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Abstract. The Cartesian product of two copies of a normed space is naturally equipped with the
well-known p -norm. In this paper, another notion of norm is introduced, and will be called the
p - HH -norm. This norm is an extension of the generalised logarithmic mean and is connected to
the p -norm by the Hermite-Hadamard’s inequality. The Cartesian product space (with respect to
both norms) is complete, when the (original) normed space is. A proof for the completeness of
the p - HH -norm via Ostrowski’s inequality is provided. This space is embedded as a subspace
of the well-known Lebesgue-Bochner function space (as a closed subspace, when the norm is a
Banach norm). Consequently, its geometrical properties are inherited from those of Lebesgue-
Bochner space. An explicit expression of the superior (inferior) semi-inner product associated to
both norms is considered and used to provide alternative proofs for the smoothness and reflexivity
of this space.

1. Introduction

We recall the classical Hermite-Hadamard’s inequality for any convex function
f : [a, b] ⊂ R → R (see, for instance, [15]):

(b − a)f
(

a + b
2

)
�
∫ b

a
f (t)dt � (b − a)

[
f (a) + f (b)

2

]
. (1.1)

Recently, the Hermite-Hadamard’s inequality has been extended for convex functions in
linear spaces (see, for instance, [11, 12]). To be precise, let X be a linear space over R ,
x and y be two distinct vectors in X , and define the segment [x, y] := {(1− t)x+ ty, t ∈
[0, 1]} . Let f : [x, y] → R be a convex function, then the following Hermite-Hadamard
integral inequality (see [11, p. 2], [12, p. 2], [15, p. 78], and [27, p. 103–105]) is obtained
from (1.1):

f

(
x + y

2

)
�
∫ 1

0
f [(1 − t)x + ty]dt � f (x) + f (y)

2
. (1.2)
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When X is equipped by a norm, namely ‖ · ‖ , then for any p � 1 , we have the
following norm inequality (see [15, p. 79] and [27, p. 106]):

∥∥∥∥x + y
2

∥∥∥∥ �
(∫ 1

0
‖(1 − t)x + ty‖pdt

) 1
p

� 1

2
1
p

(‖x‖p + ‖y‖p)
1
p , (1.3)

by (1.2) and the convexity of f (x) = ‖x‖p (x ∈ X, p � 1) .
We are interested in investigating the Cartesian product of two copies of a normed

linear space (X, ‖ · ‖) , where the addition and scalar multiplication are defined in the
usual way. The Cartesian product space X2 is naturally equipped by the well-known

p -norm, i.e. ‖(x, y)‖p := (‖x‖p + ‖y‖p)
1
p for any (x, y) in X2 . Previous results

regarding the Cartesian product of Banach spaces have been considered in [8, 20, 25],
where the results were stated in a more general setting, i.e. the Banach-valued sequence
space lp(X) .

In this paper, we prove that the quantity
(∫ 1

0 ‖(1 − t)x + ty‖pdt
) 1

p
is a norm of

(x, y) in X2 (which will be called the p -HH -norm). We observe that, when X is the
field of real numbers, this quantity is the pth -order generalised logarithmic mean of two
positive numbers x and y . This observation rises due to the fact that

∫ 1
0 ‖(1−t)x+ty‖pdt

is the integral mean of ‖ · ‖p on segment [x, y] . Therefore, the p -HH -norm extends
the generalised logarithmic mean to a more general setting of normed spaces. We also
remark that inequality (1.3) gives a relation among the value of the function ‖ ·‖p at the
midpoint of segment [x, y] , its integral mean (i.e. the p -HH -norm of (x, y) in X2 ),
and the p -norm of (x, y) in X2 .

When X is a Banach space, X2 with respect to the p -norm is also complete, due
to the previous results of the Banach-valued sequence space lp(X) (see, for example,
[8]). In this paper, we show that the space X2 together with the p -HH -norm is also
complete, whenever X is. It implies that these norms are equivalent in X2 . Thus,
they induce the same topology. Moreover, we are able to prove the equivalency of these
norms on X2 , via Ostrowski’s inequality for absolutely continuous function on segment
in normed spaces [18]. This fact provides an alternative proof for the completeness of
the p -HH -norm on X2 , via equivalency of both norms.

We are also interested in investigating the geometrical properties of X2 with respect
to both norms. For this purpose, we recall the well-known Lebesgue-Bochner function
space Lp([0, 1], X) (1 � p � ∞) , i.e. the space of functions f defined on the interval
[0, 1] , which take values in the normed space X , where

∫ 1
0 ‖f (t)‖pdt is finite [3]. This

space is a normed space together with the norm ‖f ‖Lp =
(∫ 1

0 ‖f (t)‖pdt
) 1

p
and is a

Banach spacewhenever X is (see [2, 16]). For 1 < p < ∞ , some particular geometrical
properties (i.e. strict convexity, uniform convexity, smoothness, Fréchet smoothness,
and reflexivity) of Lp([0, 1], X) are implied by those of X (see [2, 3, 9, 10, 19, 22] for
references).

We examine that the Cartesian product space X2 , with respect to both p -norm and
p -HH -norm, is embedded as a subspace of the Lebesgue-Bochner space Lp([0, 1], X) .
In particular, when X is a Banach space, the Cartesian product space can be embedded
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as a closed subspace of Lp([0, 1], X) . As a consequence, the geometrical properties of
the Cartesian product space are inherited from the Lebesgue-Bochner space.

In this paper, we also provide an explicit expression of the superior (inferior) semi-
inner product in X2 associated to both norms. By using the semi-inner product, we
provide alternative proofs for the smoothness and the reflexivity of X2 . Although the
proofs are simpler by considering the embedding, we keep the representation of semi-
inner product for further research on the orthogonality concepts that can be considered
in the Cartesian product space.

2. Definitions, notation, and preliminary results

All definitions, notation, and related properties, which are used in the paper, are
described in this section for references. Throughout this paper, we assume that all
linear spaces are over the field of real numbers. We also denote (X, ‖ · ‖) as a normed
space and (B, ‖ · ‖) as a Banach space. Unless mentioned otherwise, the measure that
we consider in this paper is in Lebesgue sense, and we denote m(E) as the Lebesgue
measure of a subset E of R . We also denote R for the extended real numbers.
2.1. Geometrical properties of Banach space. In any normed space X , the norm
‖ · ‖ is right-(left-)Gâteaux differentiable at x ∈ X \ {0} , i.e. the following limits

(∇+(−)‖ · ‖(x))(y) := lim
t→0+(−)

‖x + ty‖ − ‖x‖
t

exist for all y ∈ X (see [23, p. 483–485] for the proof)1. The norm ‖ · ‖ is Gâteaux
differentiable at x ∈ X \ {0} if and only if (∇+‖ · ‖(x))(y) = (∇−‖ · ‖(x))(y) , for
all y ∈ X . A normed linear space (X, ‖ · ‖) is said to be smooth if and only if the
norm ‖ · ‖ is Gâteaux differentiable on X \ {0} . The norm ‖ · ‖ : X → R is said to be
Fréchet differentiable at x ∈ X if and only if there exists a continuous linear functional
Gx on X such that

lim
‖h‖→0

|‖x + th‖ − ‖x‖ − Gx(h)|
‖h‖ = 0.

When this property holds for any x ∈ X , the normed space is said to be Fréchet smooth
(see [19, p. 230] and [23, p. 504] for references).

The function f 0(·) = 1
2‖ · ‖2 on X is convex and therefore, the following limits

〈 x, y〉 s(i) := (
+(−)f 0(y))(x) = lim
t→0+(−)

‖y + tx‖2 − ‖y‖2

2t

exist for any x, y ∈ X and are called the superior (inferior) semi-inner products (s.i.p.)
associated to the norm ‖ · ‖ [13, p. 27] (for their further properties, see [13, p. 27–39]).
The following identity [13, p. 43] gives a relationship between the s.i.p. and the Gâteaux
lateral (one-sided) derivatives of the given norm:

〈 x, y〉 s(i) = ‖y‖(∇+(−)‖ · ‖(y))(x), for all x, y ∈ X, where y �= 0. (2.1)

1In some literature, the quantities (∇+(−)‖ · ‖(x))(y) are denoted by τ±(x, y) , and are called the
tangent functionals (see, for example, [13, p. 43]).
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Due to the convexity of f 0 , we have in general

〈 x, y〉 i � 〈 x, y〉 s, for all x, y ∈ X. (2.2)

The following provides a necessary and sufficient condition for a normed space to be
smooth (see also [11, p. 2], [12, p. 2], and [14, p. 338]).

PROPOSITION 1. Equality holds in (2.2) if and only if X is smooth.

We remark that every subspace of a (Fréchet) smooth normed space is itself a
(Fréchet) smooth space [23, p. 488]. Note that Fréchet differentiability implies Gâteaux
differentiability [23, p. 504], but not conversely. As an example (this example is due to
Sova [30], with remark by Gieraltowska-Kedzierska and Van Vleck [17]), the mapping
f : L1[0, π] → R defined by f (x) =

∫ π
0 sin x(t)dt is everywhereGâteaux differentiable,

but nowhere Fréchet differentiable.
A normed space is reflexive whenever it is isomorphic to its bidual. It implies

that any reflexive normed space is always complete, by the completeness of the dual
space [23, p. 99]. Thus, the completeness is necessary for a normed space to be a
reflexive space. The incomplete reflexive normed space is defined by the reflexivity of
its completion [23, p. 99]. We also note that a Banach space B is reflexive if and only
if the dual space B∗ is reflexive (see [23, p. 104] for the proof). Every closed subspace
of a reflexive normed space is reflexive (proof can be found in [23, p. 104]).

A normed space that is isomorphic to a reflexive space is itself reflexive. Moreover,
a Banach space is reflexive if it is an image of a reflexive space under a bounded linear
operator, regardless of whether it is an isomorphism or not [23, p. 105]. The following
lemma is a direct consequence of this fact:

LEMMA 1. Let (B, ‖ · ‖) be a reflexive Banach space. If there exists a norm |‖ · ‖|
on B which is equivalent to ‖ · ‖ , then (B, |‖ · ‖|) is also reflexive.

Proof. Since ‖ · ‖ and |‖ · ‖| are equivalent, the identity operator, considered as
a linear operator from (B, ‖ · ‖) onto (B, |‖ · ‖|) , is bounded. Therefore (B, |‖ · ‖|) is
reflexive, since (B, ‖ · ‖) is reflexive. �

The following result is a natural generalisation of the Riesz representation theorem
and is used to characterise the reflexivity of a Banach space (see [13, p. 150] for the
complete proof):

PROPOSITION 2. Let 〈 ·, ·〉 s(i) be the superior (inferior) s.i.p. associated to the
norm ‖·‖ on a Banach space B . Then, B is reflexive if and only if for every continuous
linear functional f on B there exists an element u in B such that

〈 x, u〉 i � f (x) � 〈 x, u〉 s, f or all x ∈ B, and ‖f ‖ = ‖u‖.
The strict convexity (or rotundity) can be intuitively described as the condition

where any nontrivial straight line segments, whose endpoints lie in the unit sphere, has
its midpoint in the interior of the closed unit ball (see [23, p. 441]). The notion of
uniform convexity deals with the question of how far the midpoint (of such segment)
into the interior of the closed unit ball is (see [23, p. 441-442]). The formal definitions
can be stated as follows:



HERMITE-HADAMARD’S INEQUALITY AND THE p - HH -NORM 5

DEFINITION 1. Let SX be the unit sphere in X , that is, SX := {x ∈ X : ‖x‖ = 1}.
Then,

(1) X will be called strictly convex if for every x, y ∈ SX with x �= y , we have
‖λx + (1 − λ )y‖ < 1 , for all λ ∈ (0, 1) ;

(2) X is uniformly convex if for any positive ε , there exists a positive δ depending
on ε such that

∥∥ x+y
2

∥∥ � 1 − δ whenever x, y ∈ SX and ‖x − y‖ > ε .

PROPOSITION 3. The strict (uniform) convexity of a normed space is inherited by
its subspaces.2

2.2. Lebesgue-Bochner function spaces. A definition of Lebesgue integral for func-
tions on an interval of real numbers to a Banach space (B, ‖ · ‖) has been given by
Bochner in [2], which is now referred to as the Bochner integral. Bochner introduced
a generalisation of Lebesgue function space Lp as follows: the space Lp([0, 1], B) is
the class of functions f defined on the interval [0, 1] , with values in B for which the

norm ‖f ‖Lp :=
(∫ 1

0 ‖f (t)‖pdt
) 1

p
is finite [3, p. 914]. With this definition of norm,

Lp([0, 1], B) is a Banach space (for references, see [2, 16]). This space is called the
Lebesgue-Bochner (or sometimes, Bochner) function space (see, for example, [29]).

LEMMA 2. Let 1 < p < ∞ . If B is a smooth (Fréchet smooth) Banach space
then so is Lp([0, 1], B) 3.

LEMMA 3. Let 1 < p < ∞ . If B is a reflexive Banach space, then so is
Lp([0, 1], B) .

Bochner in [3, p. 930] stated that if B and its dual B∗ are of (D) -property (i.e.
any function of bounded variation is differentiable almost everywhere [3, p. 914–915])
and B is reflexive, then Lp([0, 1], B) is reflexive. However, further studies have proven
that these conditions could be reduced to a simpler one. The argument is as follows:
any reflexive space has the Radon-Nikodym property, i.e. every absolutely continuous
Banach-valued function is differentiable almost everywhere [1, p. 20]. Hence, any
function of bounded variation is differentiable almost everywhere. By the fact that B is
reflexive if and only if B∗ is, we conclude that the reflexivity of B is the only condition
required such that Lp([0, 1], B) is reflexive.

LEMMA 4. Let 1 < p < ∞ . If B is a strictly (uniformly) convex Banach space,
then so is Lp([0, 1], B) .

The proof is implied by the strict (uniform) convexity of lp(B) (for the complete
proof, see [9, 10]). Note that lp(B) :=

{
(xn) : xn ∈ B,

∑
n ‖xn‖p < ∞}

. The proof for
Lp([0, 1], B) follows by the embedding argument similar to Clarkson’s argument in [8],
which can be briefly stated as follows: consider a step function on a partition of [0, 1]
into equal parts. Such function can be identified as of lp(B) . Since the set of all step
functions on [0, 1] is a dense set in Lp([0, 1], B) [33, p. 132], and by the continuity of
the norm, each function can be "identified" by an element in lp(B) .

2See [23, p. 436] and [23, p. 454] for the proof.
3Proof can be found in [22, p. 233-237, 404].
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3. Power mean and generalised logarithmic mean

In this section, we summarise the definitions and basic properties of power mean
and generalised logarithmic mean, which have close relation to the norms that can be
defined on the Cartesian space R

2 .
The logarithmic mean [7, p. 615] of two positive numbers x and y is defined by:

L(x, y) =
{ x−y

log(x)−log(y) , x �= y ;
x, x = y .

The logarithmic mean L is symmetric, homogeneous in x and y , and continuous at
x = y [7, p. 615]. Lin in [21, p. 879] mentioned the use of logarithmic mean in some
practical problems, such as in heat transfer and fluid mechanics.

In [31, p. 88], Stolarsky mentioned the matter of understanding why L(x, y) is a
mean, i.e. it is internal: min{x, y} � L(x, y) � max{x, y} . Stolarsky considered the
mean value theorem for differentiable functions f

f (x) − f (y)
x − y

= f ′(u), x �= y,

where u is strictly between x and y , and derived that if f (x) = log x , then u = L(x, y) .
This motivates us to ‘create new means’ by varying the function f . One of the functions
that was considered in [31] is f (x) = xp (p ∈ R , p �= 0, 1 ). This is later known as the
generalisation of logarithmic mean (see [4, p. 385], [31, p. 88–90], and [32, p. 545] for
references).

DEFINITION 2. Let p ∈ R , x, y > 0 , and x �= y . The generalised logarithmic
mean of order p of x and y is defined by

L[p](x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
1

p+1

(
yp+1−xp+1

y−x

)] 1
p
, if p �= −1, 0,±∞ ;

y−x
log y−log x , if p = −1 ;

1
e

(
yy

xx

) 1
y−x

, if p = 0 ;

max{x, y}, if p = +∞ ;
min{x, y}, if p = −∞ ,

(3.1)

and L[p](x, x) = x .

This mean is homogeneous and symmetric [4, p. 385], so in particular there is no
loss in generality by assuming that 0 < x < y . Note that the generalised logarithmic
mean is related to the other well-knownmeans. We summarised the relations as follows:

(1) L[−1](x, y) = L(x, y) , the logarithmic mean of x and y ;
(2) L[0](x, y) = I(x, y) , the identric mean of x and y ;
(3) L[1](x, y) = x+y

2 = A(x, y) , the arithmetic mean of x and y ;
(4) L[−2](x, y) =

√
xy = G(x, y) , the geometric mean of x and y ;

(5) L[2](x, y) =
√

1
3 (x

2 + xy + y2) = Q(x, y, G(x, y)) , the quadratic mean of x ,

y and G(x, y) .
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PROPOSITION 4. Let L[p] (p ∈ R) be the generalised logarithmic mean, as
defined in Definition 2. Then,

(1) if 0 < x � y and −∞ � r < s � ∞ , then x � L[r](x, y) � L[s](x, y) � y,
with equality if and only if x = y (in particular, the generalised logarithmic
mean is strictly internal);

(2) for all p ∈ R , L[p](x, y) is strictly increasing both as function of x and y .

Proof of Proposition 4 can be found in [4, p. 387] (see [31, p. 88-90] for an
alternative proof of part (1)). By the fact that L[p] is increasing as a function of p on
R , we have the following inequalities

G(x, y) � L(x, y) � I(x, y) � A(x, y), for all x, y ∈ R. (3.2)

For further properties of logarithmic mean and its relationship with the other means, we
refer to [4, 5, 6, 7, 21, 26, 28, 31, 32].

The following definition (see [21, p. 879–880] and [28, p. 19–20]) is a generalisation
of the root mean square (the quadratic mean [21, p. 879]):

DEFINITION 3. Let x and y be two positive numbers and p ∈ R . The power mean
of x and y is defined by

Mp = Mp(x, y) =

⎧⎨
⎩

(
xp + yp

2

) 1
p

, p �= 0 ;

G(x, y), p = 0 .
(3.3)

The basic properties of power mean can be summarised as follows [31, p. 88]:

PROPOSITION 5. Let Mp (p ∈ R) be the power mean. Then, the following holds
for any positive numbers x and y :

(1) min{x, y} � Mp(x, y) � max{x, y} (internal);
(2) Mp(x, y) is continuous in p ;
(3) Mp(x, y) � Mq(x, y) if p � q ;
(4) M0(x, y) = G(x, y) and M1(x, y) = A(x, y) .

We refer to [4, 21, 26, 28, 32] for further properties of power means.
In [6, p. 36], Carlson suggested the following inequalities which involve the power

mean and the generalised logarithmic mean (by considering an inequality for certain
hypergeometric functions):(

x + y
2

)p

� yp+1 − xp+1

(p + 1)(y − x)
� xp + yp

2
, x, y > 0, x �= y and, p � 1. (3.4)

Another way to verify the inequalities (3.4) is by considering the normed space (R, | · |)
in the Hermite-Hadamard’s inequality (1.3).

4. The Cartesian product of two normed spaces

4.1. The p -norm. We are interested in investigating the Cartesian product space
X2 = X × X := {(x, y) : x, y ∈ X}, where the addition and scalar multiplication are
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defined in the usual way. The ‘standard’ way of constructing norm on the Cartesian
product space X2 is to define ‖(x, y)‖ = ϕ(‖x‖, ‖y‖) , (x, y ∈ X) via some functions
ϕ on R

2 [20, p. 35–36]. One common example of ϕ (see [8, p. 397–398], [20, p. 36],
and [25, p. 142]) is

ϕ(a, b) = (ap + bp)
1
p , a, b ∈ R, 1 � p � ∞.

DEFINITION 4. The p -norm on X2 is defined by

‖(x, y)‖p :=

{
(‖x‖p + ‖y‖p)

1
p , 1 � p < ∞ ;

max{‖x‖, ‖y‖}, p = ∞ ,

for any (x, y) ∈ X2 .

This norm is symmetric in the sense that ‖(x, y)‖p = ‖(y, x)‖p for any (x, y) ∈ X2 .

REMARK 1. If (X, ‖ · ‖) = (R, | · |) , then X2 = lp2 = {(xn)∞n=1 ∈ lp : xn = 0, ∀n >
2}. Furthermore, if x, y > 0 , then

‖(x, y)‖p = (xp + yp)
1
p = 2

1
p Mp(x, y),

where Mp is the power mean (as defined in Section 3).

LEMMA 5. All p -norms (1 � p � ∞) are equivalent in X2 . Furthermore, we
have the following inequalities for 1 < p � ∞ :

‖(x, y)‖p � ‖(x, y)‖1 � 2‖(x, y)‖p.

LEMMA 6. Let 1 � p � ∞ . If (B, ‖ · ‖) is a Banach space, then so is
(B2, ‖(·, ·)‖p) .

The proof of Lemma 5 and Lemma 6 can be derived by the similar statements that
we have for the l p

2 spaces (see, for example, [8, p. 397–398]).

PROPOSITION 6. The p -norm is decreasing as a function of p on [1,∞] , that is,
for any 1 � r < s � ∞ and (x, y) ∈ X2 , we have

max{‖x‖, ‖y‖} � ‖(x, y)‖s = (‖x‖s + ‖y‖s)
1
s � (‖x‖r + ‖y‖r)

1
r = ‖(x, y)‖r. (4.1)

Proof. The first part of inequalities (4.1) follows by Lemma 5. We have the
following inequality for any 1 � r < s � ∞ (see [4, p. 186]):

(as + bs)
1
s � (ar + br)

1
r ,

for any real numbers a, b > 0 . Choose a = ‖x‖ and b = ‖y‖ to obtain the desired
result. �
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4.2. The p -HH -norm: definition and example. Define the quantity

‖(x, y)‖p−HH :=

⎧⎪⎨
⎪⎩

(∫ 1
0 ‖(1 − t)x + ty‖pdt

) 1
p
, if 1 � p < ∞ ;

sup
t∈[0,1]

‖(1 − t)x + ty‖, if p = ∞ ,
(4.2)

for any x, y ∈ X . The integral is finite by the Hermite-Hadamard’s inequality, i.e.∫ 1

0
‖(1 − t)x + ty‖pdt � ‖x‖p + ‖y‖p

2
=

‖(x, y)‖p
p

2
< ∞, for any x, y ∈ X. (4.3)

Note that ‖(·, ·)‖p−HH is symmetric, that is, ‖(x, y)‖p−HH = ‖(y, x)‖p−HH for all
x, y ∈ X .

REMARK 2. Consider the function

f (t) = ‖(1 − t)x + ty‖, t ∈ [0, 1], x, y ∈ X.

Since it is continuous and convex on [0, 1] , the supremum of f on [0, 1] is exactly its
maximum, and is attained at one of the endpoints. In other words, for any x, y ∈ X

‖(x, y)‖∞−HH = sup
t∈[0,1]

‖(1 − t)x + ty‖ = max{‖x‖, ‖y‖} = ‖(x, y)‖∞.

Thus, ‖(·, ·)‖∞−HH defines a norm. We will not distinguish ‖(·, ·)‖∞−HH from
‖(·, ·)‖∞ , and refer to them as ‖(·, ·)‖∞ .

LEMMA 7. The space (X2, ‖(·, ·)‖p−HH) (1 � p < ∞) is a normed linear space.

Proof. The homogeneity of the norm follows directly by definition. The triangle
inequality follows by the Minkowski’s inequality for (Lp([0, 1], X), ‖ ·‖Lp) [16, p. 120].
The nonnegativity of the norm is derived from the definition. Now, if (x, y) = (0, 0) ,
then ‖(1 − t)x + ty‖ = 0 (t ∈ [0, 1]) , therefore, ‖(x, y)‖p−HH = 0 . Conversely, let
x, y ∈ X such that ‖(x, y)‖p−HH = 0 . Since

0 �
∥∥∥∥x + y

2

∥∥∥∥ �
(∫ 1

0
‖(1 − t)x + ty‖pdt

) 1
p

= 0,

we have
∥∥ x+y

2

∥∥ = 0 . Thus, x = −y and(∫ 1

0
‖(1 − t)x + ty‖pdt

) 1
p

=

(∫ 1

0
|2t − 1|p‖y‖pdt

) 1
p

= ‖y‖
(

1
p + 1

) 1
p

. (4.4)

Since ‖(x, y)‖p−HH = 0 and 1
p+1 �= 0 , ‖y‖ = 0 by (4.4), which implies that x = y =

0 . �

REMARK 3. (Special case) Note that if the norm ‖ · ‖ on X is induced by an
inner product 〈 ·, ·〉 , then

‖(x, y)‖2
2−HH =

∫ 1

0
‖(1 − t)x + ty‖2dt =

1
3

(‖x‖2 + 〈 x, y〉 + ‖y‖2
)
. (4.5)
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REMARK 4. (Case of p < 1 ) Although it is possible to define the quantity in
(4.2) for p < 1 , we are only interested in the case where p � 1 , since ‖(·, ·)‖p−HH

does not define a norm on X2 for p < 1 . For example, we consider the normed space
(R, | · |) . Thus, for any (x, y) ∈ R

2 and p < 1 , we have

|(x, y)|p−HH =

(∫ 1

0
|(1 − t)x + ty|pdt

) 1
p

.

We claim that |(·, ·)|p−HH is not a norm on R2 . To verify this, choose (x, y) = (1, 0)
and (u, v) = (0, 1) , then consider the following cases:

Case 1 : p ∈ (−1, 1) . We have

|(x, y)|p−HH + |(u, v)|p−HH = 2(p + 1)−
1
p and |(x, y) + (u, v)|p−HH = 1.

We claim that (p + 1)−
1
p < 1

2 for any p ∈ (−1, 1) . Thus,

|(x, y)|p−HH + |(u, v)|p−HH = 2(p + 1)−
1
p < 1 = |(x, y) + (u, v)|p−HH,

which fails the triangle inequality.

Proof of claim. Define f (p) = (p+1)−
1
p for p ∈ (−1, 1)\{0} and f (0) = e−1 .

By Proposition 4, we have for any a > 0 and −1 � r < s � 1 ( r, s �= 0 ):

L[r](a, 1) =
[

1
r + 1

(
1 − ar+1

1 − a

)] 1
r

<

[
1

s + 1

(
1 − as+1

1 − a

)] 1
s

= L[s](a, 1),

by the definition of the generalised logarithmic mean. By taking a → 0+ , we get

(r + 1)−
1
r < (s + 1)−

1
s ,

which shows that f is strictly increasing on (−1, 1)\ {0} . Since limp→0 (p + 1)−
1
p =

e−1 , f is continuous at p = 0 (thus, continuous on (−1, 1) ), which implies that f is

strictly increasing on (−1, 1) . Thus, supp∈(−1,1)(p+1)−
1
p = limp→1−(p+1)−

1
p = 1

2 .

Thus, (p + 1)−
1
p < 1

2 for all p ∈ (−1, 1) . �
Case 2 : p ∈ (−∞,−1) . We have

|(x, y)|pp−HH =
∫ 1

0
(1 − t)pdt → ∞, and |(u, v)|pp−HH =

∫ 1

0
tpdt → ∞.

Since p < 0 , we get |(x, y)|p−HH → 0 and |(u, v)|p−HH → 0 , which imply that

|(x, y)|p−HH + |(u, v)|p−HH → 0. (4.6)

We also have |(x, y) + (u, v)|p−HH = 1 . By (4.6), we can find ε > 0 such that

0 < |(x, y)|p−HH + |(u, v)|p−HH < ε < 1 = |(x, y) + (u, v)|p−HH,

which fails the triangle inequality.
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EXAMPLE 1. (Real numbers: R ) In R
2 , we have the following norm:

|(x, y)|p−HH :=

(∫ 1

0
|(1 − t)x + ty|pdt

) 1
p

, p � 1,

for any (x, y) ∈ R
2 . Note that for x = y , |(x, y)|p−HH = |x| , so we may assume x �= y

and without loss of generality (since p -HH -norm is symmetric), x < y . Therefore,

|(x, y)|p−HH =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1

p+1

(
yp+1−xp+1

y−x

)] 1
p
, if x, y � 0 ;[

1
p+1

(
(−x)p+1+yp+1

y−x

)] 1
p
, if x < 0 and y � 0 ;[

1
p+1

(
(−x)p+1−(−y)p+1

y−x

)] 1
p
, if x, y < 0 .

(4.7)

Particularly for p = 2 , we have the following for any (x, y) ∈ R
2 :

|(x, y)|2 = (x2 + y2)
1
2 and |(x, y)|2−HH =

1√
3

(
x2 + xy + y2

) 1
2 .

The unit circle {(x, y) ∈ R
2||(x, y)|2 = 1} is the usual Euclidean circle, while the unit

circle {(x, y) ∈ R
2||(x, y)|2−HH = 1} is an ellipse in Euclidean plane (see Figure 1).
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a) Unit circle in (R2, |(·, ·)|2) b) Unit circle in (R2, |(·, ·)|2−HH)
Figure 1

Figure 2 shows the unit circle for 1 -norm, 1 -HH -norm, and ∞ -norm in R
2 .
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Figure 2
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4.3. Relation with the generalised logarithmic mean. Particularly, in the field of
real numbers, it follows that |(x, y)|p−HH = L[p](x, y) (1 � p � ∞) for x, y > 0 , i.e.
the generalised logarithmic mean. As described in Section 3, the reason why L[p] is
a mean, rises from the mean value theorem for differentiation. The similar reason can
also be extracted from the mean value theorem for integration which would agree with
the fact that ‖(x, y)‖p

p−HH is the integral mean of ‖ · ‖p on the segment [x, y] .
Let us recall the mean value theorem for integration: if g : [a, b] ⊂ R → R is a

continuous function, then there exists a point c ∈ (a, b) such that

∫ b

a
g(t)dt = g(c)(b − a).

If we consider the continuous function g(t) = tp for any p � 1 on the interval [x, y] ,
where x, y > 0 and x �= y , then there exists a point s ∈ (x, y) such that

∫ y

x
tpdt = sp(y − x),

which implies that

s =
(

1
y − x

∫ y

x
tpdt

) 1
p

=

(∫ 1

0
|(1 − t)x + ty|pdt

) 1
p

=
[

1
p + 1

(
yp+1 − xp+1

y − x

)] 1
p

,

that is, s = |(x, y)|p−HH .
Therefore, the p -HH -norm extends the generalised logarithmic mean to normed

linear space setting. The monotonicity remains to hold in this extension. The following
result [4, p. 375–376] will be used to prove the monotonicity of the p -HH -norm as a
function of p on [1,∞] .

PROPOSITION 7. Let f : I = [a, b] → R , f ∈ Lp[a, b] (−∞ � p � ∞) , f � 0
almost everywhere on I , and f > 0 almost everywhere on I if p < 0 . The p -th power
mean of f on [a, b] , which is defined by

M
[p]
[a,b](f ) =

(
1

b − a

∫ b

a
f (x)pdx

) 1
p

,

is increasing on R , that is, if −∞ � r < s � ∞ , then,

M
[r]
[a,b](f ) � M

[s]
[a,b](f ).

COROLLARY 1. The p -HH -norm is monotonically increasing as a function of p
on [1,∞] , that is, for any 1 � r < s � ∞ and x, y ∈ X , we have

‖(x, y)‖r−HH � ‖(x, y)‖s−HH.
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Proof. Consider the non-negative function f (t) = ‖(1− t)x+ ty‖ on [0, 1] . By the
Hermite-Hadamard’s inequality (1.3), we conclude that f ∈ Lp[0, 1] for 1 � p � ∞ .
We obtain the desired result by applying Proposition 7 to f for 1 � p � ∞ . �

REMARK 5. By Proposition 6 and Corollary 1, we have the following inequalities

‖(x, y)‖1−HH � ‖(x, y)‖2−HH � · · · � ‖(x, y)‖∞ � · · · � ‖(x, y)‖2 � ‖(x, y)‖1,

for any (x, y) ∈ X2 .

5. Completeness of (B2, ‖(·, ·)‖p−HH)

The main result of this section can be stated as follows:

THEOREM1. Let 1 � p < ∞ . If B is aBanach space, then so is (B2, ‖(·, ·)‖p−HH) .

Proof. Let (Xn)∞n=1 = ((xn, yn))∞n=1 be a Cauchy sequence in B2 and ε > 0 .
Then, there exists an N = N(ε) ∈ N , such that

‖(xn, yn) − (xm, ym)‖p−HH < ε, for all n, m � N.

Observe that for any n and m , we have

‖(xn, yn)−(xm, ym)‖p−HH =

(∫ 1

0
‖(1 − t)(xn−xm)+t(yn−ym)‖pdt

) 1
p

=

(∫ 1

0
‖(1−t)xn+tyn−[(1−t)xm+tym]‖pdt

) 1
p

. (5.1)

Define f n : [0, 1] → B , where f n(t) = (1 − t)xn + tyn, then f n is measurable and
integrable by the Hermite-Hadamard’s inequality. Thus, f n ∈ Lp([0, 1], B) , and (5.1)
gives us ‖f n − f m‖Lp < ε for any n, m � N(ε) . Therefore, (f n) is a Cauchy sequence
in Lp([0, 1], B) . By the completeness of Lp([0, 1], B) [16, p. 146], (f n)∞n=1 converges
in norm to a function f ∈ Lp([0, 1], B) . It implies that f n → f in measure on [0, 1]
[16, p. 122]. We claim that there are at least two distinct points t1, t2 ∈ [0, 1] , such that
f n(t1) → f (t1) and f n(t2) → f (t2) in B. Suppose that the claim is false, so there is at
most one point of convergence, say t0 ∈ [0, 1] . So, for any t ∈ [0, 1] \ {t0} , we can
find a δ = δ(t) > 0 , such that for any K ∈ N , we have

n � K and ‖f n(t) − f (t)‖ � δ.

By taking δ0 = sup{δ(t) : t ∈ [0, 1] \ {t0}} > 0 , then for any K ∈ N and n � K , we
have

m(t : t ∈ [0, 1]|‖f n(t) − f (t)‖ � δ0) = m([0, 1] \ {t0}) = m([0, 1]) = 1,

since m({t0}) = 0 . It implies that

lim
n→∞m(t : t ∈ [0, 1]|‖f n(t) − f (t)‖ � δ0) = 1,
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that is, f n is not convergent in measure to f .
If t1 = 0 and t2 = 1 , then there exist x0, y0 ∈ B such that

xn = f n(0) → f (0) = x0 and yn = f n(1) → f (1) = y0,

i.e. (xn)∞n=1 and (yn)∞n=1 converge to x0 and y0 , respectively. If t1, t2 ∈ (0, 1) , then

(1 − t1)xn + t1yn → f (t1), (5.2)

and

(1 − t2)xn + t2yn → f (t2). (5.3)

Multiply (5.2) by t2 , (5.3) with −t1 and add up the obtained sequences, we get

(t2 − t1)xn → t2f (t1) − t1f (t2).

Since t2 − t1 �= 0 , we have

xn → t2f (t1) − t1f (t2)
(t2 − t1)

=: x0,

which shows that (xn)∞n=1 converges to x0 ∈ B . Now, multiply (5.2) by (1− t2) , (5.3)
by −(1 − t1) and add up the obtained sequences, we have

(t1 − t2)yn → (1 − t2)f (t1) − (1 − t1)f (t2).

Again, since t1 − t2 �= 0 , we have

yn → (1 − t2)f (t1) − (1 − t1)f (t2)
(t1 − t2)

=: y0,

which shows that (yn)∞n=1 converges to y0 ∈ B .
Now, we have the fact that xn → x0 and yn → y0 . Then, for the given ε > 0 ,

there exist N1, N2 ∈ N such that

‖xn − x0‖ <
ε
2
, for all n � N1, and ‖yn − y0‖ <

ε
2
, for all n � N2.

Choose N0 = max{N1, N2} , then for all n � N0 , we have

‖(xn, yn) − (x0, y0)‖p−HH =

(∫ 1

0
‖(1 − t)(xn − x0) + t(yn − y0)‖pdt

) 1
p

�
(∫ 1

0
‖(1−t)(xn−x0)‖pdt

) 1
p

+

(∫ 1

0
‖t(yn−y0)‖pdt

) 1
p

=
(

1
p + 1

) 1
p

(‖(xn − x0)‖ + ‖(yn − y0)‖)

� ‖(xn − x0)‖ + ‖(yn − y0)‖ <
ε
2

+
ε
2

= ε.
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Thus, (xn, yn) → (x0, y0) in (B2, ‖(·, ·)‖p−HH) . �
We are able to prove Theorem 1 via Ostrowski’s inequality for absolutely continu-

ous function on segment in normed spaces (see [18]). Before we state the proof, recall
the following results:

PROPOSITION 8. Let (B, ‖ · ‖) be a Banach space. If there exists a norm |‖ · ‖|
on B which equivalent to ‖ · ‖ , then (B, |‖ · ‖|) is also a Banach space.

Proof. Consider the identity operator from (B, ‖ · ‖) onto (B, |‖ · ‖|) . It is linear
and bijective. Since the two norms are equivalent, the identity operator is bounded.
Therefore, it is an isomorphism. It implies that its range, i.e. the space (B, |‖ · ‖|) is
also a Banach space (see [23, p. 31]). �

LEMMA 8. For any x, y ∈ X , we have the following inequality

‖x‖ + ‖y‖
4

�
∫ 1

0
‖(1 − t)x + ty‖dt � ‖x‖ + ‖y‖

2
. (5.4)

The constants 1
4 and 1

2 are sharp.

Proof. Recall the following refinement of the Hermite-Hadamard’s inequality [18,
p. 15]

0 � ‖x‖ + ‖y‖
2

−
∫ 1

0
‖(1 − t)x + ty‖dt � 1

4
‖y− x‖. (5.5)

By triangle inequality, we have

‖x‖ + ‖y‖
2

−
∫ 1

0
‖(1 − t)x + ty‖dt � 1

4
‖y − x‖ � ‖x‖ + ‖y‖

4
,

or equivalently,
‖x‖ + ‖y‖

4
�
∫ 1

0
‖(1 − t)x + ty‖dt.

The proof is completed by the second part of the Hermite-Hadamard’s inequality. Now,
we will prove the sharpness of both constants. Suppose that the first inequality holds
for a constant A > 0 instead of 1

4 , i.e.

A(‖x‖ + ‖y‖) �
∫ 1

0
‖(1 − t)x + ty‖dt.

Choose (B, ‖ · ‖) = (R, | · |) , x = 1 , and y = −1 to obtain 2A � 1
2 . Thus, A � 1

4 .
On the other hand, suppose that the second inequality holds for a constant B > 0

instead of 1
2 , i.e. ∫ 1

0
‖(1 − t)x + ty‖dt � B(‖x‖ + ‖y‖).

Choose (B, ‖·‖) = (R2, ‖·‖l1) , x = (1, 0) , and y = (0, 1) to obtain
∫ 1

0 (|t|+|1−t|)dt �
2B. Since 0 � t � 1 , we have B � 1

2 . �

COROLLARY 2. The p -norm and p -HH -norm are equivalent in X2 , for any
p � 1 .
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Proof. It is enough to prove the equivalency for finite p ’s. The case for p = 1 is
stated in Lemma 8. By Remark 5 and inequality (5.4), we have the following for any
p > 1

1
4
‖(x, y)‖p � 1

4
‖(x, y)‖1 � ‖(x, y)‖1−HH � ‖(x, y)‖p−HH.

The proof is completed by the Hermite-Hadamard’s inequality, i.e.

‖(x, y)‖p−HH � 1

2
1
p
‖(x, y)‖p. �

Alternative proof of Theorem 1. If B is a Banach space, then (B2, ‖(·, ·)‖p)
is also complete. Since both p -norm and p -HH -norm are equivalent in B2 , the
p -HH -norm is a Banach norm in B2 by Proposition 8. �

REMARK 6. We have for any p � 1 and any (x, y) ∈ X2 ,

1
4
‖(x, y)‖p � ‖(x, y)‖p−HH � 1

2
1
p
‖(x, y)‖p. (5.6)

The constant 1

2
1
p

is sharp. For simplicity, we write,

‖(x, y)‖p
p−HH � 1

2
‖(x, y)‖p

p.

Suppose that the above inequality holds for a constant C > 0 instead of 1
2 , that is,∫ 1

0
‖(1 − t)x + ty‖pdt � C(‖x‖p + ‖y‖p).

Choose (B, ‖ · ‖) = (R2, ‖ · ‖l1) , x = (1, 0) , and y = (0, 1) to obtain
∫ 1

0 (|t| + |1 −
t|)pdt � 2C. Since 0 � t � 1 , we have C � 1

2 .

On the other hand, the constant 1
4 in (5.6) is not always sharp for any p > 1 . The

following proposition provides an example for the statement.

PROPOSITION 9. Let (H, 〈 ·, ·〉 ) be an inner product space, then

1
6
‖(x, y)‖2

2 � ‖(x, y)‖2
2−HH � 1

2
‖(x, y)‖2

2. (5.7)

The constants 1
6 and 1

2 are sharp.

Proof. For any (x, y) ∈ H2 , we have

‖(x, y)‖2
2−HH =

∫ 1

0
‖(1 − t)x + ty‖2dt � ‖x‖2 + ‖y‖2

2
=

1
2
‖(x, y)‖2

2,

by the second part of the Hermite-Hadamard’s inequality. Observe that

0 � ‖x + y‖2 = ‖x‖2 + 2〈 x, y〉 + ‖y‖2.
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By adding ‖x‖2 + ‖y‖2 to this inequality, we obtain ‖x‖2 + ‖y‖2 � 2(‖x‖2 + 〈 x, y〉 +
‖y‖2) , which is equivalent to

1
6
(‖x‖2 + ‖y‖2) � 1

3
(‖x‖2 + 〈 x, y〉 + ‖y‖2) = ‖(x, y)‖2

2−HH,

by (4.5). Thus, we have

1
6
‖(x, y)‖2

2 � ‖(x, y)‖2
2−HH � 1

2
‖(x, y)‖2

2.

Now, we will prove the sharpness of the constants. Suppose that the first inequality
holds for a constant D > 0 , that is,

D‖(x, y)‖2
2 � ‖(x, y)‖2

2−HH.

By choosing (H, ‖ · ‖) = (R, | · |) , x = 1 , y = −1 , we obtain D � 1
6 . Therefore

the constant 1
6 is sharp. Now suppose that the second inequality holds for a constant

E > 0 , that is,
‖(x, y)‖2

2−HH � E‖(x, y)‖2
2.

By choosing (H, ‖ · ‖) = (R, | · |) , x = 1 , y = 1 , we obtain E � 1
2 . Therefore the

constant 1
2 is sharp. �

The following lemma provides the best constant for the first part of inequality
(5.6), in the case of real numbers.

LEMMA 9. Let x, y ∈ R . For any p � 1 , we have

1
2

( |x|p + |y|p
p + 1

)
�
∫ 1

0
|(1 − t)x + ty|pdt.

The constant 1
2 is sharp.

Proof. The proof is trivial, when x = y , so, we assume that x �= y . Without loss
of generality, we assume that x < y .

Case 1 : x, y > 0 . We have∫ 1

0
|(1 − t)x + ty|pdt =

1
p + 1

(
yp+1 − xp+1

y − x

)
.

Since 0 < x < y , we have xp < yp and

xp+1 + xpy = xp(y + x) < yp(y + x) = yp+1 + xyp,

or equivalently,
xpy − xyp < yp+1 − xp+1.

Therefore, we have

(xp + yp)
2

=
(xp + yp)(y − x)

2(y − x)
=

yp+1 − xp+1 + xpy − xyp

2(y − x)
� yp+1 − xp+1

(y − x)
,



18 E. KIKIANTY AND S. S. DRAGOMIR

which shows that
(xp + yp)
2(p + 1)

� yp+1 − xp+1

(p + 1)(y − x)
.

Case 2 : x, y < 0 . Note that∫ 1

0
|(1−t)x+ty|pdt =

1
p + 1

(
(−x)p+1 − (−y)p+1

y − x

)
=

1
p + 1

(
(−x)p+1 − (−y)p+1

−x − (−y)

)
.

We choose u = −x > 0 and v = −y > 0 ; thus, the conclusion follows by Case 1.
Case 3 : x < 0 and y > 0 . Note that∫ 1

0
|(1 − t)x + ty|pdt =

1
p + 1

(
(−x)p+1 + yp+1

y − x

)
.

We provide the proof for the subcase where 0 < −x < y (as for the subcase where
0 < y < −x can be proven in a similar way). We have (−x)p < yp and

(−x)py − (−x)p+1 = (−x)p(y − (−x)) < yp(y − (−x)) = yp+1 − (−x)yp,

or equivalently,
(−x)py + (−x)yp < (−x)p+1 + yp+1.

Therefore,

((−x)p + yp)
2

=
((−x)p + yp)(y − x)

2(y − x)
=

(−x)p+1 + yp+1 + (−x)py + (−x)yp

2(y − x)

� (−x)p+1 + yp+1

(y − x)
,

which shows that

((−x)p + yp)
2(p + 1)

� 1
p + 1

(
(−x)p+1 + yp+1

y − x

)
.

We will prove the sharpness of the constant. First, let us assume that the inequality
holds for a constant F > 0 instead of 1

2 , i.e.

F

( |x|p + |y|p
p + 1

)
�
∫ 1

0
|(1 − t)x + ty|pdt.

Now, choose x = 1 and y = −1 , therefore, we have

2F
p + 1

�
∫ 1

0
|2t − 1|pdt =

1
p + 1

,

which implies that F � 1
2 . �

CONJECTURE 1. For any x, y ∈ X and p > 1 , is

‖x‖p + ‖y‖p

2(p + 1)
�
∫ 1

0
‖(1 − t)x + ty‖pdt ?

If it is, is 1
2(p+1) the best constant for each p > 1 ?
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6. The Cartesian product of two inner product spaces

PROPOSITION 10. Let (X, 〈 ·, ·〉 ) be an inner product space, then ‖(·, ·)‖2 is
induced by an inner-product in X2 , namely

〈 (x, y), (u, v)〉 = 〈 x, u〉 + 〈 y, v〉 ,

for any (x, y) and (u, v) in X2 . Furthermore, (H2, 〈 (·, ·), (·, ·)〉 ) is a Hilbert space,
when H is.

The proof can be established by showing that the parallelogram law holds in
(X2, ‖(·, ·)‖2) , which is implied by that of (X, ‖ · ‖) and its inner product.

REMARK 7.
(1) In general, for any 1 � p < ∞ , p �= 2 , the norm ‖(·, ·)‖p in H2 does not induce

an inner-product. For example, in any inner product space H , with the norm ‖ · ‖ ,
take x, v ∈ H , where x, v �= 0 and y = u = 0 . Then, for any p �= 2 , we have

‖(x, y) + (u, v)‖2
p + ‖(x, y) − (u, v)‖2

p = 2(‖x‖p + ‖v‖p)
2
p

�= 2(‖x‖2 + ‖v‖2)

= 2
(‖(x, y)‖2

p + ‖(u, v)‖2
p

)
.

(2) In general Banach space, the 2-norm is not a Hilbertian norm. To verify this, let
(B, ‖ · ‖) be a Banach space, x, u ∈ B , x, u �= 0 , y = x , and v = u . Then,

‖(x, y) + (u, v)‖2
2 + ‖(x, y) − (u, v)‖2

2 = 2(‖x + u‖2 + ‖x − u‖2)

�= 4
(‖x‖2 + ‖u‖2

)
= 2

(‖(x, y)‖2
2 + ‖(u, v)‖2

2

)
,

unless B is a Hilbert space.

PROPOSITION 11. Let (X, 〈 ·, ·〉 ) be an inner-product space, then ‖(·, ·)‖2−HH is
a Hilbertian norm in X2 , namely

〈 (x, y), (u, v)〉 HH =
1
6
(2〈 x, u〉 + 2〈 y, v〉 + 〈 x, v〉 + 〈 u, y〉 ).

Furthermore, (H2, 〈 (·, ·), (·, ·)〉 HH) is a Hilbert space, when H is.

Theproof followsby showing that the parallelogram lawholds in (X2, ‖(·, ·)‖2−HH)
and by applying the polarisation identity to get the explicit expression of its inner prod-
uct.

REMARK 8.
(1) In general, for any 1 � p < ∞ , p �= 2 , the norm ‖(·, ·)‖p−HH in H2 does not

induce an inner-product. To verify this, let H be any inner product space with the
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norm ‖ · ‖ , 0 �= x ∈ H , y = u = 0 , and v = x . Then, for p �= 2 ,

‖(x, y)+(u, v)‖2
p−HH+‖(x, y)−(u, v)‖2

p−HH = ‖x‖2

⎡
⎣1+

(∫ 1

0
|1−2t|p dt

) 2
p
⎤
⎦

= ‖x‖2

[
1 +

(
1

p + 1

) 2
p
]

�= 4‖x‖2

(
1

p + 1

) 2
p

= 2
(‖(x, y)‖2

p−HH + ‖(u, v)‖2
p−HH

)
.

(2) In general Banach space, the 2-HH -norm is not a Hilbertian norm. To verify this,
let (B, ‖ · ‖) be a Banach space, x, u ∈ B where x, u �= 0 , y = x , and v = u .
Then,

‖(x, y)+(u, v)‖2
2−HH+‖(x, y)−(u, v)‖2

2−HH = ‖x+u‖2+‖x−u‖2

�= 2
(‖x‖2 + ‖u‖2

)
= 2

(‖(x, y)‖2
2−HH + ‖(u, v)‖2

2−HH

)
,

unless B is a Hilbert space.

7. Embedding of B2 in Lp([0, 1], B)

In this section, we show that the spaces (B2, ‖(·, ·)‖p) and (B2, ‖(·, ·)‖p−HH) can
be embedded as closed subspaces of Lp([0, 1], B) . Thus, it allows us to identify B2 as
a closed subspace of Lp([0, 1], B) .

7.1. Embedding of (B2, ‖(·, ·)‖p) in Lp([0, 1], B) . Consider the mapping Φ on
(X2, ‖(·, ·)‖p) which takes values in Lp([0, 1], X) , where Φ(x, y) = f x,y , with

f x,y(t) =

{
2

1
p x, t ∈ [0, 1

2 ) ;

2
1
p y, t ∈ ( 1

2 , 1] .

THEOREM 2. By the above notation, the mapping Φ is an isometrical embed-
ding, i.e. an isometry isomorphism from (X2, ‖(·, ·)‖p) onto Φ(X2) ⊂ Lp([0, 1], X) .
Furthermore, if B is a Banach space, then Φ(B2) is a closed subspace of Lp([0, 1], B) .

Proof. By definition, Φ is a linear transformation and also an injective mapping.
Let (x, y), (u, v) ∈ X2 , then

‖Φ(x, y)‖Lp = ‖f x,y‖Lp =

(∫ 1

0
‖f x,y(t)‖pdt

) 1
p

=

(∫ 1
2

0

∥∥∥2
1
p x
∥∥∥p

dt +
∫ 1

1
2

∥∥∥2
1
p y
∥∥∥p

dt

) 1
p

= (‖x‖p + ‖y‖p)
1
p = ‖(x, y)‖p,
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which implies that Φ preserves norm. Thus, it is an isometry isomorphism onto its
image Φ(X2) .

Now, let B be a Banach space and f be a limit point of Φ(B2) . We want to show
that f ∈ Φ(B2) . Let εn = 1

n , for any n ∈ N , then we can find f n ∈ Φ(B2) , where

‖f − f n‖Lp <
1
n
, n ∈ N,

since f is a limit point of Φ(B2) . We claim that {f n} is a Cauchy sequence in
Lp([0, 1], B) . Therefore, lim

n→∞f n = f , in Lp([0, 1], B) .

Proof.[Proof of claim] Given ε > 0 , we can find N ∈ N such that 2
ε < N . Then,

without loss of generality, for n > m � N , we have

‖f n − f m‖Lp � ‖f n − f ‖Lp + ‖f − f m‖Lp <
1
n

+
1
m

<
2
m

� 2
N

< ε,

which shows that {f n} is a Cauchy sequence in Lp([0, 1], B) . �
For any n ∈ N , we can find (un, vn) ∈ B2 , associated to f n (since f n ∈ Φ(B2) ),

such that f n = Φ(un, vn). Since Φ is an isometry isomorphism, {(un, vn)} is also a
Cauchy sequence in B2 . Since (B2, ‖(·, ·)‖p) is also a Banach space (by Lemma 6),
therefore, {(un, vn)} has a limit in (B2, ‖(·, ·)‖p) , namely (u, v) . By the continuity of
Φ (note that it is a homeomorphism), we conclude that

lim
n→∞ f n = lim

n→∞Φ(un, vn) = Φ(u, v),

and by the uniqueness of limit, f = Φ(u, v) , that is, f ∈ Φ(B2) . Therefore, Φ(B2) is
a closed subspace of Lp([0, 1], B) . �

7.2. Embedding of (B2, ‖(·, ·)‖p−HH) in Lp([0, 1], B) . Now, consider a mapping Ψ
on (X2, ‖(·, ·)‖p−HH) to Lp([0, 1], X) , defined by Ψ(x, y) = gx,y , where gx,y(t) :=
(1 − t)x + ty , t ∈ [0, 1] . It is easy to verify that gx,y is measurable. The integrability
follows from the Hermite-Hadamard integral inequality.

THEOREM 3. By the above notation, the mapping Ψ is an isometrical embedding,
i.e. an isometry isomorphism from (X2, ‖(·, ·)‖p−HH) onto Ψ(X2) ⊂ Lp([0, 1], X) .
Furthermore, if B is a Banach space, then Ψ(B2) is a closed subspace of Lp([0, 1], B) .

Proof. By definition, Ψ is a linear transformation and also an injective mapping.
Let (x, y), (u, v) ∈ X2 , then

‖Ψ(x, y)‖Lp = ‖gx,y‖Lp =

(∫ 1

0
‖gx,y(t)‖pdt

) 1
p

=

(∫ 1

0
‖(1 − t)x + ty‖pdt

) 1
p

= ‖(x, y)‖p−HH,
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which implies that Ψ preserves norm. Thus, it is an isometry isomorphism onto its
image Ψ(X2) . The last part of this theorem can be proven in a similar way to that of
Theorem 2. �

8. Semi-inner products

In this section, we present the superior (inferior) semi-inner product in X2 asso-
ciated to both p -norm and p -HH -norm in an explicit form.

8.1. Semi-inner products in X2 with respect to the p -norm. The following results
give an explicit expression for the superior (inferior) s.i.p. in X2 with respect to the
p -norm.

LEMMA 10. The superior (inferior) s.i.p. in X2 with respect to the norm ‖(·, ·)‖p

(1 < p < ∞) , for any (x, y), (u, v) ∈ X2 , are given by

〈 (x, y), (u, v)〉 p,s(i) = ‖(u, v)‖2−p
p

(‖u‖p−2〈 x, u〉 s(i) + ‖v‖p−2〈 y, v〉 s(i)
)
, (8.1)

where 〈 ·, ·〉 s(i) are the superior (inferior) s.i.p. with respect to the norm ‖ · ‖ on X .

Proof. We consider the following cases:
Case 1 : If (u, v) = (0, 0) , then

〈 (x, y), (u, v)〉 p,s(i) = lim
t→0±

‖(u, v) + t(x, y)‖2
p − ‖(u, v)‖2

p

2t
= lim

t→0±

t2‖(x, y)‖2
p

2t
= 0,

for any (x, y) ∈ X2 , so (8.1) holds.
Case 2 : Assume that (u, v) �= (0, 0) . We define the function f : X2 → R , where

f (x, y) = ‖(x, y)‖p
p (1 < p < ∞) for any (x, y) ∈ X2 . We have

(∇±f (u, v))(x, y) := lim
t→0±

‖(u, v) + t(x, y)‖p
p − ‖(u, v)‖p

p

t

= p‖(u, v)‖p−1
p lim

t→0±
‖(u, v) + t(x, y)‖p − ‖(u, v)‖p

t

= p‖(u, v)‖p−1
p (∇±‖(·, ·)‖p(u, v))(x, y)

= p‖(u, v)‖p−2
p 〈 (x, y), (u, v)〉 p,s(i). (8.2)

If u, v �= 0 , we have the following

(∇±f (u, v))(x, y) = lim
t→0±

‖(u, v) + t(x, y)‖p
p − ‖(u, v)‖p

p

t

= lim
t→0±

‖u + tx‖p − ‖u‖p

t
+ lim

t→0±
‖v + ty‖p − ‖v‖p

t

= p
[‖u‖p−1(∇±‖ · ‖(u))(x) + ‖v‖p−1(∇±‖ · ‖(v))(y)

]
= p

(‖u‖p−2〈 x, u〉 s(i) + ‖v‖p−2〈 y, v〉 s(i)
)
.
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Thus, ‖(u, v)‖p−2
p 〈 (x, y), (u, v)〉 p,s(i) = ‖u‖p−2〈 x, u〉 s(i) + ‖v‖p−2〈 y, v〉 s(i) , and

〈 (x, y), (u, v)〉 p,s(i) = ‖(u, v)‖2−p
p

(‖u‖p−2〈 x, u〉 s(i) + ‖v‖p−2〈 y, v〉 s(i)
)
.

If u = 0 and v �= 0 , then (8.2) gives us

(∇±f (u, v))(x, y) = p‖v‖p−2〈 (x, y), (u, v)〉 p,s(i),

and therefore

(∇±f (u, v))(x, y) = lim
t→0±

‖(u, v) + t(x, y)‖p
p − ‖(u, v)‖p

p

t

= lim
t→0±

‖v + ty‖p − ‖v‖p

t

= p‖v‖p−1(∇±‖ · ‖(v))(y) = p‖v‖p−2〈 y, v〉 s(i).

Thus, we have the following

〈 (x, y), (u, v)〉 p,s(i) = 〈 y, v〉 s(i) = ‖(u, v)‖2−p
p

(‖u‖p−2〈 x, u〉 s(i) + ‖v‖p−2〈 y, v〉 s(i)
)
,

since 〈 x, u〉 s(i) = 0 and ‖(u, v)‖p = ‖v‖ . Analogously, for u �= 0 and v = 0 , we
have

〈 (x, y), (u, v)〉 p,s(i) = 〈 x, u〉 s(i) = ‖(u, v)‖2−p
p

(‖u‖p−2〈 x, u〉 s(i) + ‖v‖p−2〈 y, v〉 s(i)
)
.

�

REMARK 9. Note that in lp (1 < p < ∞) spaces (see [24, p. 183] for references),
the superior (inferior) s.i.p. of two vectors x = (xi) and y = (yi) are given by

〈 x, y〉 i = 〈 x, y〉 s = ‖y‖2−p
lp

∞∑
i=1

|yi|p−2yixi. (8.3)

If (X, ‖ · ‖) = (R, | · |) , then (X2, ‖(·, ·)‖p) = lp2 , and the superior (inferior) s.i.p. (by
Lemma 10) are given by

〈 (x, y), (u, v)〉 p,s(i) = |(u, v)|2−p
lp

(|u|p−2xu + |v|p−2yv
)
,

which recapture the definition of superior (inferior) s.i.p. given in (8.3), for lp2 spaces.

LEMMA 11. The superior (inferior) s.i.p. in X2 with respect to the norm ‖(·, ·)‖1

are given by

〈 (x, y), (u, v)〉 1,s(i)=

⎧⎪⎪⎨
⎪⎪⎩

‖(u, v)‖1 [(∇±‖·‖(u))(x)+(∇±‖·‖(v))(y)] , if u, v �=0 ;
〈 x, u〉 s(i)±‖u‖‖y‖, if u �=0 , v=0 ;
〈 y, v〉 s(i)±‖v‖‖x‖, if u=0 , v �=0 ;
0, if (u, v)=(0, 0) ,

for any (x, y), (u, v) ∈ X2 (here, 〈 ·, ·〉 s(i) are the superior(inferior) s.i.p. with respect
to the norm ‖ · ‖ on X ).
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Proof. The proof for (u, v) = (0, 0) is trivial, so we consider the case where
(u, v) �= (0, 0) . If u, v �= 0 , then

(∇±‖(·, ·)‖1(u, v))(x, y) = lim
t→0±

‖(u, v) + t(x, y)‖1 − ‖(u, v)‖1

t

= lim
t→0±

‖u + tx‖ − ‖u‖
t

+ lim
t→0±

‖v + ty‖ − ‖v‖
t

= (∇±‖ · ‖(u))(x) + (∇±‖ · ‖(v))(y),
which implies that 〈 (x, y), (u, v)〉 1,s(i) = ‖(u, v)‖1 [(∇±‖ · ‖(u))(x) + (∇±‖ · ‖(v))(y)] .
Now, if u �= 0 and v = 0 , we have

(∇±‖(·, ·)‖1(u, 0))(x, y) = lim
t→0±

‖(u, 0) + t(x, y)‖1 − ‖u‖
t

= lim
t→0±

‖u + tx‖ − ‖u‖
t

+ lim
t→0±

|t|‖y‖
t

= (∇±‖ · ‖(u))(x) ± ‖y‖,
which implies that

〈 (x, y), (u, 0)〉 1,s(i) = ‖u‖ [(∇±‖ · ‖(u))(x) ± ‖y‖] = 〈 x, u〉 s(i) ± ‖u‖‖y‖,
and analogously for u = 0 and v �= 0 , we have

〈 (x, y), (0, v)〉 1,s(i) = ‖v‖ [(∇±‖ · ‖(v))(y) ± ‖x‖] = 〈 y, v〉 s(i) ± ‖v‖‖x‖.
�

REMARK 10. Note that in l1 space (see [24, p. 183] for references), the superior
(inferior) s.i.p. of two vectors x = (xi) and y = (yi) are given by

〈 x, y〉 s(i) = ‖y‖l1

⎛
⎝∑

yi 	=0

yi

|yi|xi ±
∑
yi=0

|xi|
⎞
⎠ = ‖y‖l1

⎛
⎝∑

yi 	=0

sgn(yi)xi ±
∑
yi=0

|xi|
⎞
⎠ . (8.4)

If we take (X, ‖ · ‖) = (R, | · |) , then (X2, ‖(·, ·)‖1) = l12 , and the superior (inferior)
s.i.p. (by Lemma 11) are given by

〈 (x, y), (u, v)〉 1,s(i) =

⎧⎪⎪⎨
⎪⎪⎩

0, if (u, v) = (0, 0) ;
‖(u, v)‖l1(x sgn(u) + y sgn(v)), if u, v �= 0 ;
|u|(x sgn(u) ± |y|), if u �= 0 , v = 0 ;
|v|(y sgn(v) ± |x|), if u = 0 , v �= 0 ,

which recapture the definition of superior (inferior) s.i.p. given in (8.4) for l12 spaces.

LEMMA 12. The superior (inferior) s.i.p. in X2 with respect to the norm
‖(·, ·)‖∞ , for any vector (x, y), (u, v) ∈ X2 with ‖u‖ �= ‖v‖ , are given by

〈 (x, y), (u, v)〉∞,s(i) =
{ 〈 x, u〉 s(i), if ‖u‖ > ‖v‖ ;

〈 y, v〉 s(i), if ‖u‖ < ‖v‖ ,

where 〈 ·, ·〉 s(i) are the superior (inferior) s.i.p. with respect to the norm ‖ · ‖ on X .
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Proof. Without loss of generality, assume that ‖u‖ > ‖v‖ . Define h(t) =
‖u+ tx‖−‖v+ ty‖ for t ∈ R , then by our assumption, we have h(0) = ‖u‖−‖v‖ > 0 .
We claim that there exists ε > 0 such that h(t) > 0 for all t ∈ (−ε, ε) . Suppose
that the claim is false, then given ε = 1

n (n ∈ N) , we can find tn ∈ (−ε, ε) such
that h(tn) � 0 . So, we have a sequence (tn) with tn → 0 as n → ∞ . Then, by the
continuity of h , we have

h(0) = lim
n→∞ h(tn) � 0,

which contradicts our assumption.
Thus, there exists an ε > 0 such that ‖u + tx‖ > ‖v + ty‖ for all t ∈ (−ε, ε) ,

or equivalently, ‖(u, v) + t(x, y)‖∞ = ‖u + tx‖ for all t ∈ (−ε, ε) . Therefore, for all
t ∈ (−ε, ε) \ {0} , we have

‖(u, v) + t(x, y)‖∞ − ‖(u, v)‖∞
t

=
‖u + tx‖ − ‖u‖

t
.

By taking t → 0± to obtain (∇±‖(·, ·)‖∞(u, v))(x, y) = (∇±‖ · ‖(u))(x). It implies
that

〈 (x, y), (u, v)〉∞,s(i) = ‖(u, v)‖∞(∇±‖ · ‖(u))(x) = ‖u‖(∇±‖ · ‖(u))(x) = 〈 x, u〉 s(i).

�

REMARK 11. For the case where ‖u‖ = ‖v‖ , we have the following for any
(x, y) ∈ X2 :
(1) If u, v = 0 , then 〈 (x, y), (u, v)〉∞,s(i) = 0 ;

(2) If ‖u+tx‖ � ‖v+ty‖ for t → 0+ , then 〈 (x, y), (u, v)〉∞,s = lim
t→0+

‖u + tx‖2 − ‖u‖2

2t
= 〈 u, x〉 s; similarly, if ‖u+ tx‖ � ‖v+ ty‖ for t → 0− , then 〈 (x, y), (u, v)〉∞,i =
〈 u, x〉 i;

(3) If ‖u+tx‖ � ‖v+ty‖ for t → 0+ , then 〈 (x, y), (u, v)〉∞,s = lim
t→0+

‖v + ty‖2 − ‖v‖2

2t

= 〈 v, y〉 s; similarly, if ‖u+tx‖ � ‖v+ty‖ for t → 0− , then 〈 (x, y), (u, v)〉∞,i =
〈 v, y〉 i.

8.2. Semi-inner products in X2 with respect to the p -HH-norm. Let f be a
continuous real-valued function defined on D := {(x, t) : x ∈ [0, 1], t ∈ R \ {0}} .
Then, the mapping x �→ f (x, t) is continuous for any fixed t ∈ R \ {0} and therefore
is Lebesgue integrable on [0, 1] .

PROPOSITION 12. Let f be defined as above and lim
t→0±

f (x, t) = g±(x), where g±

is a Lebesgue integrable function defined on [0, 1] . Then

lim
t→0±

(∫ 1

0
f (x, t)dx

)
=
∫ 1

0
g±(x)dx =

∫ 1

0

(
lim

t→0±
f (x, t)

)
dx.
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Proof. We will prove the statement for the right-sided limit (the left-sided limit
can be proven in a similar way). Given ε > 0 , there exists δ0 > 0 such that
|f (x, t) − g+(x)| < ε whenever 0 < t < δ0 . We also have∣∣∣∣∣

∫ 1

0
f (x, t)dx −

∫ 1

0
g+(x)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ 1

0
[f (x, t) − g+(x)] dx

∣∣∣∣∣
�

∫ 1

0
|f (x, t) − g+(x)| dx <

∫ 1

0
ε dx = ε,

which shows that

lim
t→0+

(∫ 1

0
f (x, t)dx

)
=
∫ 1

0
g+(x)dx =

∫ 1

0

(
lim

t→0+
f (x, t)

)
dx. �

PROPOSITION 13. Let (X, ‖ · ‖) be a normed space, D := {(σ, t) : σ ∈ [0, 1], t ∈
R \ {0}} , and consider the real-valued function Fp on D defined by

Fp(σ, t) :=
‖(1 − σ)(u + tx) + σ(v + ty)‖p − ‖(1 − σ)u + σv‖p

t
,

for any x, y, u, v ∈ X , where u �= 0 or v �= 0 , and 1 � p < ∞ . Then, Fp is
continuous on D . Furthermore, if lim

t→0±
Fp(σ, t) = Gp,±(σ), then Gp,± is Lebesgue

integrable, and∫ 1

0
Gp,±(σ)dσ = p

∫ 1

0
‖(1−σ)u +σv‖p−2〈 (1−σ)x +σy, (1−σ)u +σv〉 s(i)dσ.

(8.5)

Proof. The continuity can be easily verified. Note that for any 1 � p < ∞ , if u, v
are linearly independent, then ‖(1 − σ)u + σv‖ �= 0 for all σ ∈ [0, 1] . Thus

Gp,±(σ) = lim
t→0±

Fp(σ, t)

= p‖(1 − σ)u + σv‖p−1 [∇±‖(·, ·)‖p−HH[(1 − σ)u + σv]] [(1 − σ)x + σy]

= p‖(1 − σ)u + σv‖p−2〈 (1 − σ)x + σy, (1 − σ)u + σv〉 s(i).

By the Cauchy-Schwarz inequality and the convexity of the given norm, we have∫ 1

0
Gp,±(σ)dσ � p

∫ 1

0
‖(1 − σ)u + σv‖p−1‖(1 − σ)x + σy‖dσ

� p
∫ 1

0

[
(1 − σ)‖u‖p−1 + σ‖v‖p−1

]
[(1 − σ)‖x‖ + σ‖y‖] dσ < ∞,

which shows that Gp,± is Lebesgue integrable, and therefore (8.5) holds.
If u, v are linearly dependent, then there exists a unique σ0 ∈ [0, 1] such that

(1 − σ0)u + σ0v = 0 . For 1 � p < ∞ , and σ �= σ0 ,

Gp,±(σ) = lim
t→0±

Fp(σ, t) = p‖(1− σ)u + σv‖p−2〈 (1− σ)x + σy, (1− σ)u + σv〉 s(i).
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For σ = σ0 , we have

Gp,±(σ0) = lim
t→0±

Fp(σ0, t) = lim
t→0±

|t|p‖(1 − σ0)x + σ0y‖p

t

=
{ ±‖(1 − σ0)x + σ0y‖, p = 1 ;

0, p �= 1 .

Note that, in this case, the integrability of Gp,± is implied by the previous case (the
case where u, v are linearly independent). Since

Gp,±(σ) = p‖(1 − σ)u + σv‖p−2〈 (1 − σ)x + σy, (1 − σ)u + σv〉 s(i)

almost everywhere on [0, 1] , then (8.5) holds. �

LEMMA 13. The superior (inferior) s.i.p. in X2 with respect to the norm
‖(·, ·)‖p−HH (1 � p < ∞) are given by

〈 (x, y), (u, v)〉 p−HH,s(i)

= ‖(u, v)‖2−p
p−HH

∫ 1

0
‖(1 − σ)u + σv‖p−2〈 (1 − σ)x + σy, (1 − σ)u + σv〉 s(i)dσ,

for any (x, y), (u, v) ∈ X2 (here, 〈 ·, ·〉 s(i) are the superior (inferior) s.i.p. with respect
to the norm ‖ · ‖ on X ).

Proof. The proof for the case where (u, v) = (0, 0) is trivial. Assume that
(u, v) �= (0, 0) and define the function g : X2 → R , where g(x, y) = ‖(x, y)‖p

p−HH

(1 � p < ∞) for any (x, y) ∈ X2 . We have

(∇±g(u, v))(x, y) := lim
t→0±

‖(u, v) + t(x, y)‖p
p−HH − ‖(u, v)‖p

p−HH

t

= p‖(u, v)‖p−1
p−HH lim

t→0±
‖(u, v) + t(x, y)‖p−HH − ‖(u, v)‖p

t

= p‖(u, v)‖p−1
p−HH(∇±‖(·, ·)‖p−HH(u, v))(x, y)

= p‖(u, v)‖p−2
p−HH〈 (x, y), (u, v)〉 p−HH,s(i).

Note that

lim
t→0±

‖(u, v) + t(x, y)‖p
p−HH − ‖(u, v)‖p

p−HH

t

= lim
t→0±

∫ 1

0

‖(1 − σ)u + σv + t((1 − σ)x + σy)‖p − ‖(1 − σ)u + σv‖p

t
dσ

= lim
t→0±

∫ 1

0
Fp(σ, t)dσ =

∫ 1

0
Gp,±(σ)dσ,
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where Fp and Gp,± are as defined in Proposition 13. Thus, we have the following
identity

p‖(u, v)‖p−2
p−HH〈 (x, y), (u, v)〉 p−HH,s(i) =

∫ 1

0
Gp,±(t),

that is,

〈 (x, y), (u, v)〉 p−HH,s(i) =
1
p
‖(u, v)‖2−p

p−HH

∫ 1

0
Gp,±(t),

and the proof is completed by (8.5). �

REMARK 12. Particularly for p = 2 , we have the following for any (x, y) and
(u, v) in X2 ,

〈 (x, y), (u, v)〉 HH,s(i) =
∫ 1

0
〈 (1 − σ)x + σy, (1 − σ)u + σv〉 s(i)dσ.

9. Geometrical properties

We are interested in investigating whether the geometrical properties of X2 , with
respect to the p -norm and the p -HH -norm, are implied by those of (X, ‖ · ‖) . The
results are stated in the following subsections.

9.1. Smoothness. The smoothness (Fréchet smoothness) of the spaces (B2, ‖(·, ·)‖p)
and (B2, ‖(·, ·)‖p−HH) for 1 < p < ∞ are inherited from Lp([0, 1], B) , by Lemma 2
and the embedding argument as described in Section 7. Here, we provide an alternative
proof for the smoothness using the superior (inferior) s.i.p., and we do not require the
space to be complete. We also prove that 1 -HH -norm is a smooth normvia the superior
(inferior) s.i.p.

COROLLARY 3. Let 1 < p < ∞ . If X is a smooth normed space, then so is
(X2, ‖(·, ·)‖p) .

Proof. Since X is smooth, we have 〈 x, y〉 i = 〈 x, y〉 s for all x, y ∈ X . Therefore

〈 (x, y), (u, v)〉 p,i =
‖u‖p−2〈 x, u〉 i + ‖v‖p−2〈 y, v〉 i

‖(u, v)‖p−2
p

=
‖u‖p−2〈 x, u〉 s + ‖v‖p−2〈 y, v〉 s

‖(u, v)‖p−2
p

= 〈 (x, y), (u, v)〉 p,s,

for all (x, y), (u, v) ∈ X2 . �

REMARK 13. Note that the space (X2, ‖(·, ·)‖1) is not always smooth, even if X
is. For example, choose X = R , then take (x, y) = (1, 0) and (u, v) = (0, 1) in
(R2, ‖ · ‖l1) . We have

(∇+‖(·, ·)‖1(1, 0))(0, 1) = 1 �= −1 = (∇−‖(·, ·)‖1(1, 0))(0, 1).
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The space (X2, ‖(·, ·)‖∞) might be a non-smooth space, even when X is smooth. For
example, let X = R , then take (x, y) = (1, 1) and (u, v) = (−1, 1) in (R2, ‖ · ‖l∞) .
We have

(∇+‖(·, ·)‖∞(1, 1))(−1, 1) = 1 �= −1 = (∇−‖(·, ·)‖∞(1, 1))(−1, 1).

COROLLARY 4. Let 1 � p < ∞ . If X is a smooth normed space, then so is
(X2, ‖(·, ·)‖p−HH) .

Proof. The proof is trivial for (u, v) = (0, 0) . Since X is smooth, 〈 x, y〉 i =
〈 x, y〉 s for all x, y ∈ X . It implies that for any (x, y), (u, v) ∈ X2 with nonzero (u, v) ,
we have the following

〈 (x, y), (u, v)〉 p−HH,s

= ‖(u, v)‖2−p
p−HH

∫ 1

0
‖(1−σ)u+σv‖p−2〈 (1−σ)x+σy, (1−σ)u+σv〉 sdσ

= ‖(u, v)‖2−p
p−HH

∫ 1

0
‖(1−σ)u+σv‖p−2〈 (1−σ)x+σy, (1−σ)u+σv〉 idσ

= 〈 (x, y), (u, v)〉 p−HH,i,

for any 1 � p < ∞ . �

9.2. Reflexivity.

COROLLARY 5. Let 1 � p � ∞ . If B is reflexive, then so are (B2, ‖(·, ·)‖p) and
(B2, ‖(·, ·)‖p−HH) .

Proof. For 1 < p < ∞ , if B is reflexive, then so is Lp([0, 1], B) (Lemma 3).
Since (B2, ‖(·, ·)‖p) is isomorphic to a closed subspace of Lp([0, 1], B) , (B2, ‖(·, ·)‖p)
is also reflexive. Since all the norms ‖(·, ·)‖p and ‖(·, ·)‖p−HH (1 � p � ∞) are
equivalent, the reflexivity of the remaining cases follows by Lemma 1. �

Alternative proof of Corollary 5. Let 1 < p < ∞ . Suppose that (B2, ‖(·, ·)‖p) is
not a reflexive normed space. By Proposition 2, we are able to find a continuous linear
functional F on B2 such that for any (u, v) ∈ B2 , either one of the following holds:

(1) there exists (x0, y0) ∈ B2 such that

〈 (x0, y0), (u, v)〉 p,i > F(x0, y0) or 〈 (x0, y0), (u, v)〉 p,s < F(x0, y0);

(2) ‖F‖ �= ‖(u, v)‖p . Suppose that (1) holds (either (2) holds or does not hold).
Define a continuous linear functional f on B , by f (x) = F(x, y0) . For any
u ∈ B ( (u, 0) ∈ B2) , there exists x0 ∈ B such that

〈 x0, u〉 i = 〈 (x0, y0), (u, 0)〉 p,i > F(x0, y0) = f (x0)

or 〈 x0, u〉 s = 〈 (x0, y0), (u, 0)〉 p,s < F(x0, y0) = f (x0),

which contradicts the fact that B is reflexive.
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Suppose that only (2) holds, i.e. there exists a continuous linear functional G on
B2 , such that for any (u, v) ∈ B2 , we have

〈 (x, y), (u, v)〉 p,i � G(x, y) � 〈 (x, y), (u, v)〉 p,s,

for any (x, y) ∈ B2 and ‖G‖ �= ‖(u, v)‖p . By Cauchy-Schwarz inequality, we always
have ‖G‖ � ‖(u, v)‖p . Thus, we conclude that ‖G‖ < ‖(u, v)‖p for any (u, v) ∈ B2 .
Define a continuous linear functional g on B , by g(x) = G(x, 0) . Then, for any u ∈ B
( (u, 0) ∈ B2) , we have

〈 x, u〉 i = 〈 (x, 0), (u, 0)〉 p,i � G(x, 0) = g(x) � 〈 (x, 0), (u, 0)〉 p,s = 〈 x, u〉 s

and

‖g‖ = sup
x∈X
‖x‖�=0

|g(x)|
‖x‖ = sup

(x,0)∈X2

‖(x,0)‖p �=0

|G(x, 0)|
‖(x, 0)‖p

� ‖G‖ < ‖(u, 0)‖p = ‖u‖

which contradicts the fact that B is reflexive. The proof for the remaining cases follows
by the norm equivalency and Lemma 1. �

9.3. Strict convexity and uniform convexity.

COROLLARY 6. If (B, ‖ · ‖) is a strictly (uniformly) convex normed space, then
so are (B2, ‖(·, ·)‖p) and (B2, ‖(·, ·)‖p−HH) , for any 1 < p < ∞ .

Proof. The proof follows directly by Proposition 3, Lemma 4 and the fact
that B2 together with ‖(·, ·)‖p and ‖(·, ·)‖p−HH are homeomorphic to a subspace
of Lp([0, 1], B) (see Section 7). �

REMARK 14. Note that in general, (B2, ‖(·, ·)‖1) is not strictly (uniformly) convex,
even if B is. For example, take (x, y) = (1, 0) and (u, v) = (0, 1) in (R2, ‖ · ‖l1) .
Observe that ‖(x, y)‖l1 = ‖(u, v)‖l1 = 1 , but ‖(x, y) + (u, v)‖l1 = 2 , which shows that
this space is not strictly convex (which also implies that it is not uniformly convex).

The space (B2, ‖(·, ·)‖∞) is not strictly (uniformly) convex, even when B is. As
an example, take (x, y) = (1, 1) and (u, v) = (−1, 1) in (R2, ‖ · ‖l∞) . Observe that
‖(x, y)‖l∞ = ‖(u, v)‖l∞ = 1 , but ‖(x, y) + (u, v)‖l∞ = 2 , which shows that this space
is not strictly (uniformly) convex.

The (B2, ‖(·, ·)‖1−HH) is not always strictly (uniformly) convex, even if B is.
For example, take (B, ‖ · ‖) = (R, | · |) , (x, y) = (2, 0) and (u, v) = (0, 2) in R

2 .
Observe that ‖(x, y)‖1−HH =

∫ 1
0 2(1− t) dt = 1 and ‖(u, v)‖1−HH =

∫ 1
0 2tdt = 1 , but

‖(x, y)+(u, v)‖l1 =
∫ 1

0 2 dt = 2 , which shows that this space is not strictly (uniformly)
convex.
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