ,n , and

C∞ (n, p;−1,1) =
(∫ 1

0
|y|− 1

p

)n

=
(

p
p−1

)n

.
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2. Centered case: δ1i = 1− δ ,δ2i = 1+ δ , i = 1, . . . ,n , δ > 0, and

C∞ (n, p;1− δ ,1+ δ ) =
(

1
2δ

∫ 1+δ

1−δ
|y|− 1

p

)n

.

It is easy to see that maxδ>0C∞ (1, p;1− δ ,1+ δ ) is achieved for 1 < δ < 2.

For p = 2, δmax = 2√
3

and maxδ>0C∞ (1, p;1− δ ,1+ δ ) =
4√27√

2
≈ 1.611185 <

2 = 2
2−1 . This is conjectured to be the operator norm of the centered Hardy-

Littlewood maximal function in [7]. The problem remains unsolved.

3. Uncentered case: δ1i = δ ,δ2i = 1, i = 1, . . . ,n , δ ∈ R , δ �= 1, and

C∞ (n, p;δ ,1) =
(

1
|1− δ |

∫
(δ ,1)

|y|− 1
p

)n

.

Again, it is easy to see that maxδ∈RC∞ (1, p;δ ,1) is achieved for −1 < δ < 0.
For p = 2, δmax = 2

√
2−3 and maxδ>0C∞ (1, p;δ ,1) = 1+

√
2 ≈ 2.414214 >

2 = 2
2−1 . This is proved, in [8], to be the operator norm of the uncentered maxi-

mal function.

3. Mixed means for �1 -balls in R
n

In order to obtain mixed-means inequalities for �1−balls, the first idea is to use
results for �2−balls, but in the process of reducing the mixed-means inequality for
�1−balls centered at the origin to the mixed-means inequality for �2−balls investigated
in [5], we obtain weights that were not considered in [5].

Set B1 (R) = {x ∈ R
n : |x|1 = ∑n

i=1 |xi| � R} .

THEOREM 3. Let R > 0 , p � 1 . If f : B1 (R) → R is a non-negative function,
then [

1
|B1 (R)|

∫
B1(R)

(
1

|B1 (|x|1)|
∫

B1(|x|1)
f (y)dy

)p

dx
] 1

p

� 1
|B1 (R)|

∫
B1(R)

(
1

|B1 (|y|1)|
∫

B1(|y|1)
f p(x)dx

) 1
p

dy. (11)

Inequality (11) is sharp and equality holds for functions of the form f (x) = C|x|λ1 ,
λ ∈ R , C � 0 .

The following lemma is useful in proving Theorem 3. The proof of this lemma is
an exercise in elementary inequalities.

LEMMA 1. Inequality (11) is equivalent to the inequality

[
1∣∣B+

1 (R)
∣∣
∫

B+
1 (R)

(
1∣∣B+

1 (|x|1)
∣∣
∫

B+
1 (|x|1)

f (y)dy

)p

dx

] 1
p
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� 1∣∣B+
1 (R)

∣∣
∫

B+
1 (R)

(
1∣∣B+

1 (|y|1)
∣∣
∫

B+
1 (|y|1)

f p(x)dx

) 1
p

dy, (12)

where B+
1 (R) = {x ∈ R

n : |x|1 = ∑n
i=1 xi � R, x1, . . . ,xn � 0} .

Proof of Theorem 3. We prove B+
1 version of Theorem 3. Since

∣∣B+
1 (R)

∣∣= Rn/n! and
after obvious transformations we have

[
1∣∣B+

1 (R)
∣∣
∫

B+
1 (R)

(
1∣∣B+

1 (|x|1)
∣∣
∫

B+
1 (|x|1)

f (y)dy

)p

dx

] 1
p

=
(n!)

1
p +1

R
n
p

[∫
|x|1�R

(∫
|y|1�1

f (|x|1y)dy
)p

dx
] 1

p

. (13)

Set yi = uφ2
i , i = 1, . . . ,n , where φ = (φ1, . . . ,φn) =

(
sinϕn−1φ ,cosϕn−1

) ∈ Sn−1, φ ∈
Sn−2 . The Jacobian of this transformation is J (y1,...,yn)

(u,ϕ1,...,ϕn−1)
= 2n−1un−1∏n

i=1 φiJφ . Now,
the right-hand side of (13) is equal to

(14)

(n!)
1
p +1

R
n
p

[∫
B+

1 (R)

(∫
Sn−1
+

∫ 1

0
f
(
u|x|1

(
φ2

1 , . . . ,φ2
n

))
2n−1un−1

n

∏
i=1

φi dudφ

)p

dx

] 1
p

.

By applying Jensen’s inequality[
(n−1)!

∫
Sn−1
+

F(φ)2n−1
n

∏
i=1

φidφ

]p

� (n−1)!
∫
Sn−1
+

F p(φ)2n−1
n

∏
i=1

φidφ ,

we get that (14) is not greater than

(15)

(n!)
1
p +1 (n−1)!

1
p−1

R
n
p

[∫
B+

1 (R)

∫
Sn−1
+

(∫ 1

0
f
(
u|x|1

(
φ2

1 , . . . ,φ2
n

))
un−1 du

)p

2n−1
n

∏
i=1

φidφdx

] 1
p

.

By using Minkowski’s inequality, transformation x′i = ∑i
j=1 x j ∈ [x′i−1,R] , i = 1, . . . ,n ,

x′0 = 0, where Dn denotes the transformed domain, (15) is not greater than

(n!)
1
p +1 (n−1)!

1
p−1

R
n
p

∫ 1

0

(∫
Dn

∫
Sn−1
+

f p (uxn
(
φ2

1 , . . . ,φ2
n

))
2n−1

n

∏
i=1

φidφ dx

) 1
p

un−1du

=
(n!)

1
p+1

R
n
p (n−1)!

∫ 1

0

(∫ R

xn=0

∫
Sn−1
+

xn−1
n f p (uxn

(
φ2

1 , . . . ,φ2
n

))
2n−1

n

∏
i=1

φi dφdxn

) 1
p

un−1du
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=
n
Rn

∫ R

0

(
n!
un

∫ u

t=0

∫
Sn−1
+

f p (t (φ2
1 , . . . ,φ2

n

))
2n−1tn−1

n

∏
i=1

φi dtdφ

) 1
p

un−1du

=
n
Rn

∫ R

u=0

(
1∣∣B+

1 (u)
∣∣
∫

B1(u)
f p (y1, . . . ,yn)

) 1
p

un−1du

=
1∣∣B+

1 (R)
∣∣
∫

B+
1 (R)

(
1∣∣B+

1 (|x|1)
∣∣
∫

B+
1 (|x|1)

f p (y)dy

) 1
p

dx,

where the last equality holds since the volume of the (n−1)−dimensional l1−ball of
the radius u is un−1/(n−1)! .

By using the same arguments as in [4, 5, 6, 12], it follows that the operator norm
of the operator (SQ f )(x) = 1

|B1(|x|1)|
∫
B1(|x|1) f (y)dy is

‖SQ‖p =
1

|B1 (1)|
∫

B1(1)
|x|−

n
p

1 dx =
p

p−1
.

4. Mixed means for ellipsoids in R
n

For an x ∈ R
n , set Ell(x) =

{
y ∈ R

n ;∑n
i=1

y2
i

x2
i

� n
}

. Then

|Ell (x)| = n
n
2 |B(1)|

n

∏
i=1

|xi| .

Notice that x is an element of the boundary of Ell(x) .
The proof of a mixed-means inequality for ellipsoids defined in this way, is much

easier than the proof for balls, even in the case of balls centered at the origin, and it is
more related to the case of rectangles. This is especially seen in the asymptotic behavior
of the operator norm of the operator which averages functions over the ellipsoids.

THEOREM 4. Let R > 0 , p � 1 . If f : B(
√

nR) → R is a non-negative function,
then

[
1

|B(R)|
∫

B(R)

(
1

|Ell(x)|
∫

Ell(x)
f (y)dy

)p

dx
] 1

p

� 1
|B(R)|

∫
B(R)

(
1

|Ell(y)|
∫

Ell(y)
f p(x)dx

) 1
p

dy. (16)

Inequality (16) is sharp and equality holds for functions of the form f (x)=C∏n
i=1 |xi|αi ,

where C � 0 , α1, . . . ,αn ∈ R .
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Proof. By using obvious transformations and Minkowski’s inequality we have:

[
1

|B(R)|
∫

B(R)

(
1

|Ell(x)|
∫

Ell(x)
f (y)dy

)p

dx
] 1

p

=

[
1

Rn |B(1)|
∫

B(R)

(
1

n
n
2 ∏n

i=1 |xi| |B(1)|
∫

Ell(x)
f (y)dy

)p

dx

] 1
p

=
(

1
Rn |B(1)|

) 1
p 1
|B(1)|

[∫
B(R)

(∫
B(1)

f
(√

n x ◦ y
)
dy
)p

dx
] 1

p

=
(

1
|B(1)|

) 1
p+1 1

Rn

[∫
B(1)

(∫
B(R)

f
(√

n x ◦ y
)
dy
)p

dx
] 1

p

�
(

1
|B(1)|

) 1
p+1 1

Rn

∫
B(R)

(∫
B(1)

f p (√n x ◦ y
)
dx
) 1

p

dy

=
(

1
|B(1)|

) 1
p+1 1

Rn

∫
B(R)

(
1

n
n
2 ∏n

i=1 |yi|
∫

Ell(y)
f p (x)dx

) 1
p

dy

=
1

|B(R)|
∫

B(R)

(
1

|Ell(y)|
∫

Ell(y)
f p(x)dx

) 1
p

dy. (17)

In the following theorem we show how symmetry in mixed-means inequalities can
be lost, if we mix ”shapes” of sets in these means.

THEOREM 5. Let R > 0 , p � 1 and δ1 , δ2 ∈R , δ1 �= δ2 . If f : B∞ (±max{δ1,δ2}R)→
R is a nonnegative function, then

[
1

|B(R)|
∫

B(R)

(
1

|B∞ (δ1x,δ2x)|
∫

B∞(δ1x,δ2x)
f (y)dy

)p

dx
] 1

p

� 1
|B∞ (δ1R,δ2R)|

∫
B∞(δ1R,δ2R)

(
1∣∣Ell(y)
∣∣
∫

Ell(y)
f p(x)dx

) 1
p

dy, (18)

where R = R(1, . . . ,1) , Ell(x) =
{

y ∈ R
n ;∑n

i=1
y2
i

x2
i

� 1
}

, x ∈ R
n .

Proof. By using obvious changes of variables, we have:

[
1

|B(R)|
∫

B(R)

(
1

|B∞ (δ1x,δ2x)|
∫

B∞(δ1x,δ2x)
f (y)dy

)p

dx
] 1

p

=
[

1
Rn |B(1)|

∫
B(R)

(
1

|δ2− δ1|n∏n
i=1 |xi|

∫
B∞(δ1x,δ2x)

f (y)dy
)p

dx
] 1

p

=
(

1
Rn |B(1)|

) 1
p 1
|δ2 − δ1|n

[∫
B(R)

(∫
B∞(δ11,δ21)

f (x ◦ y)dy
)p

dx
] 1

p



914 IVAN PERIĆ

=
(

1
|B(1)|

) 1
p 1

Rn |δ2 − δ1|n
[∫

B(1)

(∫
B∞(δ1R,δ2R)

f (x ◦ y)dy
)p

dx
] 1

p

�
(

1
|B(1)|

) 1
p 1

Rn |δ2 − δ1|n
∫

B∞(δ1R,δ2R)

(∫
B(1)

f p (x ◦ y)dx
) 1

p

dy

=
(

1
|B(1)|

) 1
p 1

Rn |δ2 − δ1|n
∫

B∞(δ1R,δ2R)

(
1

∏n
i=1 |yi|

∫
Ell(y)

f p (x)dx
) 1

p

dy

=
1

|B∞ (δ1R,δ2R)|
∫

B∞(δ1R,δ2R)

(
1∣∣Ell(y)
∣∣
∫

Ell(y)
f p(x)dx

) 1
p

dy.

4.1. Hardy-type inequality for ellipsoids

By using analogous arguments as in [4, 5, 6, 12], we obtain from (16) that for
nonnegative function f ∈ Lp (Rn)

[∫
Rn

(
1

|Ell(x)|
∫

Ell(x)
f (y)dy

)p

dx

] 1
p

� CEll(n, p) ‖ f‖p, p > 1, (19)

where

CEll(n, p) = |B(R)| 1
p−1

∫
B(R)

|Ell(y)|− 1
p dy =

n−
n
2p

|B(1)|
∫

B(1)

(
n

∏
i=1

|yi|
)− 1

p

dy

=
n−

n
2p

|B(1)|2
n
∫ 1

u=0

∫
S

n−1
+

(
un

n

∏
i=1

φi

)− 1
p

un−1dudφ =
n−

n
2p 2n

|B(1)|
p

n(p−1)

∫
S

n−1
+

(
n

∏
i=1

φi

)− 1
p

dφ

=
n−

n
2p 2n

|B(1)|
p

n(p−1)

∫
(0,π/2)n

(
n−1

∏
i=1

siniϕi cosϕi

)− 1
p n−1

∏
i=2

sini−1ϕidϕ1 . . .dϕn−1

=
p

p−1

n−
n
2pΓ
(

n
2

)
π n

2

Γn
(

1
2p′
)

Γ
(

n
2p′
) .

It holds:

1 =
1

|S (0,1)|
∫

S(0,1)
|x|− n

p ds(x) <
p

p−1
=

1
|B(0,1)|

∫
B(0,1)

|x|− n
p dx

< CEll(n, p) =
1

|Ell(1)|
∫

Ell(1)

(
n

∏
i=1

|xi|
)− 1

p

dx

<

(
p

p−1

)n

=
1

|B∞ (±1)|
∫

B∞(±1)

(
n

∏
i=1

|xi|
)− 1

p

dx. (20)
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The second inequality in (20) follows from the inequality (∏n
i=1 |xi|)

1
n �

(
1
n ∑

n
i=1 |xi|2

) 1
2
,

where equality holds if and only if |xi| =
∣∣x j
∣∣ for every i, j = 1, . . . ,n . The third in-

equality holds since the function x �→ (∏n
i=1 |xi|)−

1
p is coordinatewise decreasing and

B∞ (±1) ⊂ Ell(1) .
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[6] A. ČIŽMEŠIJA, I. PERIĆ, Mixed means over balls and annuli and lower bounds for operator norms
of maximal functions, J. Math. Anal. Appl., 291 (2004), 625–637.

[7] R. DROR, S. GANGULI, R. S. STRICHARTZ, A search for best constants in the. Hardy-Littlewood
maximal theorem, J. Fourier Anal. Appl., 2 (1996), 473–486.

[8] L. GRAFAKOS, S. MONTGOMERY-SMITH, Best constants for uncentered maximal functions, Bull.
London Math. Soc., 29 (1997), 60–64.

[9] G. HARDY, J. E. LITTLEWOOD, AND G. POLYA, Inequalities, 2nd edition, Cambridge University
Press, Cambridge, 1967.

[10] E. H. LIEB AND M. LOSS, Analysis, Graduate Studies in Mathematics, Vol. 14, Amer. Math. Soc.,
Providence, RI, 1997.
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