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Abstract. We discuss an order preserving operator inequality and also we transform it into log
majorization.

1. Introduction

A capital letter means a bounded linear operator on a Hilbert space H . An operator
T is said to be positive (denoted by T � 0 ) if (Tx, x) � 0 for all x ∈ H , and T is said
to be strictly positive (denoted by T > 0 ) if T is positive and invertible.

THEOREM LH. (Löwner-Heinz inequality, denoted by (LH) briefly).
If A � B � 0 holds, then Aα � Bα for any α ∈ [0, 1] . (LH)

This was originally proved in [17] and then in [13]. Many nice proofs of (LH)
are known. We mention [18] and [2, Theorem 4.2.1]). Although (LH) asserts that
A � B � 0 ensures Aα � Bα for any α ∈ [0, 1] , unfortunately Aα � Bα does not
always hold for α > 1 . The following result has been obtained from this point of view.

THEOREM A. If A � B � 0 ,
then for each r � 0 ,
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hold for p � 0 and q � 1 with
(1 + r)q � p + r .

p
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(1 + r)q = p + r

Figure 1
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The original proof of Theorem A is shown in [6], an elementary one-page proof is
in [7] and alternative ones are in [3], [14]. It is shown in [19] that the conditions p , q
and r in Figure 1 are best possible.

THEOREM B. If A � B � 0 with A > 0 , then for t ∈ [0, 1] and p � 1 ,

A1−t+r � {Ar
2 (A

−t
2 BpA

−t
2 )sA

r
2 } 1−t+r

(p−t)s+r (1.1)

holds for r � t and s � 1 .

The original proof of Theorem B is in [8], and an alternative one is in [4], and also
an elementary one-page proof is in [9]. Further extensions of Theorem B and related
rtesults are in [10], [11], [12] and [15]. It is originally shown in [20] that the exponent

value
1 − t + r

(p − t)s + r
of the right hand of (1.1) is best possible and alternative ones are

in [5], [21]. It is known that the operator inequality (1.1) interpolates Theorem A and
an inequality equivalent to the main result of Ando-Hiai log majorization [1] by the
parameter t ∈ [0, 1].

In this paper, we show an extension of (1.1) as follows:
If A � B � 0 with A > 0 , t ∈ [0, 1] and p1 , p2 , p3 , p4 � 1 , then

A1−t+r�
{

A
r
2

[
A

−t
2

{
A

t
2 (A

−t
2 Bp1A

−t
2 )p2A
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}p3A
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]p4

A
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} 1−t+r
[{(p1−t)p2+t}p3−t]p4+r

holds for r � t .
We remark that the result stated above yields Theorem B by putting p2 = p3 = 1 .
We discuss an application of our result to log majorization as follows;
(i) for every A > 0 , B � 0 , t ∈ [0, 1] and p1 , p2 , p3 , p4 � 1 and r � t ,

(A� 1
p1

B)h �
(log)

A1−t+r�β

{
A1−t�p4{A�p3(A

1−t�p2B)
}}

holds, where β and h are as follows;

h =
p1p2p4p4(1 − t + r)

[{(p1 − t)p2 + t}p3 − t]p4 + r
and β =

h
p1p2p3p4

.

This result (i) yields the following known result (ii);
(ii) for every A > 0 , B � 0 , 0 � α � 1 and each t ∈ [0, 1]

(A�αB)h �
(log)

A1−t+r�β (A1−t�sB)

holds for s � 1 and r � t , where h =
(1 − t + r)s

(1 − αt)s + αr
and β =

h
s
α

and also (ii) implies (iii);
(iii) for every A, B � 0 , 0 � α � 1

(A�αB)r �
(log)

Ar�αBr for r � 1 .

The last result is very useful and fundamental result in log majorization by Ando-Hiai
[1].
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2. An order preserving operator inequality

THEOREM 2.1. If A � B � 0 with A > 0 , t ∈ [0, 1] and p1 , p2 , p3 , p4 � 1 ,
then the following inequality holds,

A �
{

A
t
2
[
A

−t
2 {A t

2 (A
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2 Bp1A

−t
2 )p2A

t
2 }p3A
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. (2.1)

LEMMA A. [8, Lemma 1]. Let X be a positive invertible operator and Y be an
invertible operator. For any real number λ ,

(YXY∗)λ = YX
1
2 (X

1
2 Y∗YX

1
2 )λ−1X

1
2 Y∗.

Proof of Theorem 2.1. By putting r = t in (1.1) of Theorem B, we have;
if A � B � 0 with A > 0 , then for t ∈ [0, 1]

{A t
2 (A
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2 Bp1A

−t
2 )p2A

t
2 } 1

(p1−t)p2+t � A for any p1 � 1 and p2 � 1 . (2.2)

First step. In case 2 � p4 � 1 .
We recall that (2.2) can be described as

C
1

q[2] � A where C = A
t
2 (A
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t
2 and q[2] = (p1 − t)p2 + t. (2.2’)

(2.2’) yields the following (2.3)

A−t � C
−t
q[2] for any t ∈ [0, 1] (2.3)

by LH and taking inverses of both sides. Also let q[4] be defined by as follows:

q[4] = [{(p1 − t)p2 + t}p3 − t]p4 + t = (q[2]p3 − t)p4 + t. (2.4)

Then we have{
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and the first inequality holds by (2.3) and LH since 1
q[4] , p4 − 1 ∈ [0, 1] in case p1 ,

p2 , p3 � 1 and 2 � p4 � 1 .

Second step. In (2.5), put A1 = A and

B1 =
{

A
t
2 [A
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.

Then A1 � B1 holds for any 2 � p4 � 1 by (2.5). Repeating (2.5) for A1 � B1 with
A1 > 0 , then we have
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and p′1, p

′
2, p

′
3 � 1 and t′ ∈ [0, 1] , where q′[4] = [{(p′1 − t′)p′2 + t′}p′3 − t′]p′4 + t′.

In (2.6) take p′1 , p′2, p
′
3 and t′ as follows;

p′1 = q[4] = [{(p1 − t)p2 + t}p3 − t]p4 + t, p′2 = p′3 = 1 and t′ = t. (2.7)

Then we have
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and (2.6),(2.8) and (2.9) ensure the following (2.10)
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� A holds for any 4 � p4p
′
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and repeating this process from (2.5) to (2.10), (2.1) holds for any p4 � 1. �

3. An extension of Theorem B

THEOREM 3.1. If A � B � 0 with A > 0 , then for each t ∈ [0, 1] and p1 , p2 ,
p3 , p4 � 1 ,

A1−t+r�
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(3.1)

holds for r � t.

REMARK 3.1. Theorem 3.1 yields Theorem B by putting p2 = p3 = 1 .
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Proof of Theorem 3.1. In (2.1) of theorem 2.1, put A1 = A and

B1 =

{
A

t
2

[
A
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2 )p2A
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Then A1 � B1 by (2.1) holds for t ∈ [0, 1] and p1 , p2 , p3 , p4 � 1 , by applying
Theorem A,

A1+r1
1 � (A

r1
2

1 Bs1
1 A

r1
2

1 )
1+r1
s1+r1 holds for s1 � 1 and r1 � 0. (3.2)

In (3.2) we have only to put r1 = r − t � 0 and s1 = q[4] � 1 to obtain (3.1).

4. Transformation of Theorem 3.1 into Log Majorization

Following after [1], let us define the log majorization for positive semidefinte
matrices A, B � 0 , denoted by A �

(log)
B if

k∏
i=1

λi(A) �
k∏

i=1

λi(B) for k = 1, 2, ..., n − 1

and
n∏

i=1

λi(A) =
n∏

i=1

λi(B) i.e., det A = detB

where λ1(A) � λ2(A) � ... � λn(A) and λ1(B) � λ2(B) � ... � λn(B) are the
eigenvalues of A and B , respectively, arranged in decreasing order. When 0 � α �
1 , α -power mean of positive invertible matrices A, B > 0 is defined by A�αB =
A

1
2 (A

−1
2 BA

−1
2 )αA

1
2 in [16].

Further, A�αB for A, B � 0 is defined by A�αB = lim
ε↓0

(A + εI)�α(B + εI).

For the sake of convenience for symbolic expression, we defined A�sB in [8], for
any real number s � 0 and for A > 0 and B � 0 , by the following

A�sB = A
1
2 (A

−1
2 BA

−1
2 )sA

1
2

A�sB in case 0 � α � 1 just coincides with the usual α -power mean A�αB .

THEOREM 4.1. For every A > 0 , B � 0 , t ∈ [0, 1] and p1 , p2 , p3 , p4 � 1 and
r � t ,

(A� 1
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B)h �
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holds, that is,
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(4.2)
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holds, where β and h are as follows:

h =
p1p2p3p4(1 − t + r)

[{(p1 − t)p2 + t}p3 − t]p4 + r
and β =

h
p1p2p3p4

.

Proof. In the same way in the proof of [1, Theorem 2.1], by arranging the order of
homogeneity in (4.1), to prove (4.1) we have only to show that I � A� 1

p1
B , equivalently,

A−1 � (A
−1
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2 )

1
p1 ensures the following inequality
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,

for t ∈ [0, 1] and p1 , p2 , p3 , p4 � 1 and r � t , equivalently,
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Put A1 = A−1 and B1 = (A
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1
p1 . By applying Theorem 3.1, we have
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that is,
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holds, that is, we have (4.3) as desired, where h and are as follows:

h =
p1p2p3p4(1 − t + r)

[{(p1 − t)p2 + t}p3 − t]p4 + r
and β =

h
p1p2p3p4

.

�

COROLLARY 4.2. For every A > 0 , B � 0 , and p1 , p2 , p3 , p4 � 1 and r � 1 ,

(A� 1
p1

B)h �
(log)

Ar�β [A
1
2 (A

−1
2 Bp2A

−1
2 )p3A

1
2
]p4

, (4.5)

holds, that is,
(A� 1

p1
B)h �

(log)
Ar�β (A�p3B

p2)p4 (4.6)

holds, where β and h are as follows:

h =
p1p2p3p4r

[{(p1 − 1)p2 + 1}p3 − 1]p4 + r
and β =

h
p1p2p3p4

.

Proof. We have only to put t = 1 in Theorem 4.1. �
Theorem 4.1 yields the following Theorem C by replacing 1

p1
by α ∈ [0, 1] ,

p3 = p4 = 1 and p2 = s � 1 .
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THEOREM C. [8]. For every A > 0 , B � 0 , 0 � α � 1 and each t ∈ [0, 1]

(A�αB)h �
(log)

A1−t+r�β (A1−t�sB)

holds for s � 1 and r � t , where

h =
(1 − t + r)s

(1 − αt)s + αr
and β =

h
s
α.

We state the following two known results.

THEOREM D. [8]. For every A, B � 0 , 0 � α � 1

(A�αB)h �
(log)

Ar� h
s α

Bs for r � 1 and s � 1 .

where h = [αs−1 + (1 − α)r−1]−1 ( h is the harmonic mean of s and r ).

THEOREM E. [1]. For every A, B � 0 , 0 � α � 1

(A�αB)r �
(log)

Ar�αBr for r � 1 .

We remark that Theorem E is very useful and fundamental result in logmajorization
and Theorem D yields Theorem E putting r = s . Theorem C yields Theorem D putting
t = 1 and also Corollary 4.2 implies TheoremD putting p3 = 1 and replacing p2p4 � 1
by s � 1 and replacing 1

p1
by α ∈ [0, 1] .
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