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MONOTONICITY AND CONVEXITY OF S–MEANS

ALFRED WITKOWSKI

(Communicated by Zs. Páles)

Abstract. For real α ,r,s and positive x,y we define S-means by

S(α ;r,s;x,y) =
E(r,s;xα+1,yα+1)

E(r,s;xα ,yα )
,

where E is the Stolarsky mean. S contains Gini, Heronian and many other known means.
In this paper we investigate convexity properties of S(α) and obtain new inequalities between
Gini, Heronian and Stolarsky means.
The results lead to new inequalities for generalized Heronian means and reveal new properties
of Stolarsky means.

1. Introduction

The S-means, defined for real α,r,s and positive x,y, are given by the formula

S(α;r,s;x,y) =
E(r,s;xα+1,yα+1)

E(r,s;xα ,yα )
, (1.1)

where

E(r,s) = E(r,s;x,y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
r
s

ys−xs

yr−xr

)1/(s−r)
sr(s− r)(x− y) �= 0,(

1
r

yr−xr

logy−logx

)1/r
r(x− y) �= 0, s = 0,

e−1/r
(
yyr

/xxr)1/(yr−xr)
r = s, r(x− y) �= 0,√

xy r = s = 0, x− y �= 0,
x x = y

(1.2)

is the Stolarsky mean. They have been introduced in [10], where the problem of com-
parison between S(α;a,b;x,y) and S(α;c,d;x,y) was solved. In this paper we investi-
gate monotonicity and convexity of S(α) .
The S-means are interesting as this family contains some well-known families of two-
parameter means. Clearly S(0) is the Stolarsky mean. Further

S(1;r,s;x,y) = G(r,s) = G(r,s;x,y) =
(

xs + ys

xr + yr

)1/(s−r)
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34 ALFRED WITKOWSKI

is the Gini mean. Similarly, we have the Heronian

S(1/2;r,s;x,y) = H(r,s) = H(r,s;x,y)

=
(

xs +(
√

xy)s + ys

xr +(
√

xy)r + yr

)1/(s−r)

and the centroidal

S(2;r,s;x,y) = T (r,s) = T (r,s;x,y)

=
(

x2s +(xy)s + y2s

xs + ys

/x2r +(xy)r + y2r

xr + yr

)1/(s−r)

means.
Observe that S-means are homogeneous of order 1 with respect to x and y and

symmetric both in r,s and x,y .

We shall investigate monotonicity and logarithmic convexity of S-means with re-
spect to all the variables in section 2. Section 3 deals with the properties of

V (α;r,s;x,y) = S

(
α;

r
2α +1

,
s

2α +1
;x,y

)
. (1.3)

In the final section we use just obtained results to investigate some new properties of
Stolarsky means and establish some inequalities for generalized Heronian means.

In [8] we introduced the weighted extended mean values (see also [9]) defined as

F(r,s;a,b;x,y) =
E(r,s;ax,by)
E(r,s;a,b)

. (1.4)

We see that
S(α;r,s;x,y) = F(r,s;xα ,yα ;x,y),

therefore, obviously, some properties of the weighted extended mean values will be
used here.

In this paper we use standard notation A,G,L for the arithmetic, geometric and
logarithmic means. We also omit some or all arguments if there is no risk of confusion.

Let us recall some known properties of convex functions and some facts from [9].

PROPERTY 1.1. If f is continuous, then it is convex (resp. concave) if and only
if for every h > 0 f (x+h)− f (x) increases (resp. decreases) in x . For negative h the
monotonicity of f (x+h)− f (x) reverses.

PROPERTY 1.2. If f is continuous, then it is convex (resp. concave) if and only
if for every x0 the function h(t) = f (x0 − t)+ f (x0 + t) increases (resp. decreases) for
t > 0.
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PROPERTY 1.3. f is convex (resp. concave) if and only if the function f (s)− f (t)
s−t

increases (resp. decreases) in s and t .

For real t and positive A,B �= 1 let

g(t,A,B) =
At log2 A
(At −1)2 −

Bt log2 B
(Bt −1)2 . (1.5)

LEMMA 1.1. ([9], Lemma 2.2)

(a) g(t,A,B) = g(±t,A±1,B±1) for arbitrary choice of signs,

(b) g is increasing in t on (0,∞) if log2 A− log2 B > 0, and decreasing otherwise.

2. Monotonicity and logaritmic convexity of S-means

THEOREM 2.1. S(α,r,s;x,y) is increasing in variables r and s if α > − 1
2 , and

decreasing if α < − 1
2 .

Proof. Theorem 2 in [8] states that function F(r,s;a,b;x,y) increases in r and s
if (x− y)(a2x−b2y) > 0, and decreases otherwise. For S-means this condition reads
(x− y)(x2α+1− y2α+1) > 0, and this is equivalent to 2α+1 > 0. �

THEOREM 2.2. S(α,r,s;x,y) is increasing in α if r + s > 0, and decreasing if
r+ s < 0 .

Proof. Since S-means are homogeneous we can assume that y = 1. By Theorem 3
in [8], F(r,s;a,b;x,y) increases in a if (x− y)(r+ s) > 0, and decreases otherwise, so

sgn(S(α,r,s;x,1)−S(β ,r,s;x,1))

= sgn(F(r,s;xα ,1;x,1)−F(r,s;xβ ,1;x,1))

= sgn((xα − xβ )(x−1)(r+ s))

= sgn(xβ (xα−β −1)(x−1)(r+ s))
= sgn(α−β )(r+ s).

because sgn((xα−β −1)(x−1)) = sgn(α−β ). �
In view of S(0) � S(1/2) � S(1) � S(2) we immediately get

COROLLARY 2.3.

E(r,s) � H(r,s) � G(r,s) � T (r,s)

if r+ s > 0 . For r+ s < 0 the inequalities reverse.
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The above-mentioned inequality between Stolarsky and Gini means was obtained by
Neuman and Páles [4].
It is worth noting that in general S-means are not monotone in x and y . Indeed, since for
r,s > 0 we have limx→0 E(r,s,x,1) > 0, we see that for α > 0 limx→0 S(α;r,s;x,1) =
1 = S(α;r,s;1,1) .

Stolarsky means E(r,s;x,y) are positive and continuous in all variables, hence so
are S-means. Therefore, we can consider only the general case (r �= s, rs �= 0) and have
the other cases follow by continuity.
Moreover, due to homogeneity of S as a function of x and y, we can consider only the
case of y = 1.
Given that

∂ 2

∂α2 log |bα −1|= − bα log2 b
(bα −1)2

and

S(α;r,s;x,1) =

(
x(α+1)s−1

xαs −1

/x(α+1)r −1
xαr −1

)1/s−r

we see that
∂ 2

∂α2 logS =
g(α +1,xr,xs)−g(α,xr,xs)

s− r
, (2.1)

where g is defined by (1.5). This leads to the following

THEOREM 2.4. If r + s > 0, then S(α) is log-concave for α > − 1
2 and log-

convex for α < − 1
2 .

If r+ s < 0, then S(α) is log-convex for α > − 1
2 and log-concave for α < − 1

2 .

Proof. By Lemma 1.1(a) we can replace α and α+1 in the right hand side of the
formula (2.1) with their absolute values. Since α > − 1

2 is equivalent to |α +1| > |α|,
after applying Lemma 1.1(b) we get

sgn
∂ 2

∂α2 logS = sgn
g(|α+1|,xr,xs)−g(|α|,xr,xs)

s− r

= sgn

((
α + 1

2

) log2(xr)− log2(xs)
s− r

)
= −sgn

((
α + 1

2

)
(r+ s)

)
,

which completes the proof. �
An easy calculation reveals the following properties of S(α) :

S(− 1
2 ;r,s;x,y) =

√
xy (2.2)

S(− 1
2 −α)S(− 1

2 +α) = S2(− 1
2) = xy, (2.3)

which enables us to prove the
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THEOREM 2.5. If r+ s > 0 then

• if α0 > − 1
2 , then S(α0 − t)S(α0 + t) is decreasing for positive t ,

• if α0 < − 1
2 , then S(α0 − t)S(α0 + t) is increasing for positive t .

For r+ s < 0 the monotonicities reverse.

Proof. From (2.2) and (2.3) we see that the function logS(α− 1
2)− logS(− 1

2) is
odd, so the theorem follows from Lemma 1.6 in [9] and Theorem 2.4. �

3. Properties of V (α;r,s;x,y)

What we are aiming to prove in this section is that

THEOREM 3.1. If r + s > 0(< 0), then V (α) increases (decreases) and is con-
cave (convex) for α > −1/2 .

NOTE: a simple calculation shows that the function V is symmetric with respect to the
line α = −1/2.

For α > −1/2 let α = −α
2α+1 . The function α → α maps the half-line (−1/2,∞)

onto itself, is decreasing, α = α and (2α+1)(2α+1) = 1.

The function S satisfies the identity

S(α;r,s;x,y) = (xy)−αS2α+1( −α
2α+1 ;(2α +1)r,(2α+1)s

)
. (3.1)

To show it, let μ = 2α+1 and ν =−α/(2α+1) . Then −α = μν , and α +1 = μ(ν +1) .
Using the identities E(r,s;xt ,yt) = Et(tr,ts;x,y) and E(r,s;1/x,1/y) = E(r,s;x,y)/xy,
we obtain

S(α;r,s;x,y) =
E(r,s;xα+1,yα+1)

E(r,s;xα ,yα)
=

E(r,s;xα+1,yα+1)
(xy)αE(r,s;x−α ,y−α)

= (xy)−α
E(r,s;xμ(ν+1),yμ(ν+1))

E(r,s;xμν ,yμν)
= (xy)−αS(ν;r,s;xμ ,yμ)

= (xy)−αS2α+1
( −α

(2α +1)
;(2α+1)r,(2α+1)s;x,y

)
.

The identity (3.1) can be written in the form

(xy)
α

2α+1 S
1

2α+1 (α;r,s) = S

(
α ;

r
2α+1

,
s

2α+1

)
= V (α ;r,s). (3.2)

Now we can prove Theorem 3.1:
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Proof. Let −1/2 <α < β . Then −1/2< β <α, and we can write β as a convex
combination of −1/2 and α

β = − 1
2

2α−2β
2α+1 + 2β+1

2α+1α .

The log-concavity of S implies the inequality

S
2α−2β
2α+1 (−1/2;r,s)S

2β+1
2α+1 (α ;r,s) � S(β ;r,s),

and since S(−1/2;r,s,x,y) =
√

xy, we have

(xy)
α

2α+1 S
1

2α+1 (α;r,s) � (xy)
β

2β+1 S
1

2β+1 (β ;r,s)

and applying (3.2), we obtain

V (α;r,s) � V (β ;r,s) , (3.3)

so the monotonicity is proved (obviously if r + s < 0 then S is log-convex, and the
inequalities are reversed).
To show that V is concave, it is enough to prove that for fixed β > −1/2 the function

m(α) =
V (α)−V(β )

α−β

is decreasing for α > −1/2. Let

n(α) =
logS(α;r,s;x,y)− logS(β ;r,s;x,y)

α−β
.

As logS is concave, n is decreasing, and applying once more (3.2) we have

n(α) = − log(xy)+
1

β −α

[
V (α)

(2β +1)
− V (β )

(2α +1)

]

= − log(xy)+
(2β +1)V (α)− (2α+1)V (β )

β −α

= − log(xy)+2V(β )− (2β +1)
V(β )−V(α)

β −α
= − log(xy)+2V(β )− (2β +1)m(α)

This means that n and m are of the same monotonicity and the proof is complete. �
Applying Theorem 3.1, the inequalities V (0) � V (1/2) � V (1) � V (2) yield the

following

COROLLARY 3.2. For r+ s > 0

E(r,s) � H(r/2,s/2) � G(r/3,s/3) � T (r/5,s/5)
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The above inequality between E and G was found by Czinder and Páles ([2]).
It is optimal in the following sense

THEOREM 3.3. If −1/2 � α � β , then for small positive ε the means

S

(
α;

r
2α+1

,
s

2α+1
;x,y

)
and S

(
β ;

r
2β +1+ ε

,
s

2β +1+ ε
;x,y

)

are not comparable.

Proof. If for two homogeneous, symmetric means M(x,y) � N(x,y) holds, then
the function logN(x,1)− logM(x,1) has the local minimum at x = 1, so its second
derivative is nonnegative there. Given that

d2

dx2 log

∣∣∣∣xp−1
xq −1

∣∣∣∣
∣∣∣∣
x=1

= (p−q)
p+q−6

12

and

logS (β ;r/(2β +1+ ε),s/(2β +1+ ε);x,1)

=
2β +1+ ε

s− r

(
log

∣∣∣∣∣ x
s(β+1)/(2β+1+ε)−1

xr(β+1)/(2β+1+ε)−1

∣∣∣∣∣− log

∣∣∣∣∣ x
sβ/(2β+1+ε)−1

xrβ/(2β+1+ε)−1

∣∣∣∣∣
)

,

then for x = 1 and r+ s we have

12
d2

dx2

[
logS

(
β ; r

(2β+1+ε) ,
s

(2β+1+ε) ;x,1
)
− logS

(
α; r

(2α+1) ,
s

(2α+1) ;x,1
)]

=
2β +1+ ε

s− r
(s− r)(β +1)

2β +1+ ε

(
(s+ r)(β +1)

2β +1+ ε
−6

)

− 2β +1+ ε
s− r

(s− r)β
2β +1+ ε

(
(s+ r)β

2β +1+ ε
−6

)

− 2α+1
s− r

(s− r)(α+1)
2α+1

(
(s+ r)(α +1)

2α +1
−6

)

+
2α+1
s− r

(s− r)α
2α+1

(
(s+ r)α
2α+1

−6

)

= (s+ r)
(

2β +1
2β +1+ ε

−1

)
< 0. �

4. Applications

In this section we shall show some new properties of the Stolarsky means. Let us
begin with a kind of Chebyshev’s inequality
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THEOREM 4.1. If r + s > 0 and the pairs (x1,y1),(x2,y2) are similarly ordered
(i.e. (x1− y1)(x2 − y2) � 0 ), then

E(r,s;x1,y1)E(r,s;x2,y2) � E(r,s;x1x2,y1y2).

Any change of sign in the assumptions toggles this inequality.

Proof. Let a = y1/x1 and b = y2/x2 . Similar ordering means that a and b are
both either greater or lesser than 1, hence there is an α > 0 such that b = aα . By
Theorem 2.2, S(0;r,s;1,a) � S(α;r,s;1,a) or equivalently

E(r,s;1,a) � E(r,s;1,aα+1)
E(r,s;1,aα )

=
E(r,s;1,ab)
E(r,s;1,b)

. �

Another consequence of monotonicity of S-means is the following

THEOREM 4.2. If r + s > 0, then the function h(t) = logE(r,s;xt ,yt) is convex
and g(t) = E(tr, ts;x,y) is increasing. In case r+s < 0 h is concave and g decreases.

Proof. Assume r+ s > 0 and fix z > 0. Then

h(t + z)−h(t) = log
E(r,s;xt+z,yt+z)

E(r,s;xt ,yt)
= log

E(r,s;xz(t/z+1),yz(t/z+1))
E(r,s;xt ,yt)

= logS(t/z;r,s;xz,yz)

increases, so h is convex by Property 1.1 and Theorem 2.2. Now, by Property 1.3

h(t)−h(0)
t

=
logE(r,s;xt ,yt)

t
= logg(t)

increases. �
Feng Qi and Chao-Ping Chen (see [7] and references therein) proved that if 0 <

a < b < c then E(r,1;a,b)/E(r,1;a,c) decreases in r . We prove here a bit stronger
result:

THEOREM 4.3. The function E(r,s;a,b)/E(r,s;a,c) increases in r (and conse-
quently in s) if (b− c)(bc−a2) > 0, and decreases otherwise.

Proof. Set B = b/a,C = c/a . Note that

E(r,s;x,y) =
(

L(xr,yr)
L(xs,ys)

)1/(r−s)

.

We have

log
E(r,s;a,b)
E(r,s;a,c)

= log
E(r,s;1,B)
E(r,s;1,C)

=
log L(1,exp(r logB))

L(1,exp(r logC)) − log L(1,exp(s logB))
L(1,exp(s logC))

r− s
. (4.1)
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On the other hand by Theorem 4.2 the function

log
L(1,exp(t logB))
L(1,exp(t logC))

= (logB− logC) logE(logB, logC;1,et)

is convex if (logB− logC)(logB+ logC) > 0, and concave otherwise, so the divided
difference (4.1) is monotone by Property 1.3. To complete the proof, note that logB−
logC > 0 is equivalent to b− c > 0, and logB+ logC > 0 is equivalent to bc− a2 >
0. �

COROLLARY 4.4. The quotient E(r,s;a,b)/E(r,s;c,d) increases (decreases) in
r , s if and only if

a
b

+
b
a

> (<)
c
d

+
d
c
. (4.2)

Proof. Since
E(r,s;a,b)
E(r,s;c,d)

=
aE(r,s;a,b)

cE(r,s;a,ad/c)

the function incerases iff (b−ad/c)(abd/c−a2) > and this inequality is equivalent to
(4.2). �

Let us concentrate now on generalized Heronian means defined by

Hn(x,y) =
x+ x

n−1
n y

1
n + · · ·+ x

1
n y

n−1
n + y

n+1
(4.3)

If x and y are the n -dimensional volumes of the bases of an (n+1)-dimensional frus-
tum of height h , then its (n+1)-dimensional volume equals hHn(x,y) . The means are
named after Heron of Alexandria who, almost 2000 years ago, discovered the formula
for the volume of frustum of a pyramide.
It is easy to see that Hn(x,y) = S(1/n;1,0;x,y) , so by Theorem 2.2

L = H∞ � . . . � Hn+1 � Hn � . . . � H1 = A.

Since 1
n = n−1

2n
1

n−1 + n+1
2n

1
n+1 , Theorem 2.4 implies

H2n
n � Hn−1

n−1Hn+1
n+1 or

Hn+1
n+1

Hn
n

� Hn
n

Hn−1
n−1

. (4.4)

Similarly we obtain inequalities

Hn
n � LAn−1 and Hn+1

n+1 � Hn
n L.

This last inequality gives the lower bound for inequality (4.4).

Consider now for n � 2

H−n(x,y) = S(−1/n;0,1;x,y) =
x

n−1
n y

1
n + · · ·+ x

1
n y

n−1
n

n−1
=

(n+1)Hn−2A
n−1

. (4.5)
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The inequalities G � H−n � L combined with (4.5) result in

(n−1)G+2A
n+1

� Hn � (n−1)L+2A
n+1

(4.6)

To obtain better estimate for Hn , observe that log-concavity of S-means implies L2 �
HnH−n. Applying (4.5) and solving the resulting quadratic inequality, we get

Hn � A+
√

A2 +(n2−1)L2

n+1
.
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