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HERMITE–HADAMARD’S INEQUALITY AND THE p–HH–NORM ON

THE CARTESIAN PRODUCT OF TWO COPIES OF A NORMED SPACE

EDER KIKIANTY AND SEVER S. DRAGOMIR

Abstract. The Cartesian product of two copies of a normed space is naturally equipped with the
well-known p -norm. In this paper, another notion of norm is introduced, and will be called the
p - HH -norm. This norm is an extension of the generalised logarithmic mean and is connected to
the p -norm by the Hermite-Hadamard’s inequality. The Cartesian product space (with respect to
both norms) is complete, when the (original) normed space is. A proof for the completeness of
the p - HH -norm via Ostrowski’s inequality is provided. This space is embedded as a subspace
of the well-known Lebesgue-Bochner function space (as a closed subspace, when the norm is a
Banach norm). Consequently, its geometrical properties are inherited from those of Lebesgue-
Bochner space. An explicit expression of the superior (inferior) semi-inner product associated to
both norms is considered and used to provide alternative proofs for the smoothness and reflexivity
of this space.
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