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CONTINUITY PROPERTIES FOR RIESZ POTENTIALS OF
FUNCTIONS IN MORREY SPACES OF VARIABLE EXPONENT

YOSHIHIRO MIZUTA AND TETSU SHIMOMURA

(Communicated by B. Opic)

Abstract. Our aim in this paper is to deal with continuity properties for Riesz potentials of
functions in Morrey spaces of variable exponent. The modulus of continuity is determined by
the structure of Morrey space.

1. Introduction

For 0 < o < n and a locally integrable function f on R", we define the Riesz
potential U,f of order o by

Uaf (x) = | |x—y|"7"f (v)dy.

R?

Here it is natural to assume that U,|f | #Z oo, which is equivalent to

b oy < o (1.1)

for this fact, see [8, Theorem 1.1, Chapter 2]. If f is a locally integrable function on
R” satisfying (1.1) and the Morrey condition

sup [ F()Pdy < oo,
x€R" r>0 B(x,r)

then it is known (see e.g. Sawano-Tanaka [17]) that U,f is Holder continuous on R”
whenever v > n — ap, where 1 < p < oo and B(x,r) denotes the open ball centered
at x of radius r; in case v < n — op, we have Sobolev’s type inequality for Uyf as
was proved in the paper by Adams [1].

In the present paper, we are concerned with the continuity properties of U,f for
locally integrable functions f on R” satisfying (1.1) and

| o ( / v<y>|ﬂ<pz<v<y>|>dy> oo, (12)
0 B(x,21)
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where @; (i = 1,2) are positive monotone functions on the interval [0, c0) satisfying
Cli(r) < @i(1?) < Coy(r) whenever r > 0

with a positive constant C. When ¢y (r) = (log(2+r~"))% and ¢,(r) = (log(2+7))%,
our Theorem 2.1 shows that U,f is continuous if and only if 8, + & > p. In case
d1 + & < p, we show by an example that U,f might not be continuous; in this case,
Nakai [13, Theorem 2.2] obtained Trudinger’s inequality for Uqf .

Next, following Kova¢ik and Rdkosnik [7], we consider a positive continuous
function p(-) on R", which is called a variable exponent. In connection with (1.2),
for 0 < v < n and a real number 3, we define the 1P0)vB norm by

I lpcyvp = inf {/1 >0: sup/ r~V(log(2 + r1))P
0

xER"
p(y)
" / I dy dr <1
B(x,r) r

A
and denote by L(")"*F the space of all measurable functions f on R” with [|f [|().vp <

oo . This space L7}V is referred to as a generalized Morrey space of variable exponent.
In this paper we deal with p(-) satisfying the following log -Hélder condition

alog(log(1/|xo —y[)) _ b
log(1/xo — y[) log(1/}x —yl)

for y € B(xo, ), where pg = (n — v)/a and a,b are positive constants. Our second
aim in this paper is to study the continuity for Riesz potentials of functions in the
generalized Morrey space L)V of variable exponent, as an extension of Futamura
and the authors [2], [4] and Harjulehto-Histo [5].

p(y) = po+

2. Continuity of Riesz potentials in the case of constant exponent

Throughout this paper, let C, C;, C,,... denote various constants independent of
the variables in question.
Suppose @ is a positive monotone function on the interval [0, co) satisfying

(1) clo(r) < (P(r2) < co(r) whenever r > 0

with a positive constant ¢. Here we collect several properties which follow from
condition (@1) (see [8] and [11]).
(@2) @ satisfies the doubling condition, that is, there exists ¢ > 1 such that

clo(r) < o(2r) < co(r) whenever r > 0.
(¢3) Foreach v > 0, there exists ¢ = c¢(y) > 1 such that

clo(r) < o(r") < cop(r) whenever r > 0.
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(p4) If y > 0, then there exists ¢ = c¢(y) > 1 such that
sTo(s) < ' o(t) whenever 0 < s < 1.
(@5) If v > 0, then there exists ¢ = ¢(y) > 1 such that
77 o(r) <esTTo(s) whenever 0 < s < 1.

(@6) If v > 0 and ry > 0, then there exists ¢ = ¢(y,r9) > 1 such that
o
/ 7Y o(t)dt/t < er V() whenever 0 < r < ry/2.

Let @;(r) be a positive nonincreasing function on (0, 00) satisfying (¢1), and
@(r) be a positive nondecreasing function on (0, c0) satisfying (¢@1). Our examples
of ¢ are

(log(2 + ril))ﬁl, (log(2 + r*l))“;l log(2 + (log(2 + 1"*1)))“527

with positive constants §;; examples of ¢, are given similarly. If 1 < p < oo and
0 < v < n, then we consider

r | 1 dt 1/17/
@) = ([ e )
r

for 0 < r < r and

r /o dt 1/17,

D (r1,m) = (/ [P Py (o)) P /”7) ,

ry

for 0 < r; < rp,where 1/p+ 1/p’ = 1. Further we set
q)(r) = q)+(0ar) +rq)+(ra 1)
for 0 < r < 1. We see from (¢5) and (¢6) thatif v < n— op, then
CP P o (e TP < @i (n 1) S CIT Vi (Nee ()T (20)

for 0 < r < 1/2, so that
®,(0,1) = 0.
Similarly, if v <n — ap + p, then
CTHP Ve (e (TP S @F (1) < IV i (R ga(r ] TP
(2.2)

whenever 0 < r < 1/2,so0 that ®*(0,1) = c0.
If f is a locally integrable function on R”, then we set

,2 1/p
Fxr.m) = ( | o ( L v<y>|ﬂ<pz<v<y>|>dy> ?)
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for0<rn<nr.
Our first aim in the present paper is to establish continuity properties for Riesz
potentials of functions f on R" satisfying

sup F(x,0,00) < oo, (2.3)
xeR"

as an extension of [9].

THEOREM2.1. Let 0 < v<nandn—oap < v<n—ap+p andf bealocally
integrable function on R" satisfying (1.1) and (1.2). If ® is bounded on the interval
(0,1), then Uyf is continuous on R" and, moreover, incase n—op < v<n—ap+p
and ®1(0,1) = oo,

|Uof (x) = Uaf (2)| = o(P(|x —2[))
andin case v=n—op +p and ®(0,1) < oo,
|Uaf (x) = Uaf (2)| = O(Jx — 2])

as x runs over a compact set in R" and |x — z] — 0.

For a proof of Theorem 2.1, we prepare the following result (cf. [11, Lemma 3.1]):

LEMMA 2.2. Let f be a nonnegative measurable function on R" satisfying (1.1)
and (1.2). If 0 > 0 and ¢ > 1, then

/ XYYy < Oy (ry r)F(x, r1y 1)
B(x,r2)\B(x,r1)

+ "
B(x,r2)\B(x,r1)

forall x € R" and r, > 2r; > 0.

Proof. Let 6 > 0. We write A(x,ry,r2) = B(x,r2) \ B(x,r) and

/ =y ()dy = I — Y ()dy
A(x,r1,r2)

/{yGA(XJMz)Zf(YDX—yG}
+ / e = y[*7"f (v)dy
{y€A(x,r1,r2):0<f ()< |x—y| 9}
U, + U,.

First it is easy to see that
Us < / x = |%"=dy,
A(x,ry,r2)

Next we treat U .
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From Hoélder’s inequality, we obtain

1/p
Uy < ( / e — y| P [y (| — y|><pz<f<y>>w’/my)
{yEA(x,r,r2)if (v)>|x—y|~}

1/p
x ( / Ix—yl‘vqn(lx—yl)f(y)”wz(f(y))dy> .
{yEA(x,r1,r2)if (v)>|x—y| =}

In view of (@3), we see that if f(y) > |x — y|~7, then

0(f () = e2lx —y7%) = Coa(lx —y|7"),
so that

1/p
(/ e — y[@= P gy (x — y))@a (F ()] 7 /pdy>
{YeA@ ) f (v)>1x—y| =}

1y’
<C (/ e = TP [y (e — @2 (lx =y 7] 77 /"dy>
A(x,r1,r2)
< Cq)+(rl7r2)'

Further, integrating by parts and changing to polar coordinates, we find

/A sl OY e ()

< / ; ( / (xyt)f@)hpz(f(y))dy) A~ (1))

rn

+ V(1) /B(_t)f(y)pfpz(f(y))dy]

r

since =V, (¢) is nonincreasing by (¢5). By the doubling property of ¢;, we note
that

[ o) < e

/2

for r > 0 and
v "o, dt
o) [ orecma<c [ qn(r)( f(y)”q)z(f(y))dy> 2

B(x,r2) r2/2 B(x,2t)
Hence

e sl 6o )y

<c[ o ( f(y)”fpz(f(y))dy> < (24
i B(x,2t)
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Consequently it follows that
Ul g Cq)+(rl7r2)F('x? r17r2)'
Thus the present lemma is proved. ]

Proof of Theorem 2.1. Let f be a nonnegative measurable function on R" satis-
fying (1.1) and (1.2). We show that the conclusion holds for x € B(0,R). For this
purpose we may assume that f = 0 outside B(0,2R), since / [x—y|*~"f (y)dy

R\ B(0,2R)
is infinitely differentiable in B(0,R) by (1.1).
Let x € B(O,R). For z € B(x,r) and 0 < r < R, write

Udf (z) = /B( 2)z—y““”f(y)der/ |z — "7 (v)dy

B(x,3R)\B(x,2r)
= u1(z) + uz(z)-
If 0 < 0 < «a, then we have by Lemma 2.2 and (¢2),

(@) < / 2 — Y% (v)dy
B(z,3r)

C®. (0,3r)F(z,0,3r) + Cr*=°

<
< CP,(0,r)F(x,0,4r) + Cr*=°.

Here note from the doubling property of ¢ that
, 1
®.(0,r) > ( //2 e, (z)mz(tlw’/p%)
> Cre Iy (rga(r ).
Hence, if 0 < 0 < (n— V) /p, then (@4) gives
r*=% =®,(0,r)o(1),

so that
|u1(2)] < CP1(0,7)(o(1) + F(x,0,4r))
for z € B(x,r).
On the other hand, using the mean value theorem for analysis, we have

) - (@) < [ e =317 = 2 = 5171 )y
B(x,3R)\B(x,2r)
< Cr/ = y[*7" 7 (v)dy
B(x,3R)\B(x,2r)

Cr/ e = Y% (v)dy
B(x,&)\B(x,2r)

+ Cr/ e — v (y)dy
B(x,3R)\B(x,&)

Cl"(ll + 12)
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for 0 < & < R. First consider the case o < (n — v)/p + 1. In this case take
o —1< o< (n—v)/p. Then, applying Holder’s inequality and Lemma 2.2 again,
we find

& , , 1/p/
L € C (/ flo—n—1+v/p)p [0 (t)(pz(t—l)]—p /ptn—ldt>
2

r

£ 1/p
(/ f%pl(r)( f(y)”wz(f(y))dy> ?) Fero,
2r B(x,2t)

Noting by (2.2) that
r*= ol = % (2r, g)o(1)

when 4r < g, we obtain
I < COH(2r,&)(o(1) + F(x,2r, &)).
Since I, is dominated by a positive constant C(&), using (2.2), we find

lua(x) — uz(z)] < Crd*(2r,&)(o(1) + F(x,2r,&)) + C(&)r
< Cr®"(2r,&)(C(eo)o(1) + F(x,2r, &)).

Now it follows that
Uof (x) = Uaf ()] < CP4(0,7)(0(1) + F(x,0,4r))
+ Cr®* (2r, &)(C(&)o(1) + F(x,2r, &)) (2.5)
for z € B(x,r) and 0 < r < & . This gives

U -U
s sy 1U0) = Uef )
r—0  z€B(x,r) x€B(0OR) O(r)

< CF(x,0, &),

where C does not depend on & .
Next consider the case @ = (n — v)/p + 1. In this case, taking 0 < 0 < a — 1,
we find

) , , 1/p
I < C( / fomn=thviep [(pl(t)wz(tl)]”pt"ldt)
2

r

£ 1/p
X (/ (1) ( f(y)pq)z(f(y))dy> ?) +Ceg 7
2r B(x,21)

If ®(0,1) = oo, then we derive
I < CO*(2r,&)(o(1) + F(x,2r, &)).
Since I, is dominated by a positive constant C(&), we find

lua(x) — uz(z)] < Cr@d*(2r,&)(o(1) + F(x,2r,&)) + C(&)r
< Cr®"(2r,&)(C(e)o(1) + F(x,2r, &)),
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so that

\Uof (x) = Uof ()| < CD1(0,r)(0(1) + F(x,0,4r))
+ Cr®* (r, &)(C(€)o(1) + F(x,0, &))

for z € B(x,r). Thus (2.5) holds in this case, too.
If ®(0,1) < oo, then the above arguments imply that

Uaf (¥) ~ Uaf ()] < Clr—2  when Jx— 2] < 1

as required. ]

COROLLARY 2.3. Let f be a nonnegative measurable function on R" satisfying
(1.1) and

o d
sup / rV(log(2 +r7"))” ( f () (log(2 + lf(y)|))52dy> T <
wern Jo B(xr) "
forv=n—oap>0,0,>0and 6, >20. If 6+ & >p — 1, then

|Uaf (x) = Uaf (2)] = o((log(1/|x — 2[))'~ @ +%+1/ry)

when x runs over a compact set in R" and |x — z| — 0.

COROLLARY 2.4. (cf. Sawano-Tanaka [17, Theorem 5.4]) Let f be a nonnega-
tive measurable function on R" satisfying (1.1) and

o dr
sup/ rY f(y)Pdy — < oo
xeR" Jo B(x,r)

Then, incase n—op <v<n—ap+p,
|Uaf (x) = Uaf (2)| = o(|x — 2 ="+P)/P)
and, incase v=n—op+p,
|Uaf (x) = Uaf (2)| = o(|x — 2| log(1/|x — 2]))'/"")
when x runs over a compact set in R" and |x — z| — 0.

COROLLARY 2.5. Let v=n—op > 0 and f be a nonnegative measurable
Sunction on R" satisfying (1.1) and

xR, r>0

sup r"(log(2 + r1))? / S0 g2 ) dy < oo

for 8, 20 and 8 > 0. If 8 + &, > p, then Uyf is continuous on R" and

\Uof (x) — Uof (2)] < C(log(1/]x — z]))!~@rFe)/p
when |x —z] < 1/2.



CONTINUITY PROPERTIES FOR RIESZ POTENTIALS OF FUNCTIONS . .. 107

For this, let @;(¢) = (log2 + 1)) with p—1 -8 <8 <& — 1, 1) =
(log(2 +1))* and 0 < o < a; then we have

r 1/p
@, (0,r) = ( / (log(2+171))™7 <5+52>/pz—1dt) < C(log(1 /)P -0t/
0

and
r 1/p
F(x,0,r) < C (/ (log(2 + t_l))‘s_‘s‘t_ldt> < C(log(1/r))1+8=80/p,
0
Lemma 2.2 gives
[ sy < Co0nF(0.0) + 0
B(x,2r)

< C(log(l/r))1*(51+52)/l’

for0<r<1/2.
Next, letting n —ap < vi <n—ap+p, @i(t) =1, @2(t) = (log(2 +1))* and
o—1< o0 <o, wefind

[e’s) , 1/P,
@ (ro0) = ([T )
Cr(a—l)—(n—w)/ﬂ(log(1/,,))—52/17

N

and

00 dt 1/p
F(x,r,00) < C (/ @ (log(2 + 1)) 7)
< Crirti=en)/p(1og(1 /7)) 0P,
Hence it follows from Lemma 2.2 again that
/ Ix —y|* "I ()dy < CDT(2r, 00)F(x,2r,00) + Cre—1=°
R\ B(x,2r)

Cr ' (log(1/r))~ Ot/ 4 cpo-i=o
Cr'(log(1/r))~@te)/p

NN

for0<r<1/2.
Now, letting r = |x — z| and using (2.5), we establish

|Uaf (x) = Uaf (2)] < Cllog(1/|x — z]))!~O+e)/7
whenever |x — z| < 1/2, which proves the corollary.

REMARK 2.6. In Corollary 2.5, if n — ap = 0 and 8, = 0, then U,f is seen
to be continuous on R" whenever &, > p — 1, in view of the first author [9]. In case
n — ap > 0, we need the condition &, > p for the continuity of Ugf .
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For this, we first note from (2.1) that ®,(0,1) < oo if and only if & > p. If
v=n—ap >0 and & < p, then consider the function

FO) = “og [y ™)™ * xm0.1/2) (),

where xg denotes the characteristic function of E. Since J, < p by our assumption,
we see that

(1) /w " (3)dy = oo

(2) )P (og(1 +f () %dy < C/ |~ %dy < Cr=% = Cr¥

B(x,r) B(x,r)
forall x e R" and 0 < r < 1/2.

This implies that U,f is not continuous at the origin, in spite of the fact that f satisfies
conditions (1.1) and (1.2) required in Theorem 2.1.
The following is a consequence of Nakai [13, Theorem 2.2].

THEOREM 2.7. Let v=n— op > 0 and G be a bounded open set in R". Then
there exist positive constants Ay, A, such that

sup  rV(log(2 4 r 1)) / exp(exp(A1|Uaf (x)]))dx < As
x€G,0<r<Rg B(x,r)
whenever [ is a locally integrable function on G satisfying
sup  rV(log(2+r7"))% F )P log2+ [FM))>dy< 1, (26)
x€G,0<r<Rg B(x,r)
where 8 = p — 8, > 0 and R¢ denotes the diameter of G.
Here, in view of condition (2.6), we find a positive constant C such that
sup r~(log2+ )Y [ )P dv<C. (2.7)
xX€G,r>0 B(x,r)

In fact, taking 0 < a < (n — v)/p = a, we have

FO)dy < /

B(x,r)

log(2 + v<y>|>>52 "

r~®dy + P (
B(x,r) V( )| 10g(2 + ria)

—&

B(x,r)

I )] (log(2 + [f ())* dy,

B(x,r)

< Cr®+C(log(2+7r7"))

which gives (2.7).

Proof of Theorem 2.7. Letting @y (1) = (log(14¢7"))~1*% and ¢, (1) = (log(1+
1))%, we have by Lemma 2.2

1/p
[ oy < ( log(1 >]-1f‘dt)
G\B(x,r)

R 1/p
(/ log(1 + ”‘*ﬂ( O tog(1 + v<y>|>>52dy> ?)

< Clog(log(1 4 r71))
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for x € G and 0 < r < 1/4. Hence it follows that

Uaf ()] < /B( )x—y“v<y>|dy+/

G\B(x,r
< Cr*Mf (x) + Clog(log(1/r)),

) b — ¥ |f (v)|dy

where Mf denotes the maximal function of £, that is,

Mf (x) = sup ——
r>0 ‘B()C, I")‘ GNB(x,r)

If (v)ldy

with |B(x, r)| denoting the Lebesgue measure of B(x, r) ; here we set f = 0 outside G,
as before. Taking r > 0 such that r = Mf (x)~"/*(log(log Mf (x)))"/* when Mf (x)
is large enough,

|Uof (x)] < C+ Clog(log(4 + Mf (x))) < C, log(log(4 + Mf (x))).
Consequently, we find
/ exp(pexp(Cy ' |Uaf (x)]))dx < / (4 + Mf (x))"dx.
B(z,r) B(z,r)
Applying Lemma 2.1 in [12], we obtain by (2.7)
Mf (x)Pdx < Cr¥(log(2 + 1/r)) 7P,
B(z,r)

which yields
/ exp(p exp(Cy ! |Uaf (x)]))dx < Cr*(log(2 + 1/r)) .
B(z,r)

Thus the proof is completed. U

3. Variable exponents
In this section, we deduce the continuity of U,f at a fixed point xo € R", when
p(-) satisfies
(pl) infgm\g, p(x) > po = (n—v)/ot > 1 and supg. p(x) < o0}

N alog(log(1/|xo — x|)) b N
(2) |p(x) {po * log(1/]xo — x|) }’ S log(1/]xo — x]) for x € By,

where @ > 0, b > 0 and By = B(xo, rp) with 0 < rg < 1/4. In this case,
p(x) = po + @q—p(|x — x0]) (3.1)

alog(log(1/r))

log(1/r) log(1/r)
Wac(r) = Wgc(ro) for r > 1. If 1y is small enough, then @, _;(r) is increasing on
[0, ro] ; here we set w(0) = 0.

for x € By, where @, (r) = for 0 < r < ry and
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For 0 < v < n and a real number 3, we define
I

0 p(y) dr
I llp(yvp = inf § A >0 sup / r’v(log(2+r’1))ﬁ / dy| —<15.
' x€R" Jo B(x,r) A r

Our final goal is to establish the following result, which deals with the continuity
of « -potentials at xg .

THEOREM 3.1. If f is a nonnegative measurable function on By satisfying
I llpyvp < 1 for v=n—apy >0 and B > po— 1 —aa. Then

|Uaf (x) = Uaf (2)] = o((log(1/|x — 2[)) ™)
as x — z € By, where A = (a0t ++1)/po— 1> 0.
Before the proof we prepare the following results.
Let 1/p'(x) =1—-1/p(x).
LEMMA 3.2. (cf. [3, Lemma 2.1]) There exists a positive constant ¢ such that
P') <py— wac(lxo —y|) whenever y € R, (3.2)
where @ = a/(po — 1)?.

LEMMA 3.3. Let f be a nonnegative measurable function on By satisfying
W llp(-).vp < L. Then, for each € > 0, there exists 8 > 0 such that

/ x — Y[ (v)dy < Ce(log(1/8))
B(x,5)

forall x € By and 0 < 6 < &.

Proof. Let f be a nonnegative measurable function on By with ||f ||,(.),vp < 1.
First consider the case 0 < § < |xp — x|/2 and x € By. In this case we see that

p(y) = po + 0o —p(]x —y|) = p1(y)
for y € B(x, ). Then note that
R —1\\8 Py dr
sup r~Y(log(24+r7")) FyWdy | — < C.
xeR" JOo B(x,2r) r

Set
dr

s
%8 = FV )8 p1(y) )
Fi(x,0) /0 (log(2+r77)) ( /B (m)f ») dy) ;.

If 0 <k <1 and 6 =av/py— B, then we have by Young’s inequality

/ e = y[*7"f (v)dy
B(x,5)

N

k {/ (Jx — y|a—n+v/pn(1og(1/|x — y|))‘7/”‘(y>/k)”i(y>dy
B(x,0)

+ x—y|—vm<y>/ﬂ°<log<1/|x—y|>>—“f<y>m<y>dy}.
B(x,5)
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In view of Lemma 3.2, we find

pi(y) <pp — o(lx—yl)

for y € B(x,8), where @(r) = w;(r). Hence it follows that
/ (Jx = [/ (log(1/[x — )P0 /i Ody
B(x,9)
<k / lx — y| P02 (log(1/|x — y|)) 1 O)/P1 ) gy
B(x,0)

< kP / lx — y| ==y D)/ph (og (1 /|x — y|))Po—ex=D)o/mb) gy
B(x,0)

S
< Ck*Po/ (log(1/;))*"‘7/P0+0P0/P0t*1dt
0
< Ck (log(1/8)) 7%,

since —anpg,/pj + opo/po+ 1 = —Apj < 0.
On the other hand, as in (2.4), integration by parts gives

el o b i) F 0y
B(x,

<C [yl gl b= D) (o
B(x,5)

dr
t

19

< C/ t_v(log(l/f))ﬁ< f(y)”‘(”dy)
0 B(x2t)

< CFy(x, 8).

Thus we establish

[ sl 0oy < Ck (kv tog(1/8) 6 + Fix.81))
B(x,5)

Now, considering k = (log(1/8))~AF(x,8,)~1/7 for small § > 0, say 0 < § <
8, (< 01), we see that

/ L 00 < Clog(1/3)Fi, 1)
B(x,

whenever 0 < § < &, and & < |xo — x|/2.
Next consider the case |xo — x|/2 < & < 8,/3. Note from (3.1) that

() = po+ @4 —s(]x0 —y|) = pa2(y)

e d
sup [ g2+ P ([ poptiay) T<c
xeR" JO B(x,2r) r

and
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Set

5
Pax.8) = [ llog2+ 7)) ( / . )f(y)“(”dy> @

If y € B(x, 8)\B(x, |xo—x|/2) ,then |xo—y| < 3|]x—y| and |xo—y| < |xo—x|+|x—y| <
34, so that

x = Y (v)dy < € / ko — Y|F () d.

/B(X,S)\B(x,xo—x/Z) B(x0,30)

In view of the above discussions we can find 0 < & < & such that
/ %o — ¥*7"f (v)dy < C(log(1/8)) " Fa(x, &)™
B(X0,35)
whenever 0 < § < 83. Therefore, applying polar coordinates, we obtain

/ e = y[*7f (v)dy
B(x,9)

—[ e [ vy )
B(x,|xo—x|/2) B(x,06)\B(x,|xo—x|/2)

C(log(1/]xo — 1) " Fi(x,8:)'/™ + C(log(1/8)) " Fa(x, &)™
C(log(1/8)) ™ {Fi(x, &)/ + Fa(x, &)/}

NN

for 0 < & < &5, which proves the present lemma. O

LEMMA 3.4. Let f beanonnegative measurable function on By with ||f [|,(.),v.p <
1. Then

/ = y[*"1f (y)dy < €8 (log(1/8)) ™A 1/rb
Bo\{B(x0,8)UB(x,5)}

for x€ By and 0 < § < 1/2.

Proof. Let f be a nonnegative measurable function on By with [[f|],.)vs < 1.
Note that

p(y) = po+ 0a—p(8) = p1
for x € By and y € By \ {B(x0,0) UB(x,d)}, and

> d
sup / Y (log(2 + r1))P / fora | Y <c
x€R" Jo B(x,2r) r

Here, if 8 > 0 is small enough, then

a(pa —po)/po—1 <0,

where p> = po + 0, —»(8) . Then note that

a—-n—1+v/pi+n/pi=a—1—(n—v)/p1 <alps—po)/po—1<0
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whenever 0 < § < & . Hence, using Holder’s inequality and integration by parts, we
have

/ e —y[*"f (v)dy
Bo\{B(xo,é)UB(x,é)}

1/p}
<(/ (b= 5171 (1 /b = 3) PPy
Bo\{B(x0,5)UB(x,8)}

1/171
X (/ Ix—yl‘”(log(l/lx—yl))ﬁf(y)”‘dy>
Bo\{B(x0,8)UB(x,8)}

e 1/p
<C / (= 1ta(pi—po)/p)p) (log(l/t))_”{ﬁ/”lz‘ldz> l
s

x ( sty ( (ﬁzi)f(y)”‘dy) %)

§— 1o PO)/Pl(log(l/S))*ﬁ/Pl
5! (log(1/8))~ Pl

1/p1
< C
<C
whenever 0 < 6 < &, which yields the required inequality. O

Proof of Theorem 3.1. Let f be a nonnegative measurable function on By with
IIf llp¢-).vp < 1. The proof will be carried out along the same lines as in the proof of
Theorem 2.1. Write

Udf (5) — Uof () = / ke — YI%F () dy — / & — Y|"F (3)dy
B(x,2|x—z|) B(x,2|x—z|)

+ / (= Y% — |z — Y% (3)dy.
Bo\B(x,2|x—z]|)
By Lemma 3.3, we have
/ o I Oy < Ceton(1/x ) (33)
X. X—2Z

and

/ lz—=y[*"f (v)dy < / |z —y|“7"f (y)dy
B(x,2|x—z|)

B(z,3|x—z])
< Ce(log(1/]x —2))™ (34)
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for x,z € By and |x — z| < & . On the other hand, by the mean value theorem for
analysis, we have for x,z € By with |x — z| < &,

/ e = y[*7" — [z = y[*7"|f (v)dy
Bo\B(x,2|x—z|)

< Clx — 2] e =y (v)dy
Bo\B(x,2|x—z]|)

< Clr—1 { / = Y () dy
Bo\{B(x0,2|x—z|)UB(x,2|x—z|) }

+/ e — y| et (y)dy} .
Blxo.2lx—2])\B(x2lv—2])

It follows from Lemma 3.4 that

/ b= " ()dy < Clx— 2]~ (log(1/x — 2) 4=,
B\ (B0, 22l UB(x 2}

Moreover we see from Lemma 3.3 that

/ b — y[* 7" (v)dy
Blxo,2lv—2])\B(x.2lx—z])

< Clx— o / Ixo — Y19 (3)dy
B(x0,2|x—2z|)
< Celx — 2~ (log(1/x — 2])) .

Therefore, we obtain

/ =31 = [z =51 0y
Bo\B(x,2|x—z]|)
< Ce(log(1/kr — )™ + Cllog(1/x —2[)) 4%,
which together with (3.3) and (3.4) gives
|Uaf (x) = Uaf (2)] < Ce(log(1/]x — 2])) ™ + C(log(1/x — 2])) =4~/
for x,z € By and |x — z| < &, as required. O
REMARK 3.5. Let b > (a0® + a)/(n—v) >1,0<ry < 1/e and

n—v . alog(log(l/[y]))
a log(1/1yl)

for y € B(0, ry) . Consider the function

F ) = Iy~ *(og(1/1¥1) ™" 25_(0.00) ),

p(y) =
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where B_(0,ry) = {y € B(0,r9) : y» < 0} and xr denotes the characteristic function
of E. Set F = {(t,0) € R x R"™! : # > 0} . Then we easily see that

/ 1%F )y — / = 397" (3)dy > Cllog(1/[x]))! =
B(OJU) B(OJU)

for x € F and
FOPYay < [y og(1 /) e ey
B(O,r[)) B(Or[))
< Cr (log(l/ )) b(n— v)/a+aot
so that

[ FOyOdy ) ¥ < o0
0 B(O,m)

since —b(n — v)/ot + act + 1 < 0 by our assumption. This means that the exponent
A in Theorem 3.1 is best possible.
)
dy | <1,.

We define
As in the proof of Corollary 2.5, Theorem 3.1 gives the following result.

@ Pl
A

x€R",r>0

If [Ip(.),v,p = inf {/l >0: sup rV(log(2+ r’l))ﬁ (/
B(x,r)

THEOREM 3.6. Assume that A = (act + B)/po — 1 > 0. If f is a nonnegative
measurable function on By with ||f||,.)vp < 1, then Uqf is continuous at xo and
satisfies

|Uaf (x) = Uaf (x0)] < C(log(1/]x = xo])~*
forall x € By.

4. Continuity IT

In this section, let p(-) be a nondecreasing function on (0, co) such that
alog(log(1/r)) b
log(1/r) log(1/r)

for 0 < r < rg and p(r) = p(ry) for r > ry, where po, a and b are real numbers
such that pp > 1 and a > 0. Set

(p3) p(r) =

with p(x) = |1 — ||| .
In this section we give a version of the results in the previous section. Since the
proof of Theorem 3.6 is a little more complicated, we show a version of this theorem.
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THEOREM 4.1. Assume that A = (aa. + B)/po — 1 > 0 and v =n — apy > 0.
If f is a nonnegative measurable function on the unit ball B with |f ||,(.),vp < 1, then
Uuf is continuous on B and satisfies

|Uf (x) = Uaf (2)] < Cllog(1/x —2])™*

for x,z € B with |x —z] < 1/2.
First note that
p'(r) <py—o(r) foryeB, (4.1)
where py = po/(po— 1) = (n—Vv)/(n— v — ) and

a  log(log(l/r))  C
(po—1)* log(1/r) log(1/r)

o(r) =

forO<r<mn.
Before the proof we prepare the following results.

LEMMA 4.2. For 0 <8 < 1/2, set
Er={yeBNB(x,8):p(y) =6}

If f is a nonnegative measurable function on B with ||f ||,.).vp < 1, then

¥ = ¥“7"f (v)dy < C(log(1/8))

E;

for x € B.

Proof. For 0 <k <1 and y < 3 — 1, we have

L = |x — y|*7"f (v)dy
E,

_ yla—n+v/p(y) 1 1 _ =v/p(y)) P'o)
(e g e ) VY
E,

N

k

+ [ be=y7(log(1/]x — y))'f (y)”(y)dy}

E,

— |1/ (1og(1 / |x— —v/p(y)) P'o)
k / (x yl (log(1/]x=y])) ) dy+C(10g(1/5))yfﬁ+l
E,

N

k
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Let k = (log(1/6))~° with ¢ > 0. Since k7' 0) < k=P for y € Ey , we find
[ = |0 (log(1/fx — y])) o)\
J = dy
E k

/ ')
k"o / <|x — y|# PO (log (1 /|x — y|))—Y/p(y)))p ! dy
E,

N

N

kP [ x = y| " (log(1/]x — y|)) VoD

E,
o(p(y))
x (=@ og(1 /e =) ) dy

k"’g/ e — | (tog(1/x — )70~
B(x,5)

N

o(|]x—yl)
% (=" D(tog(1/ [ —yD) ) dy

)
Ck*Po/ (log(1/1)) Vo= D=0a/o=1);=1 4
0

N

N

CkP0(log(1/8))~(Vrae)po/po)+1
when —(ac 4 v)pj/po + 1 < 0, that is,
—ac+po—1l<y<p-1.

Since A = (act + B)/po — 1 > 0, we can take such y . Now it follows that

I < C(log(1/0))~° {(log(l/6))"1’6—(H“O‘)(f?’f)/fvn)+1 + (log(1/6))7’—ﬁ“} '

By taking
opo — (v +ac)(py/po) + 1=y — B+ 1,
that is,
o= (v +aa)/po+7v/po — B/po = ac/po +v — B/ph,
we finally obtain
C(log(1/8)) 74,

as required. ]
LEMMA 4.3. For 0 <8 < 1/2, set
E,={yeBnNB(x,J5):p(y) <o}

If f is a nonnegative measurable function on B with ||f ||,.)vp < 1, then

X — y[*7"f (v)dy < C(log(1/8)) ™"

E>

for x € B.
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Proof. As in the previous proof, for k = (log(1/6))~°(< 1) with 6 > 0 and
y < B — 1, wehave

L= [ x—=y[*"f(y)dy
E>

_ v|oe—n+v/p(y) _ v/p(») P
gk { RIS
E>

k

[l og(1 1 =5y r 0 y}

/ &)
< k{/ k—Po <|x_y|a—n+v/p<y>(10g(1/|x_y|))—y/ﬁ<y>)>p ! dy+C(log(1/5))V‘ﬁ+1}
E;

= (10g(1/5))U{(log(l/&)‘%/E (Ix—ylo‘*"ﬂ/p( (log(1/|x — y|))~V/? >>”(y>dy
+C(10g(1/5))y’ﬁ“} .

For giving an estimate for I, we have only to treat the case when BN B(x,8) C {y €
B:p(y) <ro},since p(y) = p(6/2) > (n— v)/o when p(y) > ro/2. In this case,

CTH " =y [+ o) — pO)]) < v =y < C(" = y*| + p(x) — p(¥)])
for y e BN B(x,0), where x* = x/|x| and y* = y/|y|. Consider the sets

Ey ={y<€E:|p(x)—p() <p}

and
En ={y€E :|p(x) = py) > p)}-
We find by polar coordinates,

')
da = [ (sl og(1 - ) 00)  ay
Er

'(1)
<cf (Ipte) = 7770 (10g(1/|p(x) = ) 77D’
{£:]p(x)—t|<tr<8}
x|p(x) —t["dt
< C/ lo(x) — 1] " (log(1/|p(x) — #]))~YPo—1)
{r:lp(x)—1|<1,1<8}
o(lp(x)—1])
X <|p(x) — t|a(pofl)(10g(1/|p(x) — t|))Y> |p(x) . t|n71dt
5
< € [ tog(1/s) el 1D s
0
< C(log(1/9))~ (v+ac)(py/po)+1
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as in the pervious proof. Further we find

Jn

P')
[ (= vt oga ey 7o) ay
Exn

'(v)
C/ (\x* _y|a7n+v/p( (log(1/|x* —y|))~ v/p(y )))p Y dy,
Exn

N

where x* = x/|x|. Hence

Jn < C/S(log(l/t))aa/(po1)y(p()1)t1dt
< C(lf)g(1/5))_(V+“O‘)(P(I)/P0)+l’
as before. Now it follows that
C(log(1/8))"° {(log(1/5))UP6*(7+aa)(p6/Po)+1 + (log(l/&)y,ﬁﬂ} 7

which yields the required result. |

Finally, according to the proof of Lemma 3.4, we obtain the following result.

LEMMA4.4. Iff isanonnegative measurable functionon B with ||f ||,.)vp < 1,
then

/ = y[“" U (y)dy < €5 (log(1/8)) A1/t
B\B(x,6
for x € B.

Proof. Write

/ k= e () dy = / ke — y% U () dy
B\B(x,6) {yEB\B(x,8):p(y) 26}

+ / x — ¥ (y)dy
(YEB\B(x.8):0(y) <}

= L+ L.
As in the proof of Lemma 3.4, we prove
I < C8 '(log(1/8)) 4!

For I, letting k > 1, we have by Young’s inequality

2 X =Y
{‘ EB\B(‘ 5) ( )<5} d)’

k

+/ Ix—Y|_V(10g(1/lx—YI))_””(y)f(Y)”(”dy}
{yeB\B(x,8):p(y)<8}
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with y given before. Note that for y € {B\ B(x,0) : p(y) < 6}, we find

k*P' o) < k*P{ﬁwl (5)7

where
a__log(log(1/r))

(po—1)>  log(1/r)

(1)1(}") =

Hence we obtain

/

L <k Ck—p6+w1(5)/ {‘x_y‘a—l—nJrv/p(y)(log(1/|x_y‘))_y/p(y) }P (y)dy
{yeB\B(x,8):p(y) <8}

C(log(1/5))y‘ﬁ“}~

In a way similar to the estimates of J,; and Jy; in the previous proof, we establish

')
/ (b= 1= g1 /e — 1)) ~700) "
{yeB\B(x.5):p(y) <5}
()
< C/ <5a_l_n+v/p(t)(10g(1/5))_]//p(z>)>p 5n—ldt
0
B
:C5—pn—1(log(l/g))—ﬂpo—l)/ s e t=mveW) (16g(1/8))7 W dr
0

s
C5—p6—1(log(l/g))—ﬂpé—l)/ §—(a=1=ntvjo() g
0
< C5Po(log(1/8)) =/ (o=1=a/(po=1)=v(pp=1),
Consequently it follows that

< Ck {k Pi+n(8) 56 (10g(1/§)) 9/ Po=D=a/(o=1*=1(0h=1) | C(10g(1/8))!~ ﬁ+1}

Considering k = 8! (log(1/8))~(@*+B)/po=1+B=1/r) e finally find
L < €5~ Y(log(1/8)) @t Pimtim = 5~ (log(1/8)) A1/,

which proves the required result. |

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let f be a nonnegative measurable function on B with
If lp(-),v,p < 1. By Lemmas 4.2 and 4.3, we have

/ v = 3% (v)dy < C(log(1/[x — 2)) ™ (4.2)
BNB(x,2|x—z|)
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for x,z € B and |x —z| < 1/2. Similarly,

/ lz—y|*7"f ()dy < / 2= y|“7"f (y)dy < C(log(1/]x—z])) ™
BNB(x,2|x—z|)

BNB(z,3|x—z|) (4 3)

for x,z € B and |x—z| < 1/2. On the other hand, by Lemma 4.4, we have for x,z € B
with |x — z| < 1/2,

/ e — ¥|%" — |z — y]IF (3)dy
B\B(x,2|x—z])

< Clx —¢] / e — y|*" 7 (v)dy
B\B(x,2|x—z])

< C(log(1/x —2)) 4,

which together with (4.2) and (4.3) gives

|Uaf (x) = Uaf (2)] < Cllog(1/]x =)™

for x,z € B and |x — z| < 1/2, as required. O
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