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Abstract. Necessary and sufficient conditions on a weight governing the trace inequality for the
Riemann-Liouville transform with variable parameter Rα(x) in Lp(x) spaces are established
provided that p and q satisfy the log-Hölder continuity condition. Weighted criteria for the

compactness of Rα(x) from Lp(x) to Lq(x)
v are also derived.

1. Introduction

Our aim is to find criteria for the Riemann-Liouville operator

Rα(x)f (x) =
∫ x

0
f (t)(x − t)α(x)−1dt, x > 0,

to be bounded/compact from Lp(·)(I) to Lq(·)
v (I) , where

1 < inf
I

p � p(x) � q(x) � sup
I

q < ∞, inf
I

(α − 1/p) > 0,

provided that p and q satisfy the weak Lipschitz (log-Hölder continuity) condition.
Here I denotes the interval [0, a) (0 < a � ∞ ). When p and q are generalmeasurable
functions, we obtain integral-type sufficient condition (which is also necessary for
constant p and q ) guaranteeing the trace inequality for Rα(x) in variable exponent
Lebesgue spaces.

The space Lp(·) is the special case of the Musielak-Orlicz space. The basis of the
variable exponent Lebesgue spaces were developed by W. Orlicz and J. Musielak (see
[37], [33] and [34]).

Criteria for the boundedness/compactness of the operator

Rγ f (x) =
∫ x

0
f (t)(x − t)γ−1dt, x > 0,
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from Lp(R+) to Lq
v(R+) ( γ , p and q are constants, and γ > 1/p ) were established

in [31] and [38]. Solution of the two-weight problem for the operator Rγ when γ is
constant and is more than 1 , was given in the papers [29], [47] (see also [36]). For
two-weight Hardy-type inequalities we refer to [15], [30], [27], [26] and references
therein.

The boundedness of classical integral operators in Lp(·) spaces has been inves-
tigated in the papers [1], [2], [3], [4], [5], [7], [35], [39], [40] (see also [16], [41] and
references therein).

Two-weight inequalities for the Hardy operator

Hf (x) =
∫ x

0
f (t)dt, x > 0,

in Lp(·) spaces were derived in [8], [10] and [24] (in fact in [24] two-weight problem for
the Volterra-type operator involving the kernel (x−y)γ−1 only for γ > 1 was studied in
Lp(x) spaces). Further, for weighted estimates for maximal functions, singular integrals
and potentials in Lp(·) spaces we refer to [6], [11], [12], [18], [19], [20], [21], [22], [23],
[42], [43] (see also [16], [41]).

Solution of the the two-weight problem in the non-diagonal case for one-sided
potentials in classical Lebesgue spaces was given in [9], [13], [28]. Finally we notice
that the criteria established in [28] are of Sawyer type.

Throughout the paper constants (often different constants in the same series of
inequalities) will mainly be denoted by c .

2. Preliminaries

Let Ω be a domain in Rn . We denote

p−(E) := inf
E

p, p+(E) := sup
E

p

for a measurable set E ⊆ Ω . Suppose that p is a measurable function on Ω and
1 < p−(Ω) � p(x) � p+(Ω) < ∞ . Denote by ρ a weight function on Ω , i.e. ρ is
an almost everywhere positive measurable function on Ω . We say that a measurable
function f on Ω belongs to Lp(·)

ρ (Ω) (or to Lp(x)
ρ (Ω) ) if

Sp(·),ρ(f ) =
∫
Ω

∣∣f (x)ρ(x)
∣∣p(x)

dx < ∞.

It is is a Banach space with the norm (see e.g. [16], [25], [39], [41], [48])

‖f ‖
Lp(·)
ρ (Ω) = inf

{
λ > 0 : Sp(·),ρ

(
f /λ

)
� 1

}
.

If ρ ≡ 1 , then we use the symbol Lp(·)(Ω) (resp. Sp(·) ) instead of Lp(·)
ρ (Ω) (resp.

Sp(·),ρ ). It is clear that ‖f ‖
Lp(·)
ρ (Ω) = ‖f ρ‖Lp(·)(Ω) .
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Let P(Ω) be the class of all measurable functions p , p : Ω → R , such that the
Hardy-Littlewood maximal operator

MΩf (x) = sup
Q�x

1
|Q|

∫
Q∩Ω

|f (y)|dy, x ∈ Ω,

where the supremum is taken over cubes Q containing x and satisfying |Q ∩Ω| > 0 ,
is bounded in Lp(·)(Ω) .

In the sequel we will denote by Z and Z− the set of all integers and the set of
non-positive integers respectively.

To prove the main results we need some statements:

PROPOSITION A. ([25], [39]) Let E be a measurable subset of Ω . Suppose that
1 < p−(E) � p+(E) < ∞ . Then the following inequalities hold:

‖f ‖p+(E)
Lp(·)(E) � Sp(f χE) � ‖f ‖p−(E)

Lp(·)(E), ‖f ‖Lp(·)(E) � 1;

‖f ‖p−(E)
Lp(·)(E) � Sp(f χE) � ‖f ‖p+(E)

Lp(·)(E), ‖f ‖Lp(·)(E) � 1;∣∣∣ ∫
E

f (x)g(x)dx
∣∣∣ �

( 1
p−(E)

+
1

(p+(E))′
)
‖f ‖Lp(·)(E) ‖g‖Lp′(·)(E),

where p′(x) = p(x)
p(x)−1 and 1 < p−(E) � p(x) � p+(E) < ∞.

PROPOSITION A’. ([25], [39], [48]) Let 1 � r(x) � p(x) and let E be a bounded
subset of Ω . Then there exists a positive constant c depending only on E , r and p
such that

‖f ‖Lr(·)(E) � c‖f ‖Lp(·)(E).

DEFINITION. We say that p satisfies the weak Lipschitz (log-Hölder continuity)
condition on E ⊂ Ω (p ∈ WL(E)) , if there there is a positive constant A such that for
all x and y in E with 0 < |x − y| < 1/2 the inequality

|p(x) − p(y)| � A/(− ln |x − y|)
holds.

The next result was obtained in [4].

THEOREM A. Let Ω be a bounded open set in Rn and let 1 < p−(Ω) � p+(Ω) <
∞ . Then the operator MΩ is bounded in Lp(·)(Ω) if p ∈ WL(Ω) .

The next lemma was proved in [4].

LEMMA 1. Let I be an interval in R+ . Then p ∈ WL(I) if and only if there exists
a positive constant C such that

|J|p−(J)−p+(J) � c

for all intervals J ⊆ I of I with |J| > 0 .

Let
Ek := [2k, 2k+1); Ik := [2k−1, 2k+1).

We shall need a slight modification of Theorem 2 from [24] (see also [11] for the
case p(x) = q(x) ).
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LEMMA 2. Let 1 < p−(R+) � p(x) � q(x) � q+(R+) < ∞ and let p, q ∈
WL(R+) and let p(x) � q(x) . Suppose that p(x) ≡ pc = const, q(x) ≡ qc = const
when x > a for some positive number a . Then there exists a positive constant c such
that ∑

k

‖f χIk‖Lp(·)(R+)‖gχIk‖Lq′(·)(R+) � c‖f ‖Lp(·)(R+)‖g‖Lq′(·)(R+)

for all f ∈ Lp(·)(R+) and g ∈ Lq′(·)(R+) .

Proof. For simplicity assume that a = 1 . Let us split the sum as follows:∑
i

‖f χIi‖Lp(·)(R+)‖gχIi‖Lq′(·)(R+) =
∑
i�2

+
∑
i>2

:= J1 + J2.

Since p(x) = pc = const, q(x) ≡ qc ≡ const on the set (1,∞) , using Hölder’s
inequality and the fact pc � qc , we have

J2 =
∑
i>2

‖f χIi‖Lpc (R+)‖gχIi‖L(qc)′ (R+) � c‖f ‖Lp(·)(R+)‖g‖Lq′(·)(R+).

Now let us estimate J1 . Suppose that ‖f ‖Lp(·)(R+) � 1 and ‖g‖Lq′(·)(R+) � 1 . First
notice that since q, q′ ∈ WL(Rn) , therefore, by Proposition A and Lemma 1 we have

|Ik|1/q+(Ik) ≈ ‖χIk‖Lq(·)(R+) ≈ |Ik|1/q−(Ik);

|Ik|1/(q′)+(Ek) ≈ ‖χEk‖Lq′(·)(R+) ≈ |Ik|1/(q′)−(Ik),

where k � 2 . Hence Hölder’s inequality (see Proposition A) yields

J1 � c
∑
k�2

∫ 8

0

‖f χIk‖Lp(·)(R+)‖gχIk‖Lq′(·)(R+)

‖χIk‖Lq(·)(R+)‖χEk‖Lq′(·)(R+)
χEk(x)dx

� c
∫ 8

0

∑
k�2

‖f χIk‖Lp(·)(R+)‖gχIk‖Lq′(·)(R+)

‖χIk‖Lq(·)(R+)‖χIk‖Lq′(·)(R+)
χEk(x)dx

� c

∥∥∥∥∑
k�2

‖f χIk‖Lp(·)(R+)

‖χIk‖Lq(·)(R+)
χEk(·)

∥∥∥∥
Lq(·)((0,8))

∥∥∥∥∑
k�2

‖gχIk‖Lp′(·)(R+)

‖χIk‖Lp′(·)(R+)
χEk(·)

∥∥∥∥
Lq′(·)((0,8))

:= cS1 · S2.

Now observe that
I(q) � cI(p),

where

I(q) :=
∥∥∥∥ ∑

k�2

‖f χIk‖Lp(·)(R+)

‖χIk‖Lq(·)(R+)
χEk(·)

∥∥∥∥
Lq(·)((0,8))

;

I(p) :=
∥∥∥∥ ∑

k�2

‖f χIk‖Lp(·)(R+)

‖χIk‖Lp(·)(R+)
χEk(·)

∥∥∥∥
Lp(·)((0,8))

.



TRACE INEQUALITY FOR RIEMANN-LIOUVILLE TRANSFORM 67

Indeed, suppose that I(p) � 1 . Taking into account Proposition A and Lemma 1, we
have

∑
k�2

1
|Ik|

∫
Ek

‖f χIk‖p(x)
Lp(·)(R+)dx � c

8∫
0

(∑
k�2

‖f χIk‖Lp(·)(R+)

‖χIk‖Lp(·)(R+)
χEk(x)

)p(x)
dx � c.

Consequently, since q(x) � p(x) , Ek ⊂ Ik and ‖f ‖Lp(·)(R+) � 1 , we find that

∑
k�2

1
|Ik|

∫
Ek

‖f χIk‖q(x)
Lp(·)(R+)dx �

∑
k�2

1
|Ik|

∫
Ek

‖f χIk‖p(x)
Lp(·)(R+)dx � c.

This implies that I(q) � c .
Let us introduce a function

P(t) =
∑
k�2

p+(Ik)χEk(t).

It is clear that p(t) � P(t) because Ek ⊂ Ik . Hence, Proposition A′ for Ω = (0, 8)
yields

I(p) � c

∥∥∥∥∑
k�2

‖f χIk‖Lp(·)(R+)

‖χIk‖Lp(·)(R+)
χEk(·)

∥∥∥∥
LP(·)((0,8))

.

Then, using the definition of P and the inequality ‖χIk‖p+(Ik)
Lp(·)(R+) � c2k , we have

∫ 8

0

( ∑
k�2

‖f χIk‖Lp(·)(R+)

‖χIk‖Lp(·)(R+)
χEk(x)

)P(x)

dx =
∫ 8

0

( ∑
k�2

‖f χIk‖p+(Ik)
Lp(·)(R+)

‖χIk‖p+(Ik)
Lp(·)(R+)

χEk(x)
)

dx

� c
∫ 8

0

( ∑
k�2

‖f χIk‖p+(Ik)
Lp(·)(R+)

2k
χEk(x)

)
dx

� c
∑
k�2

‖f χIk‖p+(Ik)
Lp(·)(R+)

� c
∑
k�2

∫
Ik

|f (x)|p(x)dx

� c
∫

R+

|f (x)|p(x)dx � c.

Consequently, the estimates derived above give us

S1 � c‖f ‖Lp(·)(R+).

Analogously, taking into account the fact that q′ ∈ WL(R+) and arguing as above, we
find that

S2 � c‖g‖Lq′(·)(R+).

�
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LEMMA 3. Let I = [0, a] be a bounded interval and let p ∈ WL(I) . Suppose that
1 < p−(I) � p+(I) < ∞ and α(x) > 1/p(x) when x ∈ I . Then

I(x) := ‖(x − ·)α(x)−1χ(x/2,x)(·)‖Lp′(·)(R+) � cxα(x)−1/p(x),

where the positive constant c does not depend on x .

Proof. Since p ∈ WL(I) implies p′ ∈ WL(I) , by Lemma 1 we have the following
two-sided estimate:

(x − t)p′(t) � c1(x − t)p′(x) � c2(x − t)p′(t),

where 0 < t < x < a and the positive constants c1 and c2 depend only on p and a .
Consequently,∫ x

x/2
(x − t)(α(x)−1)p′(t)dt � c

∫ x

x/2
(x − t)(α(x)−1)p′(x)dt

= c
∫ x/2

0
u(α−1)p′(x)du = c(x/2)(α(x)−1)p′(x)+1

= cx(α(x)−1)p′(x)+1 := S(x).

Suppose that I(x) � 1 . Then, since p ∈ WL(I) is equivalent to the condition 1/p ∈
WL(I) , by Proposition A and Lemma 1 we have

I(x) � (S(x))1/(p′)+([x/2,x]) = c
(
(x/2)1/(p′)−([x/2,x])

)(α(x)−1)p′(x)+1

� c
(
(x/2)1/(p′)+([x/2,x])

)(α(x)−1)p′(x)+1
� c

(
(x/2)1/p′(x)

)(α(x)−1)p′(x)+1

� cxα(x)−1/p(x).

For I(x) > 1 the conclusion is trivial. �

THEOREM B. [24] Let p ∈ WL(I) , where I = [0, a] , where 0 < a < ∞ .
Suppose that 1 < p−(I) � p(x) � q(x) � q+(I) < ∞ and p, q ∈ WL(I) . Then the

Hardy operator H is bounded from Lp(·)
w (I) to Lq(·)

v (I) if and only if

C := sup
0<t<a

‖v(·)χ(t,a)(·)‖Lq(·)(I)‖w−1(·)χ(0,t)(·)‖Lp′(·)(I) < ∞.

Moreover, there exist positive constants c1 and c2 such that c1C � ‖H‖ � c2C .

To formulate the next results we need the notation:

p0(x) := inf
y∈[0,x]

p(y); p̃0(x) :=
{

p0(x), 0 � x � a

pc ≡ const, x < a
,

where a is a fixed positive number.
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THEOREM C. Let I = [0, a] (0 < a < ∞) and let 1 � p−(I) � p0(x) � q(x) �
q+(I) < ∞ for a.e. x ∈ I . Then the condition

sup
0<t<a

∫ a

t
(v(x))q(x)tq(x)/(p0)′(x)dx < ∞

implies the boundedness of H from Lp(·)(I) to Lq(·)
v (I) .

THEOREM C’. Let I = R+ and let 1 � p−(I) � p0(x) � q(x) � q+(I) < ∞ for
a.e. x ∈ I . Suppose that q(x) ≡ qc = const, p(x) ≡ pc = const when x > a for some
positive number a . Then the condition

sup
0<t<∞

∫ ∞

t
(v(x))q(x)tq(x)/(p̃0)′(x)dx < ∞

guarantees the boundedness of H from Lp(·)(I) to Lq(·)
v (I) .

Theorems C and C′ are special cases of Theorems 3.1 and 3.3 of [10].
Let us recall the two-weight criterion for the Hardy operator in classical Lebesgue

spaces (see [15], [30], [27] and [26]):

THEOREM D. Let r and s be constants such that 1 < r � s < ∞ . Suppose that
0 � a < b � ∞ . Let v and w be non-negative measurable functions on [a, b) . Then
the inequality

(∫ b

a

(
v(x)

∫ x

a
f (t)dt

)s

dx

)1/s

� c

( ∫ b

a
(w(t)f (t))rdt

)1/r

, f � 0,

holds if and only if

sup
a�t�b

( ∫ b

t
vs(x)dx

)1/s( ∫ t

a
w−r′(x)dx

)1/r′

< ∞.

The following statements are true (see [31], [32], [38]):

THEOREM E. Let r , s and γ be constants on R+ such that 1 < r � s < ∞ ,
γ > 1/r . Then

(i) Rγ is bounded from Lr(R+) to Ls
v(R+) if and only if

D := sup
t>0

D(t) := sup
t>o

( ∫ ∞

t
(v(x)xγ−1)sdx

)1/s

t1/r′ < ∞;

(ii) Rγ is bounded from Lr(R+) to Ls
v(R+) if and only if D < ∞ and limt→0 D(t)

= limt→∞ D(t) = 0.
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THEOREM F. Let r , s and γ be constants in R+ such that 1 < r � s < ∞ ,
γ > 1/r . Suppose that 0 � a < b � ∞ . Then the inequality

( ∫ b

a
vs(x)

∣∣∣∣
∫ x

a
f (y)(x − y)γ−1dy

∣∣∣∣
s

dx

)1/s

� c

( ∫ b

a
|f (x)|rdx

)1/r

, (1)

where the positive constant c is independent of f , f ∈ Lr([a, b]) , holds if and only if

E := sup
a<t<b

( ∫ b

t
(v(x)xγ−1)sdx

)1/s

(t − a)1/r′ < ∞.

Moreover, if c is the best constant in (1) , then c2E � c � c1E , where the positive
constants c1 and c2 depends only on s, r and γ .

3. Trace Inequality (Boundedness criteria)

In this section we derive boundedness criteria for the operator Rα(x) from Lp(·)(I)
to Lq(·)

v (I) , where I is either a bounded interval [0, a] or R+ .

Theorem 3.1. Let I = [0, a] be a bounded interval and let 1 < p−(I) � p(x) �
q(x) � q+(I) < ∞. Suppose that (α − 1/p)−(I) > 0 . Further, assume that p, q ∈
WL(I) . Then the inequality

‖Rα(x)f ‖Lq(x)
v (I) � c‖f ‖Lp(x)(I), f ∈ Lp(·)(I) (2)

holds if and only if

Aa := sup
0<t<a

Aa(t) := sup
0<t<a

∥∥∥χ(t,a)(x)
v(x)

x1−α(x)

∥∥∥
Lq(x)(I)

t1/p′(0) < ∞.

Moreover, there exist positive constants c1 and c2 such that

c1Aa � ‖Rα(x)‖Lp(x)(I)→Lq(x)
v (I) � c2Aa.

Proof. For the simplicity assume that a = 1 .
Sufficiency. Suppose that f � 0 . Following the arguments from [31], we represent

Rα(x)f as follows:

(Rα(x)f )(x) =
∫ x/2

0
f (t)(x − t)α(x)−1dt +

∫ x

x/2
f (t)(x − t)α(x)−1dt

:= (R(1)
α(x)f )(x) + (R(2)

α(x)f )(x).

Hence

‖(Rα(x)f )(x)‖
Lq(x)
v (I) � c‖(R(1)

α(·)f )(x)‖
Lq(x)
v (I) + ‖(R(2)

α(x)f )(x)‖
Lq(x)
v (I) := S(1) + S(2).
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It is easy to see that if 0 < t < x/2 , then x/2 � x − t . Consequently, (x − t)α(x)−1 �
cxα(x)−1 , where the positive constant c does not depend on x . Hence, taking into
account Theorem B we have

S(1) � c
∥∥∥ v(x)

x1−α(x) Hf (x)
∥∥∥

Lq(x)(I)
� cAa‖f ‖Lp(·)(I).

Suppose now that ‖g‖Lq′(x)(I) � 1 . Using Proposition A and Lemmas 2 and 3 we find
that∫ 1

0
v(x)

( ∫ x

x/2
f (t)(x − t)α(x)−1dt

)
g(x)dx

� c
∑
k∈Z−

∫
Ek−1

v(x)‖χ(x/2,x)(·)f (·)‖Lp(·) (I)

× ‖χ(x/2,x)(·)(x − ·)α(x)−1‖Lp′(·)(I)g(x)dx

� c
∑
k∈Z−

‖χIk−1
(·)f (·)‖Lp(·)(I)

∫
Ek−1

v(x)xα(x)−1/p(x)g(x)dx

� c
∑
k∈Z−

‖χIk−1
(·)f (·)‖Lp(·)(I)

∥∥∥χEk−1
(x)v(x)xα(x)−1/p(x)

∥∥∥
Lq(x)(I)

× ‖χEk−1
(·)g(·)‖Lq′(·)(I)

� c2k/p′(0)
∑
k∈Z−

‖v(x)xα(x)−1χEk−1
(x)‖Lq(x)(I)‖χIk−1

(·)f (·)‖Lp(·) (I)

× ‖χEk−1
(·)g(·)‖Lq′(·)(I) � cAa‖f ‖Lp(·)(I)‖g‖Lq′(·)(I) � cAa‖f ‖Lp(·)(I).

Taking the supremum with respect to g we have the desired result.
Necessity. Let us take f k(x) = χ[0,2k−2](x) , where k ∈ Z− . Then by Proposition

A and Lemma 1 we have

‖f k‖Lp(·)(I) � c2k/(p′)+([0,2k+2]) � c2k/p′(0).

On the other hand,

‖Rα(x)f ‖Lq(x)
v (I) � C‖χEk−1

(x)v(x)xα(x)−1‖Lq(x)(I).

Here we used the estimate (x− t)α(x)−1 � cxα(x)−1 when x ∈ [2k−1, 2k] and t < 2k−2 .
Hence

A := sup
k∈Z−

Ak := sup
k∈Z−

‖χEk−1
(x)v(x)xα(x)−1‖Lq(x)(I)2

k/p′(0) � c‖Rα(x)‖.

Let us now take t ∈ I . Then t ∈ [2m−1, 2m) for some m ∈ Z− . Consequently,

A(t) �
0∑

k=m

‖χEk−1
(x)v(x)xα(x)−1‖Lq(x)(I)2

m/p′(0) � A2m
0∑

k=m

2−k/p′(0) � cA.
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Hence A < c‖Rα(x)‖ . �

Theorem 3.2. Let I = R+ and let 1 < p−(I) � p(x) � q(x) � q+(I) < ∞.
Suppose that (α − 1/p)−(I) > 0 . Further, assume that p, q ∈ WL(I) and that
q(x) ≡ qc = const, p(x) ≡ pc = const outside an interval [0, a] for some positive
number a . Then inequality (2) holds if and only if

A∞ := sup
t>0

A∞(t) := sup
t>0

∥∥∥χ(t,∞)(x)
v(x)

x1−α(x)

∥∥∥
Lq(x)(I)

t1/P′(t) < ∞,

where

P(t) =
{

p(0), 0 � t � a,

pc, t > a.

Moreover, there are positive constants c1 and c2 such that

c1A∞ � ‖Rα(x)‖Lp(x)(I)→Lq(x)
v (I) � c2A∞.

Proof. For the simplicity we assume that a = 1 .
First we prove sufficiency. Suppose that f � 0 . We have

‖Rα(x)f ‖Lq(x)
v (R+) � ‖Rα(x)f ‖Lq(x)

v ([0,2]) + ‖Rα(x)f ‖Lq(x)
v ((2,∞)) := I1 + I2.

Taking into account Theorem 3.1 we find that the condition A∞ < ∞ implies

I1 � cA∞‖f ‖Lp(x)([0,2]) � cA∞‖f ‖Lp(x)(I).

For I2 , we have

I2 �
∥∥∥∥v(x)

∫ 1

0
(x − t)α(x)−1f (t)dt

∥∥∥∥
Lq(x)((2,∞))

+
∥∥∥∥v(x)

∫ x/2

1
(x − t)α(x)−1f (t)dt

∥∥∥∥
Lq(x)((2,∞))

+
∥∥∥∥v(x)

∫ x

x/2
(x − t)α(x)−1f (t)dt

∥∥∥∥
Lq(x) ((2,∞))

:= I2,1 + I2,2 + I2,3.

Notice that when t � 1 and x � 2 , then (x− t)α(x)−1 � cxα(x)−1. Consequently, using
Hölder’s inequality we find that

I2,1 � c
∥∥∥v(x)xα(x)−1

∥∥∥
Lq(x)((2,∞))

‖f χ[0,1]‖Lp(·)(I)‖χ[0,1]‖Lp(·)(I)

� c
∥∥∥v(x)xα(x)−1

∥∥∥
Lq(x)([1,∞))

‖f ‖Lp(·)(R+) � cA∞‖f ‖Lp(·)(R+).

It is easy to see that the estimate (x − t)α(x)−1 � cxα(x)−1 and Theorem D implies

I2,2 � c
∥∥∥v(x)xα(x)−1

∫ x

1
f (t)dt

∥∥∥
Lq(x)([1,∞))

� cA∞‖f ‖Lq(x)([1,∞)) � cA∞‖f ‖Lq(x)(I),
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while Hölder’s inequality for classical Lebesgues spaces yields

(I2,3)qc � c

( +∞∑
k=1

∫
Ek

v(x)qcx(α(x)−1)qcdx

)( ∫
Ik

f pc(t)dt

)qc/pc

2k/(pc)′

� cAqc∞‖f ‖qc
Lp(·)(R+).

Necessity. Necessity follows in the same way as in the case of Theorem 3.1. In
this case we take the test functions f t(x) = χ(t/2,t)(x), t > 0 . The details are omitted.

�

COROLLARY. Let r and s be constants such that 1 < r � s < ∞ . Suppose that
α−(R+) > 1/r . Then Rα(x) is bounded from Lr(R+) to Ls(R+) if and only if

sup
t>0

( ∞∫
t

( v(x)
x1−α(x)

)s
dx

)1/s

t1/r′ < ∞, r′ = r/(r − 1).

Theorem 3.3. Let I := [0, a] , where a < ∞ . Suppose that p and q are
measurable functions on I and 1 < p−(I) � p0(x) � q(x) � q+(I) < ∞ . Suppose
also that α−(I) > 1/p−(I) . If

Ba := sup
0<t<a

Ba(t) := sup
0<t<a

∫ a

t
(v(x)xα(x)−1)q(x)tq(x)/(p0)′(x)dx < ∞,

then inequality (2) holds.

REMARK 1. The condition Ba < ∞ is also necessary for the boundedness of Rα(x)

from Lp([0, a]) to Lq
v([0, a]) for constant p and q . This follows immediately from

Theorem 3.1 taking p = const, q = const there.

Proof of Theorem 3.3. For the simplicity assume that a = 1 . Suppose that
Sp(·)(f ) � 1 , where f � 0 . We have

Sq(·),v(Rα(x)) � 2q−(I)−1

( ∫ 1

0

(
v(x)

∫ x/2

0
(x − y)α(x)−1f (y)dy

)q(x)

dx

+
∫ 1

0

(
v(x)

∫ x

x/2
(x − y)α(x)−1f (y)dy

)q(x)

dx

)
:= 2q−(I)−1(I1 + I2).

If 0 < y < x/2 , then (x− y)α(x)−1 � cxα(x)−1 , where the positive constant c does not
depend on x . Consequently, using Theorem C we find that

I1 �
∫ 1

0

(
v(x)(x/2)α(x)−1

∫ x

0
f (y)dy

)q(x)

dx � C.
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By Hölder’s inequality with respect to the exponent p0(x) we have

I2 �
∫ 1

0
(v(x))q(x)

( ∫ x

x/2
(f (y))p0(x)dy

)q(x)/p0(x)

×
( ∫ x

x/2
(x − y)(α(x)−1)(p0)′(x)dy

)q(x)/(p0)′(x)
dx.

Now observe that∫ x

x/2
f (y)p0(x)dy �

∫
[x/2,x]∩{f �1}

(f (y))p0(x)dy +
∫

[x/2,x]∩{f >1}
(f (y))p0(x)dy

� cx +
∫ x

x/2
(f (y))p(y)dy;

∫ x

x/2
(x − y)(α(x)−1)(p0)′(x)dy = cp,αx(α(x)−1)(p0)′(x)+1.

The latter equality holds because the condition α−(I) > 1/p−(I) guarantees α(x) >
1/p0(x) . Therefore

I2 � cp,q

( ∫ 1

0
(v(x))q(x)xq(x)α(x)dx

+
∫ 1

0
v(x)q(x)

( ∫ x

x/2
f (y)p(y)dy

)q(x)/p0(x)

x(α(x)−1)q(x)+q(x)/(p0)′(x)dx

)
:= cp,q(I2,1 + I2,2).

For I2,1 , we find that

I2,1 =
∑
k∈Z−

∫
Ek−1

v(x)q(x)x(α(x)−1)q(x)xq(x)dx

�
∑
k∈Z−

2kq−(I)/p+(I)
∫

Ek−1

v(x)q(x)x(α(x)−1)q(x)2(k−1)q(x)/(p0)′(x)dx

� cB
∑
k∈Z−

2kq−(I)/p+(I) � cB < ∞,

while taking into account the fact q(x)/p0(x) � 1 we have

I2,2 � c
∑
k∈Z−

∫
Ek−1

(v(x)xα(x)−1)q(x)
( ∫ x

x/2
(f (y))p(y)dy

)
xq(x)/(p0)′(x)dx

� c
∑
k∈Z−

(∫
Ek−1

(
v(x)xα(x)−1

)q(x)
2(k−1)q(x)/(p0)′(x)dx

)( ∫
Ik−1

(f (y))p(y)dy

)

� cBSp(·)(f ) � cB < ∞.

By combining the above estimates we find that also I2 < ∞ and the proof follows. �
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Theorem3.4. Let I := R+ . Suppose that p(x) and q(x) aremeasurable functions
on I and 1 � p−(I) � p0(x) � q(x) � q+(I) < ∞ . Suppose also that α−(I) >
1/p+(I) > 0 and there exists a positive number a such that q(x) ≡ qc = const,
p(x) ≡ pc = const outside [0, a] . If

B∞ := sup
0<t<∞

B∞(t) := sup
0<t<∞

∫ ∞

t
(v(x)xα(x)−1)q(x)tq(x)/(̃p0)′(x)dx < ∞, (3)

then Rα(x) is bounded from Lp(x)(I) to Lq(x)
v (I) .

REMARK 2. Notice that (3) is also necessary for the boundedness of Rα(x) from
Lp(R+) to Lq

v(R+) , where p and q are constants (see Corollary).

Proof of Theorem 3.4. Suppose that f � 0 and Sp(·)(f ) � 1 . For the simplicity
assume that a = 1 . We have

Sq(·),v(Rα(x)f ) =
∫ 2

0

(
v(x)

)q(x)(Rα f )q(x)(x)dx +
∫ ∞

2

(
v(x)

)q(x)(Rα(x)f )qc(x)dx

:= I1 + I2.

Since the condition B∞ < ∞ implies Ba < ∞ , by Theorem 3.3 we conclude that
I1 � c < ∞ , while for I2 , we have

I2 � c

( ∫ ∞

2
(v(x))qc

( ∫ 1

0
(x − y)α(x)−1f (y)dy

)qc

dx

+
∫ ∞

2
(v(x))qc

( ∫ x/2

1
(x − y)α(x)−1f (y)dy

)qc

dx

+
∫ ∞

2
(v(x))qc

( ∫ x

x/2
(x − y)α(x)−1f (y)dy

)qc

dx

)
:= c(I2,1 + I2,2 + I2,3).

Using Hölder’s inequality for Lebesgue spaces with variable exponent (see
Proposition A) we have

I2,1 � c
∫ ∞

2
(v(x))qc

( ∫ 1

0
(x − y)α(x)−1f (y)dy

)qc

dx

� c

( ∫ ∞

2
(v(x)(x/2)α(x)−1)qcdx

)
‖f ‖Lp(·)(I)‖χ[0,1]‖Lp′(·)(I) � cB1,

while Theorem C′ yields

I2,2 � c
∫ ∞

1

(
v(x)xα(x)−1

)qc

( ∫ x

1
f (y)dy

)qc

dx � cB∞.
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Now applying the condition α(x) > 1/(p0)′(x) we find that

I2,3 =
∞∑
k=1

∫
Ek

(v(x))qc

( ∫ x

x/2
f (y)(x − y)α(x)−1dy

)qc

dx

�
∞∑
k=1

∫
Ek

(v(x))qc

( ∫ x

x/2
(f (y))pcdy

)qc/pc( ∫ x

x/2
(x − y)(α(x)−1)(pc)′dy

)qc/(pc)′

� c
∞∑
k=1

( ∫
Ek

(v(x))qc (x/2)(α(x)−1)qc+qc/(pc)′dx

)( ∫
Ek

(f (y))p(y)dy

)

� cB∞
∞∑
k=1

∫
Ek

(f (y))p(y)dy � cB∞ < ∞.

Summarizing the estimates for I1 and I2 we have the desired result. �

4. Compactness

In this section we give the criteria for which the operator Rα(x) is compact from

Lp(·)(I) to Lq(·)
v (I) .

Integral-type necessary conditions and sufficient conditions governing the com-
pactness of the Hardy operator H from Lp(·)(I) to Lq(·)

v (I) were established in [10].
We refer also to [12] for the compactness of the potential-type operators in weighted
Lp(·) spaces with special weights.

To prove the main results we shall need the following statement which can be
found, e.g., in [12].

THEOREM G. Let p(x) and q(x) be measurable functions on an interval I ⊆ R+ .
Suppose that 1 < p−(I) � p+(I) < ∞ and 1 < q−(I) � q+(I) < ∞ . If∥∥∥‖k(x, y)‖Lp′(y)(I)

∥∥∥
Lq(x)(I)

< ∞,

where k is a non-negative kernel, then the operator

Kf (x) =
∫
I

k(x, y)f (y)dy

is compact from Lp(·)(I) to Lq(·)(I) .

Theorem 4.1. Let I = [0, a] , 0 < a < ∞ , and let 1 < p−(I) � p+(I) �
q−(I) � q+(I) < ∞. Suppose that (α − 1/p)−(I) > 0 . Further, assume that

p, q ∈ WL(I) . Then Iα(x) is compact from Lp(·)(I) to Lq(·)
v (I) if and only if

(i) Aa < ∞;

(ii) lim
t→0

Aa(t) = 0,

where Aa and Aa(t) are defined in Theorem 3.1 .
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Proof. Sufficiency. For the simplicity assume that a = 1 . We represent Rα(x) as
follows:

Rα(x)f (x) = R(1)
α(x)f (x) + R(2)

α(x)f (x),

where
R(1)
α(x)f (x) = χ[0,β ](x)Rα(x)f (x), R(2)

α(x)f (x) = χ(β ,1](x)Rα(x)f (x)

and 0 < β < 1. Observe that by Hölder’s inequality, Proposition A and Lemma 3 we
have the following estimates:∥∥∥χ(β ,1](x)v(x)

∥∥χ[0,x](y)(x − y)α(x)−1
∥∥

Lp′(y)(I)

∥∥∥
Lq(x)(I)

�
∥∥∥χ(β ,1](x)v(x)

∥∥χ[0,x/2](y)(x − y)α(x)−1
∥∥

Lp′(y)(I)

∥∥∥
Lq(x)(I)

+
∥∥∥χ(β ,1](x)v(x)

∥∥χ(x/2,x](y)(x − y)α(x)−1
∥∥

Lp′(y)(I)

∥∥∥
Lq(x) (I)

� c
∥∥χ(β ,1](x)v(x)xα(x)−1/p(x)

∥∥
Lq(x)(I) + c

∥∥χ(β ,1](x)v(x)xα(x)−1/p(x)
∥∥

Lq(x)(I) < ∞,

because A1 < ∞ . Consequently, by Theorem G, R(1)
α(x) is compact.

Further, according to Theorem 3.1 we have

‖Rα(x) − R(1)
α(x)‖Lq(·)(I)→Lq(·)

v (I) � ‖R(2)
α(x)‖Lp(·)(I)→Lq(·)

v (I) � c sup
0<t<β

A1(t),

where the positive constant c depends only on p , q and α . Passing β to 0 we have
that Rα(x) is compact as a limit of compact operators.

Necessity. Suppose that f t(x) = t−1/p(0)χ[0,t/2)(x) . Hence for all ϕ ∈ Lp′(x)(I) we
have ∣∣∣∣

∫ 1

0
f t(x)ϕ(x)dx

∣∣∣∣ � k(p)‖f t(·)‖Lp(·)(I)‖ϕ(·)χ[0,t/2)(·)‖Lp′(·)(I)

� ct−1/p(0)t1/p+([0,t/2])‖ϕ(·)χ[0,t/2)(·)‖Lp′(·)(I)

� c‖ϕ(·)χ[0,t/2)(·)‖Lp′(·)(I) → 0

as t → 0 . Hence, f t converges weakly to 0 as t → 0 . Further, it is obvious that

‖Rα(x)f t‖Lq(·)
v (I) �

∥∥∥χ[t,1)(x)v(x)
( ∫ t/2

0
(x − t)α(x)−1dt

)∥∥∥
Lq(·)(I)

t−1/p(0)

� ct−1/p′(0)
∥∥∥χ[t,1)(x)v(x)xα(x)−1

∥∥∥
Lq(x) (I)

.

Finally we conclude that limt→0 A1(t) = 0 because the compact operator maps weakly
convergent sequence into strongly convergent one. �

Theorem 4.2. Let I = R+ and let 1 < p−(I) � p(x) � q(x) � q+(I) < ∞.
Suppose that p(x) ≡ pc = const and q(x) ≡ qc = const when x > a for some positive
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constant a . Let (α − 1/p)−(I) > 0 . Further, assume that p, q ∈ WL(I) . Then Rα(x)

is compact from Lp(·)(I) to Lq(·)
v (I) if and only if

(i) A∞ < ∞;

(ii) lim
t→0

A∞(t) = lim
t→∞ A∞(t) = 0,

where A∞ and A∞(t) are defined in Theorem 3.2 .

Proof. For the simplicity assume that a = 1 . To prove sufficiency we use the
representation Rα(x)f =

∑5
n=1 R(n)

α(x)f , where

R(1)
α(x)f (x) = χ[0,β)(x)(Rα(x)f )(x),

R(2)
α(x)f (x) = χ[β ,γ )(x)Rα(x)(χ[0,β/2]f )(x),

R(3)
α(x)f (x) = χ[β ,γ )(x)Rα(x)(χ[β/2,∞)f )(x),

R(4)
α(x)f (x) = χ[γ ,∞)Rα(x)(χ[0,γ /2)f )(x),

R(5)
α(x)f (x) = χ[γ ,∞)(x)Rα(x)(χ[γ /2,∞)f )(x),

where 0 < β < 1/2 < 2 < γ < ∞ . Now observe that∥∥∥∥χ[β ,γ )(x)v(x)
∥∥∥χ[0,β/2)(y)(x − y)α(x)−1

∥∥∥
Lp′(y)(I)

∥∥∥∥
Lq(x)(I)

� c
∥∥∥χ[β ,γ )(x)v(x)xα(x)−1

∥∥∥
Lp′(x)(I)

∥∥∥χ[0,β/2)

∥∥∥
Lp′(·)(I)

< ∞

because A∞ < ∞. Further,∥∥∥∥χ[β ,γ )(x)v(x)
∥∥∥χ[β/2,∞)(y)(x − y)α(x)−1

∥∥∥
Lp′(y)(I)

∥∥∥∥
Lq(x)(I)

�
∥∥∥∥χ[β ,γ )(x)v(x)

∥∥∥χ[β/2,x/2)(y)(x − y)α(x)−1
∥∥∥

Lp′(y)(I)

∥∥∥∥
Lq(x)(I)

+
∥∥∥∥χ[β ,γ )(x)v(x)

∥∥∥χ[x/2,x)(y)(x − y)α(x)−1
∥∥∥

Lp′(y)(I)

∥∥∥∥
Lq(x)(I)

:= I1 + I2.

It is easy to see that

I1 � c
∥∥∥χ[β ,γ )(x)v(x)xα(x)−1

∥∥∥
Lq(x)(I)

∥∥∥χ[β/2,γ /2)(·)
∥∥∥

Lp′(·)(I)
< ∞.

Using the condition p ∈ WL(I) and Lemma 3 we shall see that I2 < ∞ . Besides∥∥∥∥χ[γ ,∞)(x)v(x)
∥∥∥χ[0,γ /2)(y)(x − y)α(x)−1

∥∥∥
Lp′(y)(I)

∥∥∥∥
Lq(x)(I)

�
∥∥∥χ[γ ,∞)(x)v(x)xα(x)−1

∥∥∥
Lq(x)(I)

∥∥∥χ[0,γ /2)(·)
∥∥∥

Lp′(·)(I)
< ∞
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since A∞ < ∞ . Applying Theorem 3.1 we see that

‖R(1)
α(x)‖Lp(·)(I)→Lq(·)(I) = ‖Rα(x)‖Lp(·)([0,β))→Lq(·)([0,β)) � c sup

0<t<β
A∞(t) → 0

as β → 0 .
Arguing as in the proof of sufficiency of Theorem 3.2 (see also Theorem F for

constant α ), we see that the inequality

∥∥∥R(5)
α(x)f (x)

∥∥∥
Lp(x)([γ ,∞))→Lq(x)([γ ,∞))

� c sup
t>γ /2

(∫ ∞

t
(v(x))qcxα(x)−1dx

)1/qc

(t − γ )1/(pc)′

holds. The latter term tends to 0 when γ → ∞ because limt→∞ A∞(t) = 0 . Finally
we conclude that Rα(x) is compact.

Necessity. The condition A∞ < ∞ is a consequence of Theorem 3.2. The fact
lim
t→0

A∞(t) follows in the same manner as in the proof of necessity of Theorem 4.1. To

show that lim
t→∞A∞(t) = 0 we argue as above using the facts that p and q are constants

outside [0, a] and Rα(x) is compact from Lp(·)(I) to Lq(·)
v (I) if and only if the operator

Wα,vf (x) =
∫ ∞

x
v(y)f (y)(y − x)α(y)−1dy

is compact from Lq′(x)(I) to Lp′(x)(I). �
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[27] A. KUFNER AND L.-E. PERSSON, Weighted inequalities of Hardy type, World Scientific Publishing Co.,
Inc., River Edge, NJ, 2003.

[28] M. LORENTE AND A. DE LA TORRE, Weighted inequalities for some one–sided operators, Proc. Amer.
Math. Soc. 124(1996), 839–848.

[29] F. J. MARTIN-REYES AND E. SAWYER, Weighted inequalities for Riemann–Liouville fractional integrals
of order one and greater, Proc. Amer. Math. Soc. 106(1989), 727–733.

[30] V. G. MAZ’YA, Sobolev spaces, Springer, Berlin, 1985.
[31] A. MESKHI, Solution of some weight problems for the Riemann-Liouville and Weyl operators, Georgian

Math. J. 5(1998), No. 6, 565–574.
[32] A. MESKHI, Criteria for the boundedness and compactness of integral transforms with positive kernels,

Proc. Edinb. Math. Soc., 44(2), 267–284(2001).
[33] J. MUSIELAK, Orlicz spaces and modular spaces, Lecture Notes in Math., 1034, Berlin, 1983.
[34] J. MUSIELAK AND W. ORLICZ, On modular spaces, Studia Math. 18(1959), 49–65.

[35] A. NEKVINDA, Hardy-Littlewood maximal operator on Lp(·)(Rn) , Math. Ineq. Appl. 7 (2004), No. 2,
255–265.

[36] B. OPIC AND A. KUFNER, Hardy-type inequalities, Pitman Research Notes in Math. Series 219, Longman
Sci. and Tech. Harlow, 1990.

[37] W. ORLICZ, Uber konjugierte exponentenfolgen, Studia Math. 3(1931), 200–211.
[38] D. V. PROKHOROV, On the boundedness of a class of integral operators, J. London Math. Soc., 61(2000),

No. 2, 617–628.



TRACE INEQUALITY FOR RIEMANN-LIOUVILLE TRANSFORM 81

[39] S. SAMKO, Convolution type operators in Lp(x) , Integral Transforms Spec. Funct. 7(1998), No. 1-2,
123–144.

[40] S. SAMKO, Convolution type operators in Lp(x)(Rn) , Integral Transforms Spec. Funct. 7(1998), No. 3-4,
261–284.

[41] S. SAMKO, Ona progress in the theory of Lebesgue spaces with variable exponent: maximal and singular
operators, Integral Transforms Spec. Funct. 16(2005), No. 5-6, 461–482.

[42] S. SAMKO, E. SHARGORODSKY AND B. VAKULOV, Weighted Sobolev theorem with variable exponent for
spatial and spherical potential operators II, J. Math. Anal. Appl. 325 (2007), No. 1, 745–751.

[43] S. SAMKO AND B. VAKULOV, Weighted Sobolev theorem with variable exponent, J. Math. Anal. Appl.
310 (2005), 229–246.

[44] E. T. SAWYER, A characterization of a two-weight norm inequality for maximal operators, Studia Math.
75(1982), 1–11.

[45] E. T. SAWYER AND R. L. WHEEDEN, Carleson conditions for the Poisson integrals, Indiana Univ. Math.
J. 40 (1991), No. 2, 639–676.

[46] E. T. SAWYER, R. L. WHEEDEN AND S. ZHAO, Weighted norm inequalities for operators of potential
type and fractional maximal functions, Potential Analysis, 5 (1996), 523–580.

[47] V. STEPANOV, Two-weight estimates for the Riemann-Liouville operators, (Russian) Izv. Akad. Nauk
SSSR., 54(1990), No. 3, 645–656.

[48] I. I. SHARAPUDINOV, The topology of the space L p(t)([0, 1]) , (Russian) Mat. Zametki 26, No. 4,
613–632 (1979).

(Received April 2, 2008) U. Ashraf
Abdus Salam School of Mathematical Sciences

GC University
Lahore

Pakistan
e-mail: gondalusman@yahoo.com

V. Kokilashvili
A. Razmadze Mathematical Institute

1. M. Aleksidze St.
0193 Tbilisi

Georgia
e-mail: kokil@rmi.acnet.ge

A. Meskhi
A. Razmadze Mathematical Institute

1. M. Aleksidze St.
0193 Tbilisi

Georgia
e-mail: meskhi@rmi.acnet.ge

Mathematical Inequalities & Applications
www.ele-math.com
mia@ele-math.com


