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OPERATOR OF FUNCTIONS ON THE SPHERE
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Abstract. This paper undertakes the construction of fractal versions of the classical spherical
harmonics. Some inequalities satisfied by the coefficients of the iterated function systems defin-
ing the fractal functions provide sufficient conditions for the existence of new Hilbert bases of
functions on the sphere. This fact confirms their properties of good approximation. The method-
ology used implies the definition of an operator mapping standard functions into their fractal
analogues. The transformation is linear and bounded and some upper bounds of its norm are
also established.

1. Introduction

The study of sherical signals has important applications nowadays in climatology,
celestial mechanics, satellite technology, etc. Freeden et al., in the reference [6], won-
der about the suitability of using smooth functions to model less smooth variables as,
for instance, geostrophic flows and they solve the question appealing to the theorem of
extension of Helly. We approach the same problem from a different perspective and
we define fractal versions of the spherical harmonics by means of fractal interpolation.
This type of approximation does not imply the use of smooth functions. If an order
of regularity is required to solve a given problem, one must impose specific additional
conditions to the system (see for instance [3], [11]).

In this paper, we assign a fractal analogue for every function with integrable square
on the sphere. This association is performed via a linear and bounded operator. The
text studies the properties of the transformation and, in particular, some upper bounds
of its norm are established.

Other inequalities satisfied by the coefficients of the iterated function system defin-
ing the fractal functions become a key in order to provide Hilbert bases of functions on
the sphere.
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2. α -Fractal functions

Let t0 < t1 < ... < tN be real numbers, and I = [t0,tN ] = [a,b] the closed interval
that contains them. Let a set of data points {(tn,xn)∈ I×R : n = 0,1,2, ...,N} be given.
Set In = [tn−1, tn] and let Ln : I → In, n∈ {1,2, ...,N} be contractive homeomorphisms
such that:

Ln(t0) = tn−1, Ln(tN) = tn (1)

|Ln(c1)−Ln(c2)| � l |c1 − c2| ∀ c1,c2 ∈ I (2)

for some 0 � l < 1.
Let F = I×R and N continuous mappings, Fn : F → R , be given satisfying:

Fn(t0,x0) = xn−1, Fn(tN ,xN) = xn, n = 1,2, ...,N (3)

|Fn(t,x)−Fn(t,y)| � r|x− y|, t ∈ I, x,y ∈ R, 0 � r < 1. (4)

Now define functions wn(t,x) = (Ln(t),Fn(t,x)), ∀ n = 1,2, ...,N .

THEOREM 2.1. (Barnsley [1]) The Iterated Function System (IFS) {F, wn :
n = 1,2, ...,N} defined above admits a unique attractor G. G is the graph of a contin-
uous function g : I → R which obeys g(tn) = xn for n = 0,1,2, ...,N .

The previous function is called a Fractal Interpolation Function (FIF) correspond-
ing to {(Ln(t),Fn(t,x))}N

n=1 . The map g is unique satisfying the functional equation
([1]):

g(t) = Fn(L−1
n (t),g ◦L−1

n (t)), n = 1,2, ...,N, t ∈ In = [tn−1,tn]. (5)

The most widely studied fractal interpolation functions so far are defined by the
IFS {

Ln(t) = ant +bn

Fn(t,x) = αnx+qn(t)
(6)

where −1 < αn < 1, ∀n = 1,2, . . . ,N . αn is called a vertical scaling factor of the
transformation wn and α = (α1,α2, . . . ,αN) is the scale vector of the IFS. Following
the equalities (1),

an =
tn− tn−1

tN − t0
, bn =

tNtn−1− t0tn
tN − t0

. (7)

Let f ∈ C (I) be a continuous function. We consider the case

qn(t) = f ◦Ln(t)−αnb(t) (8)

where b is continuous and such that b(t0) = x0 ; b(tN) = xN .
It is easy to check that the condition (3) is fulfilled. The set of data points is here
{(tn,xn = f (tn)) ∈ I × R : n = 0,1,2, ...,N} . Using this IFS one can define fractal
analogues of any continuous function (see Fig. 1 and 2, and references [9], [10]).

In particular, we consider in this paper the case

b = v f (9)
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where v : I → R is fixed, continuous, v(t0) = v(tN) = 1 and v(t) non-constant. If we
consider the norm (in the space of continuous functions C (I)):

‖ f‖L 2 = (
∫ b

a
| f |2dt)1/2 (10)

then

‖v f‖L 2 = (
∫ b

a
|v f |2dt)1/2 � ‖v‖∞‖ f‖L 2 (11)

where

‖v‖∞ = max{|v(t)| : t ∈ I}. (12)

DEFINITION 2.2. Let Δ : a = t0 < t1 < .. . < tN = b , where N > 1, be a partition
of the interval I = [a,b] . A scale vector associated to Δ is an α ∈ (−1,1)N .

DEFINITION 2.3. Let f α be the continuous function defined by the IFS (6), (7),
(8) and (9). f α is called α -fractal function associated to f with respect to b = v f and
the partition Δ .

According to (5), f α satisfies the fixed point equation:

f α (t) = f (t)+αn( f α − v f )◦L−1
n (t), ∀t ∈ In. (13)

f α interpolates to f at tn as, using (1), (13) and Barnsley’s theorem:

f α (tn) = f (tn)+αn( f α − v f )(tN) = f (tn), ∀n = 0,1, . . . ,N. (14)

Let us call α -fractal operator V α = V α
Δ with respect to Δ , to the transformation

which assigns f α to the function f (V α( f ) = f α ).

THEOREM 2.4. (a) V α : C [a,b]→ C [a,b] is linear and bounded with respect to
the L 2 -norm.
(b) If α = 0 , V α = Identity .
(c) The following inequalities hold

‖V α‖2 � 1+ |α|∞‖v‖∞
1−|α|∞ , (15)

‖I−V α‖2 � (1+‖v‖∞)|α|∞
1−|α|∞ (16)

where |α|∞ = max{|αn| : n = 1,2, . . . ,N} and ‖V α‖2 is the norm of the operator V α

defined as

‖V α‖2 = max{‖V α( f )‖L 2 : ‖ f‖L 2 = 1, f ∈ C [a,b]}.
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Proof. (a) The linearity is proved as in [9] and [10]. The item (b) is deduced from
(13). For the boundness, let us consider, according to the equation (13),

‖V α( f )− f‖2
L 2 =

N

∑
n=1

∫ tn

tn−1

|αn|2|(V α( f )− v f )◦L−1
n (t)|2dt.

The change of variable t̃ = L−1
n (t) provides

‖V α( f )− f‖2
L 2 =

N

∑
n=1

an|αn|2
∫ b

a
|(V α( f )− v f )(t̃)|2dt̃,

‖V α( f )− f‖2
L 2 =

N

∑
n=1

an|αn|2‖V α( f )− v f‖2
L 2 , (17)

‖V α( f )− f‖2
L 2 � |α|2∞ ‖V α( f )− v f‖2

L 2

N

∑
n=1

an, (18)

but if T = b−a , using (7),

N

∑
n=1

an =
1
T

N

∑
n=1

(tn − tn−1) = 1 (19)

then
‖V α( f )− f‖L 2 � |α|∞ ‖V α( f )− v f‖L 2 , (20)

‖V α( f )− f‖L 2 � |α|∞ (‖V α( f )− f‖L 2 +‖ f − v f‖L 2) (21)

and

‖V α( f )− f‖L 2 � |α|∞
1−|α|∞ ‖ f − v f‖L 2 . (22)

Moreover,

‖V α( f )‖L 2 −‖ f‖L 2 � ‖V α( f )− f‖L 2 � |α|∞
1−|α|∞ ‖ f − v f‖L 2 (23)

according to (10),

‖V α( f )‖L 2 −‖ f‖L 2 � ‖V α( f )− f‖L 2 � |α|∞
1−|α|∞ (1+‖v‖∞)‖ f‖L 2 . (24)

As a consequence,

‖V α‖2 � 1+
|α|∞

1−|α|∞ (1+‖v‖∞) =
1+ |α|∞‖v‖∞

1−|α|∞ (25)

where ‖V α‖2 is the norm of the operator with respect to the L 2 -norm in C [a,b] .
Using (24),

‖I−V α‖2 � (1+‖v‖∞)|α|∞
1−|α|∞ . (26)

Consequence: According to Theorem 2.4 (b), the collection of maps f α consti-
tutes a family of continuous functions containing f as a particular case (for α = 0).
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LEMMA 2.5. ([8]) If L is a linear operator from a Banach space into itself such
that ‖L‖ < 1 , then (I−L)−1 exists and is bounded. Moreover,

(I−L)−1 = I +L+L2 + . . . (27)

THEOREM 2.6. If |α|∞ < 1/(2+‖v‖∞) , V α has a bounded inverse and

‖(V α)−1‖2 � 1+ |α|∞
1−|α|∞‖v‖∞ . (28)

Proof. According to the inequality (26) and the hypothesis given

‖I−V α‖2 < 1. (29)

The previous lemma assures that V α = I − (I −V α) has a bounded inverse. Let us
denote f α = V α( f ) . In this case, the inequality (20) implies that ∀ f ,

‖ f‖L 2 � |α|∞ ‖ f α − v f‖L 2 +‖ f α‖L 2 , (30)

‖ f‖L 2 � |α|∞ (‖ f α‖L 2 +‖v‖∞‖ f‖L 2)+‖ f α‖L 2 , (31)

(1−|α|∞‖v‖∞)‖ f‖L 2 � (1+ |α|∞)‖ f α‖L 2 . (32)

By hypothesis

|α|∞ <
1

2+‖v‖∞ <
1

‖v‖∞
and

1−|α|∞‖v‖∞ > 0

then (32)

‖ f‖L 2 � 1+ |α|∞
1−|α|∞‖v‖∞ ‖ f α‖L 2 (33)

and the inequality (28) is proved.

3. A fractal operator of L 2(S)

3.1. Fractal spherical harmonics

A homogeneous polynomial V of degree n in the variables x,y,z satisfying the
Laplace equation ΔV = 0 is called a Laplace or harmonic polynomial of degree n . If
we consider spherical coordinates (ρ ,θ ,ϕ) for P ∈ R3 and

ξ = sin(ϕ)cos(θ ); η = sin(ϕ)sin(θ ); ζ = cos(ϕ)

(θ is the longitude and ϕ is the colatitude), then

V (x,y,z) = ρnV (ξ ,η ,ζ )
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The function

Y (θ ,ϕ) = V (sin(ϕ)cos(θ ),sin(ϕ)sin(θ ),cos(ϕ))

is called the Laplace function or spherical harmonic of order n .
Two spherical harmonics of different degree (or order) are orthogonal over the sphere:

∫
S
Yn(P)Ym(P)dS = 0; n �= m

where dS is the element of area of the sphere S . It is well known that the set of spheri-
cal harmonics of order n , Hn , is a linear subspace of the functions on the sphere with
dimension 2n+1, and one of its orthogonal bases is:

⎧⎨
⎩

U0
n (Q) = Pn(cosϕ)

Um
n (Q) = Pm

n (cosϕ)cos(mθ )
Vm

n (Q) = Pm
n (cosϕ)sin(mθ )

(34)

if Q = (θ ,ϕ) , m = 1,2, . . . ,n . Pn is the n -th Legendre polynomial and Pm
n is the

Ferrers or associated Legendre polynomial of degree n and order m defined as ([13])

Pm
n (t) = (1− t2)

m
2 P(m)

n (t)

for m = 1,2, . . . ,n . These polynomials satisfy the equalities ([13]):

∫ 1

−1
Pm

n (t)Pm
r (t)dt = 0, n �= r,

∫ 1

−1
(Pm

n (t))2dt =
2

2n+1
(n+m)!
(n−m)!

.

The family

{U0
n ,Um

n ,Vm
n ;n = 0,1,2, . . . ,m = 1,2, . . . ,n}

is an orthogonal and complete system of L 2(S) . As a consequence, there is an or-
thonomal basis {Ynk} of spherical harmonics and every f ∈ L 2(S) can be expressed
as

f =
∞

∑
n=0

2n

∑
k=0

cnkYnk.

The expansion of a function f ∈L 2(S) in terms of the elements of this system is called
sometimes Laplace series of f .

In the following we extend the operator V α to the functions on the sphere S⊂ R3 .
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Figure 1. Graph of the associated Legendre polynomial P2
3 of degree 3 and order 2.

LEMMA 3.1. ∀n = 0,1, . . . ; ∀m = 1,2, . . . ,n,

‖U0
n ‖L 2(S) =

√
2π‖Pn‖L 2 ,

‖Um
n ‖L 2(S) = ‖Vm

n ‖L 2(S) =
√
π‖Pm

n ‖L 2 .

Proof. For instance ([13]),

‖Um
n ‖2

L 2(S) =
∫ 2π

0

∫ π

0
|Pm

n (cosϕ)|2 cos2(mθ )sin(ϕ)dϕdθ ,

‖Um
n ‖2

L 2(S) = π
∫ 1

−1
|Pm

n (t)|2dt = π‖Pm
n ‖2

L 2 .
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Figure 2. Graph of the α -fractal function of the associated Legendre polynomial P2
3

of degree 3 and order 2, Δ : −1 < −3/5 < −1/5 < 1/5 < 3/5 < 1,
v(t) = (12+24t −11t2 −24t3) and αn = 0.3 ∀n = 1, . . . ,5.

PROPOSITION 3.2. There exists an operator S α
n : Hn → L 2(S) , where Hn is

the space of spherical harmonics of order n, linear, injective and such that

‖S α
n ‖2 � ‖V α‖2 (35)
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where ‖ · ‖2 is the operator norm with respect to the norm ‖ · ‖L 2(S) defined as

‖ f‖L 2(S) = (
∫

S
f 2(P)dS)1/2

and V α is the operator of C [a,b] studied in the previous section.

Proof. Let us start defining the image of the elements of the basis:

(U0
n )α (θ ,ϕ) = S α

n (U0
n )(θ ,ϕ) = Pα

n (cosϕ),
(Um

n )α (θ ,ϕ) = S α
n (Um

n )(θ ,ϕ) = (Pm
n )α(cosϕ)cos(mθ ),

(Vm
n )α (θ ,ϕ) = S α

n (Vm
n )(θ ,ϕ) = (Pm

n )α(cosϕ)sin(mθ ),

where (Pm
n )α(cosϕ) = V α(Pm

n )(cosϕ) and V α is the operator defined in Section 2.
We consider here the interval I = [−1,1] and any partition Δ of I in order to define the
fractal analogues. By linearity we can extend S α

n to the rest of Hn in obvious way.
Let us denote

H α
n = S α

n (Hn).

H α
n is spanned by {(U0

n )α ,(Um
n )α ,(Vm

n )α ;m = 1,2, . . . ,n} . These fractal elements are
mutually orthogonal as well. For instance,

((Um
n )α ,(U j

n )α )L 2(S)=
∫ 2π

0

∫ π

0
(Pm

n )α(cosϕ)(Pj
n )α(cosϕ)cos(mθ )cos( jθ )sinϕdϕdθ=0

if m �= j , due to the orthogonality of cos(mθ ),cos( jθ ) . Using arguments similar to
those of Lemma 3.1,

‖(Um
n )α‖L 2(S) =

√
π‖(Pm

n )α‖L 2 �
√
π‖V α‖2‖Pm

n ‖L 2 .

Using the same Lemma

‖(Um
n )α‖L 2(S) � ‖V α‖2‖Um

n ‖L 2(S). (36)

In the same way,
‖(Vm

n )α‖L 2(S) � ‖V α‖2‖Vm
n ‖L 2(S). (37)

For an arbitrary element Yn of Hn

Yn = an0U
0
n +

n

∑
m=1

(anmUm
n +bnmVm

n ),

S α
n (Yn) = an0(U0

n )α +
n

∑
m=1

(anm(Um
n )α +bnm(Vm

n )α ).

The orthogonality of (Um
n )α ,(Vm

n )α implies that

‖S α
n (Yn)‖2

L 2(S) = ‖an0(U0
n )α‖2

L 2(S) +
n

∑
m=1

(‖anm(Um
n )α‖2

L 2(S) +‖bnm(Vm
n )α‖2

L 2(S))
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applying (36) and (37)

‖S α
n (Yn)‖2

L 2(S) � ‖V α‖2
2(‖an0U

0
n ‖2

L 2(S) +
n

∑
m=1

(‖anmUm
n ‖2

L 2(S) +‖bnmVm
n ‖2

L 2(S))),

‖S α
n (Yn)‖2

L 2(S) � ‖V α‖2
2‖Yn‖2

L 2(S),

(due to the orthogonality of the classical basis). As a consequence S α
n is bounded and

‖S α
n ‖2 � ‖V α‖2.

Additionally, since the system {(U0
n )α ,(Um

n )α ,(Vm
n )α ;m = 1,2, . . . ,n} is orthogonal

and thus linearly independent, the operator S α
n is injective.

PROPOSITION 3.3. H α
n = S α

n (Hn) is a reproducing kernel space.

Proof. Let us consider an orthonormal basis of H α
n composed by α -fractal func-

tions {Xα
nk; j = 0,1, . . . ,2n} . Let us define Hα : S×S → R such that ∀(P,Q) ∈ S×S

Hα(P,Q) =
2n

∑
k=0

Xα
nk(P)Xα

nk(Q)

(here Hα is only a notation and not a linearly transformed of H ). It is evident that

Xα
nk(P) =

∫
S
Hα(P,Q)Xα

nk(Q)dQ

consequently Hα reproduces every element of H α
n , that is to say, ∀ f ∈ H α

n ,

f (P) =
2n

∑
k=0

cnkX
α
nk(P) =

2n

∑
k=0

cnk

∫
S
Hα(P,Q)Xα

nk(Q)dQ =
∫

S
Hα(P,Q) f (Q)dQ.

COROLLARY 3.4. The point evaluation functional Fp( f ) = f (P) , for P ∈ S , is
linear and bounded in H α

n . Its Riesz representer is Hα(P, ·) and

‖FP‖2 = ‖Hα(P, ·)‖L 2(S). (38)

Proof. According to the previous proposition, ∀ f ∈ H α
n ,

FP( f ) = f (P) = ( f ,Hα (P, ·))L 2(S). (39)

The boundedness of FP follows from the application of the Cauchy-Schwarz inequality
to the inner product in (39). The Riesz representer of FP is Hα(P, ·) and the equality
(38) follows from the theory of Hilbert spaces.
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LEMMA 3.5. ([8]) Let M be a dense set in a Banach space E . Then, each element
y ∈ E , y �= 0 , can be expressed as

y =
∞

∑
k=1

yk (40)

so that yk ∈ M and

‖yk‖ � 3‖y‖
2k .

THEOREM 3.6. There exists an operator S α : L 2(S)→L 2(S) linear and bounded
such that S α restricted to Hn is S α

n . Moreover,

‖S α‖2 � 3‖V α‖2. (41)

Proof. The spherical harmonics are dense in C (S) with respect to the uniform
norm ([7], [12]). Since S is compact, the set is dense with respect to the L 2 -norm.
At the same time, the continuous functions are dense in L 2(S) (consider, for instance,
the n -th sums of the Laplace series to approximate an element of L 2(S)). Let us
apply the previous Lemma for M = H , set of spherical harmonics of any order, and
E = L 2(S) . Any f ∈ L 2(S) , f �= 0, can be expressed as

f =
∞

∑
k=1

Yk (42)

so that Yk ∈ Hnk and

‖Yk‖L 2(S) �
3‖ f‖L 2(S)

2k .

Let us define

S α( f ) =
∞

∑
k=1

S α
nk

(Yk) (43)

where S α
nk

is the operator defined in Proposition 3.2 such that

‖S α
nk
‖2 � ‖V α‖2.

The expansion of f ∈L 2(S) with respect to an orthonormal basis of sherical harmonics
is unique and thus, the sum (42) is unique. Therefore S α does not depend on the
choice of Yk . Let us see that the sum is convergent,

‖S α
nk

(Yk)‖L 2(S) � ‖V α‖2‖Yk‖L 2(S) � ‖V α‖2
3‖ f‖L 2(S)

2k .

Since the series on the right hand side is convergent, the sum

∞

∑
k=1

S α
nk

(Yk)
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is absolutely convergent. In a Banach space the absolute convergence implies conver-
gence ([5]). As a consequence S α is well defined.

Moreover,

‖S α( f )‖L 2(S) �
∞

∑
k=1

‖S α
nk

(Yk)‖L 2(S) � ‖V α‖2

∞

∑
k=1

3‖ f‖L 2(S)

2k

and ∀ f ∈ L 2(S) ,
‖S α( f )‖L 2(S) � 3‖V α‖2‖ f‖L 2(S).

As a consequence,
‖S α‖2 � 3‖V α‖2.

If Y ∈ Hn , the sum (42) consists of a single term and using (43),

S α(Y ) = S α
n (Y ),

therefore the restriction of S α to Hn is S α
n .

An immediate consequence of this theorem is

COROLLARY 3.7. If

f =
∞

∑
n=0

2n

∑
k=0

cnkYnk

in L 2 -sense, then

S α( f ) =
∞

∑
n=0

2n

∑
k=0

cnkS
α(Ynk)

(in the same sense).

Proof. The result follows from the linearity and continuity of S α .
Let us define the function on the sphere V : S → R given in sherical coordinates

as V (θ ,ϕ) = v(cosϕ) , where v(t) is the continuous mapping, v : I → R , described in
former sections. It is clear that ∀ f ∈ L 2(S) ,

‖V f‖L 2(S) � ‖V‖C (S)‖ f‖L 2(S) = ‖v‖∞‖ f‖L 2(S). (44)

LEMMA 3.8.

‖S α(Um
n )−Um

n ‖L 2(S) � |α|∞‖S α(Um
n )−VUm

n ‖L 2(S),

‖S α(Vm
n )−Vm

n ‖L 2(S) � |α|∞‖S α(Vm
n )−VVm

n ‖L 2(S).

Proof. The theorem 3.6 implies that, for instance,

S α(Um
n )(θ ,ϕ) = (Um

n )α(θ ,ϕ) = (Pm
n )α(cosϕ)cos(mθ )
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then

‖S α(Um
n )−Um

n ‖2
L 2(S) =

∫ 2π

0

∫ π

0
|((Pm

n )α −Pm
n )(cosϕ)|2 cos2 mθ sinϕdϕdθ

= π
∫ 1

−1
|((Pm

n )α −Pm
n )(t)|2dt

= π‖(Pm
n )α −Pm

n ‖2
L 2

� π |α|2∞‖(Pm
n )α − vPm

n ‖2
L 2

(using (20)). On the other hand,

‖S α(Um
n )−VUm

n ‖2
L 2(S) =

∫ 2π

0

∫ π

0
|((Pm

n )α − vPm
n )(cosϕ)|2 cos2 mθ sinϕdϕdθ

= π
∫ 1

−1
|((Pm

n )α − vPm
n )(t)|2dt = π‖(Pm

n )α − vPm
n ‖2

L 2 .

These expressions imply that

‖S α(Um
n )−Um

n ‖2
L 2(S) � |α|2∞‖S α(Um

n )−VUm
n ‖2

L 2(S).

PROPOSITION 3.9. ∀ f ∈ L 2(S) ,

‖S α( f )− f‖L 2(S) � |α|∞‖S α( f )−V f‖L 2(S)

and

‖S α( f )− f‖L 2(S) � |α|∞
1−|α|∞ (1+‖v‖∞)‖ f‖L 2(S). (45)

Proof. Let us begin proving the inequality for a spherical harmonic Y ∈ Hn . If
{Ynk;k = 0, . . . ,2n} is the basis of spherical harmonics of Hn ,

Y =
2n

∑
k=0

cnkYnk

The orthogonality of {(Yα
nk −Ynk)}2n

k=0 implies that

‖S α(Y )−Y‖2
L 2(S) =

2n

∑
k=0

|cnk|2‖Yα
nk −Ynk‖2

L 2(S) � |α|2∞
2n

∑
k=0

|cnk|2‖Yα
nk −VYnk‖2

L 2(S)

(applying Lemma 3.8). The orthogonality of the elements coskθ ,cosrθ or coskθ ,sin rθ
implies that of Yα

nk −VYnk,Yα
nr −VYnr for k �= r . In this case,

‖S α(Y )−Y‖2
L 2(S) � |α|2∞‖S α(Y )−VY‖2

L 2(S). (46)

For a general f ∈ L 2(S) , let us consider a sequence Ym of spherical harmonics
such that limYm = f in the L 2 -norm (see the beginning of the proof of Theorem 3.6)
and thus lim‖Ym− f‖L 2(S) = 0. Then lim VYm = V f .
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The continuity of S α and that of the norm imply that

‖S α( f )− f‖2
L 2(S) = lim‖S α(Ym)−Ym‖2

L 2(S).

Applying this equality and (46) for Y = Ym ,

‖S α( f )− f‖2
L 2(S) = lim‖S α(Ym)−Ym‖2

L 2(S) � |α|2∞ lim‖S α(Ym)−VYm‖2
L 2(S)

and we obtain the first inequality of the Proposition:

‖S α( f )− f‖L 2(S) � |α|∞‖S α( f )−V f‖L 2(S).

Moreover,

‖S α( f )− f‖L 2(S) � |α|∞‖S α( f )−V f‖L 2(S)

� |α|∞(‖S α( f )− f‖L 2(S) +‖ f −V f‖L 2(S)),

therefore, using (44),

‖S α( f )− f‖L 2(S) � |α|∞‖S α( f )− f‖L 2(S) + |α|∞(1+‖v‖∞)‖ f‖L 2(S),

and the second inequality is obtained.

THEOREM 3.10. If |α|∞ < ‖v‖−1
∞ , the range of S α is closed.

Proof. By hypothesis
|α|∞ < ‖v‖−1

∞

and
1−|α|∞‖v‖∞ > 0. (47)

According to the first result of the previous Proposition, ∀ f ∈ L 2(S) ,

‖ f‖L 2(S)−‖S α( f )‖L 2(S) � |α∞|‖S α( f )−V f‖L 2(S) (48)

moreover (44),

‖S α( f )−V f‖L 2(S) � ‖S α( f )‖L 2(S) +‖v‖∞‖ f‖L 2(S). (49)

From (48), and applying (49),

‖S α( f )‖L 2(S) � ‖ f‖L 2(S)−|α|∞‖S α( f )−V f‖L 2(S),

‖S α( f )‖L 2(S) � ‖ f‖L 2(S) −|α|∞‖S α( f )‖L 2(S)−|α|∞‖v‖∞‖ f‖L 2(S),

and
(1−|α|∞‖v‖∞)

1+ |α|∞ ‖ f‖L 2(S) � ‖S α( f )‖L 2(S). (50)
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In order to prove the closure of the range of S α we consider a sequence S α( fn)
convergent, S α( fn) → g . The original { fn} ⊂ L 2(S) is Cauchy because, due to the
linearity of S α , (47) and (50),

‖ fn − fm‖L 2(S) � 1+ |α|∞
(1−|α|∞‖v‖∞)

‖S α( fn)−S α( fm)‖L 2(S) (51)

thus, the Cauchy property of S α( fn) is inherited by fn . As a consequence fn is
convergent. Let us consider, f = lim fn . The continuity of S α provides S α( f ) =
limS α( fn) = g and g belongs to the range of S α .

COROLLARY 3.11. If |α|∞ < ‖v‖−1
∞ ,

L 2(S) = rgS α ⊕
ker(S α)∗, (52)

where (S α)∗ is the adjoint operator of S α .

Proof. For a bounded and linear operator of a Hilbert space, the following orthog-
onal decomposition is satisfied,

L 2(S) = rgS α
⊕

ker(S α)∗. (53)

In this case the range of the operator is closed and the result is obtained.

COROLLARY 3.12. If |α|∞ < ‖v‖−1
∞ , there exists a solution in f for the equation

S α( f ) = f̃ if and only if f̃ is orthogonal to ker(S α)∗ .

Proof. It is a trivial consequence of the previous corollary.

PROPOSITION 3.13. If |α|∞ < ‖v‖−1
∞ , S α is injective.

Proof. It is a consequence of the inequality (50), taking S α( f ) = 0.

PROPOSITION 3.14. If |α|∞ < ‖v‖−1
∞ , rg(S α)∗ is dense in L 2(S) .

Proof. In general,

L 2(S) = rg(S α)∗
⊕

ker(S α). (54)

In this case S α is injective, ker(S α) = {0} and rg(S α)∗ is dense in L 2(S) .

THEOREM 3.15. If |α|∞ < 1
2+‖v‖∞ , S α : L 2(S) → L 2(S) has a bounded in-

verse.
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Proof. According to the inequality (45) and the hypothesis given

‖I−S α‖2 � (1+‖v‖∞)|α|∞
1−|α|∞ < 1. (55)

Lemma 2.5 ensures that S α = I− (I−S α) has a bounded inverse. Using (50),

‖(S α)−1‖2 � 1+ |α|∞
1−|α|∞‖v‖∞ .

PROPOSITION 3.16. If |α|∞ < 1
2+‖v‖∞ , (S α)∗ is injective.

Proof. Theorem 3.15 states that rgS α = L 2(S) . Since

|α|∞ <
1

2+‖v‖∞ <
1

‖v‖∞
according to Corollary 3.11, ker(S α)∗ = {0} and (S α)∗ is injective.

DEFINITION 3.17. An operator T is Fredholm if:

• rgT is closed.

• kerT and kerT ∗ are finite-dimensional.

PROPOSITION 3.18. If |α|∞ < 1
2+‖v‖∞ , (S α)∗ is Fredholm and its index is 0.

Proof. In this case, rgS α is closed (Theorem 3.10) and S α , (S α)∗ are injec-
tive (Propositions 3.13 and 3.16 respectively). As a consequence, S α is Fredholm.
The index of a Fredholm operator is defined as:

indS α = dim(kerS α)−dim(ker(S α)∗).

In this case the index is zero.

DEFINITION 3.19. A sequence {xn} ⊂ E is closed or fundamental if every el-
ement of E can be approximated arbitrarily closely by finite linear combinations of
elements of {xn} .

THEOREM 3.20. If |α|∞ < 1
2+‖v‖∞ , the system

T = {(U0
n )α ,(Um

n )α ,(Vm
n )α ;n = 0,1, . . . ,m = 1,2, . . . ,n} (56)

is fundamental in L 2(S) .
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Proof. According to Theorem 3.15 for any g ∈ L 2(S) , there exists f ∈ L 2(S)
such that S α( f ) = g . In that case, if the Laplace series of f is

f =
∞

∑
n=0

2n

∑
k=0

cnkYnk (57)

the linearity and continuity of S α imply that

g = S α( f ) =
∞

∑
n=0

2n

∑
k=0

cnkY
α
nk (58)

and g can be arbitrarily approached by finite linear combinations of elements of T .

THEOREM 3.21. If |α|∞ < 1
2+‖v‖∞ , the system T is complete in L 2(S) .

Proof. By Banach’s theorem ([4]), in a normed linear space a system is funda-
mental if and only if it is complete.

COROLLARY 3.22. If |α|∞ < 1
2+‖v‖∞ , L 2(S) owns a Hilbert basis of α -fractal

spherical harmonics.

RE F ER EN C ES

[1] M.F. BARNSLEY, Fractal functions and interpolation, Constr. Approx., 2, 4 (1986), 303–329.
[2] M.F. BARNSLEY, Fractals Everywhere, Academic Press Inc., 1988.
[3] M.F. BARNSLEY, A.N. HARRINGTON, The Calculus of Fractal Interpolation Functions, J. Approx.

Theory, 57 (1989), 14–34.
[4] P.J. DAVIS, Interpolation and Approximation, Dover Publ., New York, 1975.
[5] A. DONEDDU, Fonctions Vectorielles. Series. Equations Diferentielles, Ed. Vuibert, 1981.
[6] W. FREEDEN, K. HESSE, Spline modelling of geostrophic flow: theoretical and algorithmic aspects,

Report AMR04/33. School of Mathematics. Univ. of New South Wales, 2004.
[7] H. KALF, On the expansion of a function in terms of spherical harmonics in arbitrary dimensions,

Bull. Belgian Math. Soc. Simon Stevin, 2, 4 (1995), 361–380.
[8] A. N. KOLMOGOROV, S. V. FOMIN, Elements of the Theory of Functions and Functional Analysis,

Courier Dover Publ., 1990.
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