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VARIABLE EXPONENT HAVING VALUES ACROSS N
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Abstract. We study Sobolev embeddings for unbounded domain with variable exponent having
values across N . A main result of this paper is the following theorem: Let Ω be an unbounded
domain in R

N satisfying the uniform cone condition. Suppose that p : Ω → R is Lipschitz and
1 < infΩ p � supΩ p < ∞ . Then there holds a continuous embedding W1,p(·)(Ω) ↪→ Lq(·)(Ω)
for any q ∈ L∞(Ω) satisfying condition p(x) � q(x) � p∗(x) for a.e. x ∈ Ω , where

p∗(x) = Np(x)
N−p(x) if p(x) < N and p∗(x) = ∞ if p(x) � N . In this theorem the usual

condition sup p(x) < N is not required.

1. Introduction

In recent years there has been an increasing interest in the study of various mathe-
matical problems with variable exponent. For a survey we refer to [5, 9, 19, 32]. For the
application backgrounds in nonlinear elasticity and electrorheological fluids we refer to
[1, 4, 21, 29].

The theory of variable exponent Sobolev spaces is an important theoretical tool to
study the variable exponent problems. For the study of the variable exponent Lebesgue-
Sobolev spaces we refer to [5–9, 11–13, 15–20, 22–24, 26–32]. From the point of
differential equations the Sobolev embedding theorems are very important. For brevity,
in this paper, we only consider the embeddings in the space W1,p(·) (Ω) since the
situation in the space Wk,p(·) (Ω) is similar, where Ω is an open domain in R

N . It
is well-known that, in the constant exponent case, the embeddings in W1,p (Ω) are
qualitatively different according as 1 � p < N (Lebesgue space), p = N (exponential
Orlicz space) or p > N (Hölder space). For an improvement of the classical Sobolev
embedding theorems when 1 � p < N or p = N we refer to [25] and references
therein. In the variable exponent case things are more complicated, especially in the
case when p− < N < p+ , i.e. when the variable exponent p(·) has the values across
N , where

p− := essinf x∈Ω p(x) and p+ := esssup x∈Ω p(x).
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The Sobolev embedding theorems in the variable exponent Sobolev space W1,p(·) (Ω)
have been studied by many authors (see e.g. [6–9, 11–13, 15–20, 23, 24, 26, 27,
30, 31]). Roughly speaking, when p+ < N , it is proved that, under appropriate
assumptions, there holds the critical Sobolev embedding W1,p(·) (Ω) ↪→ Lp∗(·)(Ω) ,
where p∗(x) = Np(x)

N−p(x) . Edmunds and Rákosnı́k [11,12] have established the embedding
theorems when p(x) < N for x ∈ Ω and p+ = N , and when p(x) > N for x ∈ Ω ,
respectively. Recently Harjulehto and Hästö [20] have studied the Sobolev embedding
in W1,p(·)(Ω) in the case that Ω is a bounded John domain and p : Ω → [1, N] is
log-Hölder continuous. They have introduced “a slightly modified scale of variable
exponent function spaces, Lp(·),∗(Ω) , with the property Lp(·),∗(Ω) ∼= Lp∗(·)(Ω) if

p+ < N and Lp(·),∗(ΩN) ∼= expLN
′
(ΩN) (where ΩN = p−1(N) )” and proved that

there holds an embedding W1,p(·)(Ω) ↪→ Lp(·),∗(Ω) . Although these embedding results
are very interesting, however, the following question is still open.

An open question: What is the space Y such that there holds an embedding
W1,p(·)(Ω) ↪→ Y in the case when p− < N < p+ and this embedding can include the
classical Sobolev embeddings as its special cases? (A further question is : What is the
sharp embedding W1,p(·)(Ω) ↪→ Y in the case when p− < N < p+ ?)

In this paper we consider the embeddings in W1,p(·)(Ω) when Ω is an unbounded
domain in R

N and p− < N < p+ , but do not consider the open question. We only give
some embedding results of type W1,p(·)(Ω) ↪→ Lq(·)(Ω) . Such results are not an answer
to the open question, however they are useful in some practical problems. For example,
in some papers studying the p(x) -Laplacian equations in an unbounded domain Ω , the
assumption p+ < N , a strong restrictive condition, is required (see e.g. [3, 10, 14, 33]),
but in fact, by the results obtained in the present paper the assumption p+ < N can be
canceled, and this just the purpose of the present paper.

For a variable exponent p(·) , define

p∗(x) =

{
Np(x)

N−p(x) , if p(x) < N

∞, if p(x) � N.

The main results of this paper are the following theorems.

THEOREM 1.1. Let Ω ⊂ R
N be an unbounded domain satisfying the uniform

cone condition (see [2] for the definition). Suppose that p : Ω → R is Lipschitz and
1 < p− � p+ < ∞ . Then there holds a continuous embedding W1,p(·)(Ω) ↪→ Lq(·)(Ω)
for any q ∈ L∞(Ω) satisfying condition

p(x) � q(x) � p∗(x) for a.e. x ∈ Ω. (1.1)

THEOREM 1.2. Let Ω ⊂ R
N be an unbounded domain satisfying the uniform cone

condition. Suppose that p : Ω → R is uniformly continuous and 1 < p− � p+ < ∞ .
Then there holds a continuous embedding W1,p(·)(Ω) ↪→ Lq(·)(Ω) for any q ∈ L∞(Ω)
satisfying condition

p(x) � q(x) � q(x) + ε � p∗(x) for a.e. x ∈ Ω, (1.2)
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where ε is a positive constant.

THEOREM 1.3. Suppose that p : R
N → R is uniformly continuous and 1 < p− �

p+ < ∞ . Then there holds a compact embedding W1,p(·)
r (RN) ↪→ Lq(·)(RN) for any

q ∈ L∞(RN) satisfying condition

p(x) + ε � q(x) � q(x) + ε � p∗(x) for a.e. x ∈ R
N ,

where ε is a positive constant and

W1,p(·)
r (RN) :=

{
u ∈ W1,p(·)(RN) : u is radially symmetric

}
.

Theorems 1.1, 1.2 and 1.3 are a generalization of Theorem 1.1 in [15], Theorem 1.2
in [15] and Theorem 3.1 in [17] respectively, there the assumption p+ < N is required.

In the case when Ω is bounded, the corresponding theorems 1.1 and 1.2 are clear
and known, and in the proof of them a simple fact that

p1(·) � p2(·) =⇒ Lp2(·)(Ω) ↪→ Lp1(·)(Ω) and W1,p2(·)(Ω) ↪→ W1,p1(·)(Ω) (1.3)

is used (see Section 2 below). However, for an unbounded domain Ω , the fact is not
true. Hence the proof of Theorems 1.1 and 1.2 is essentially different from the proof of
the corresponding results in the case when Ω is bounded.

This paper is in three sections. In Section 2, we give some preliminaries. In
Section 3, we give the proof of Theorems 1.1–1.3.

2. Preliminaries

Let Ω be an open set in R
N . Denote by S(Ω) the set of all measurable real

functions defined on Ω . Two measurable functions defined on Ω are regarded as the
same element of S(Ω) when they are equal almost everywhere in Ω . Let p ∈ S(Ω) .
For a measurable subset E of Ω, denote p−(E) = essinf x∈E p(x) and p+(E) =
esssup x∈E p(x) . p−(Ω) and p+(Ω) are written simply by p− and p+ respectively.
|E| denotes the N -Lebesgue measure of E . We denote by C0,1(Ω) the set of all
Lipschitz functions defined on Ω .

Now let p ∈ S(Ω) be given such that 1 � p− � p+ < ∞ .
The variable exponent Lebesgue space Lp(·) (Ω) is defined by

Lp(·) (Ω) =
{

u ∈ S(Ω) :
∫
Ω
|u|p(x) dx < ∞

}
with the norm

|u|Lp(·)(Ω) = |u|p(·) = inf

{
λ > 0 :

∫
Ω

∣∣∣ uλ ∣∣∣p(x)
dx � 1

}
.

The variable exponent Sobolev space W1,p(·) (Ω) is defined by

W1,p(·) (Ω) =
{

u ∈ Lp(·) (Ω) : |∇u| ∈ Lp(·) (Ω)
}
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with the norm
‖u‖W1,p(·)(Ω) = ‖u‖1,p(·) = |u|p(·) + |∇u|p(·) .

The spaces Lp(·) (Ω) and W1,p(·) (Ω) are separable Banach spaces. We refer to [5, 6,
8, 15, 16, 24, 28] for the elementary properties of the space W1,p(·) (Ω) .

We denote p
′
(x) = p(x)

p(x)−1 for p(x) ∈ (1,∞) . We will use the Young inequality

ab � ap
′
(x)

p′(x)
+

bp(x)

p(x)
, ∀a, b � 0.

For any r > 0 we define

r∗ =
Nr

N + r
. (2.1)

Then r∗ < N and (r∗)∗ = Nr∗
N−r∗ = r . Note that r∗ > 1 if and only if r > N

N−1 .
For p, q ∈ S(Ω) , the notation "p (·) � q (·) on Ω " denotes that p(x) � q(x) for

a.e. x ∈ Ω , and the notation "p (·) � q (·) on Ω " denotes that there exists ε > 0 such
that p(x) + ε � q(x) for a.e. x ∈ Ω .

It is well-known that the classical Sobolev embedding theorems depend on regu-
larity properties of Ω . For convenience of readers, we write some definitions stemming
from [2].

(The Cone Condition) (see [2, p. 82]) Ω satisfies the cone condition if there
exists a finite cone C such that each x ∈ Ω is the vertex of a finite cone Cx contained
in Ω and congruent to C . Note that Cx need not be obtained from C by parallel
translation, but simply by rigid motion.

(The Uniform Cone Condition) (see [2, p. 83]) Ω satisfies the uniform cone
condition if there exists a locally finite open cover {Uj} of the boundary of Ω and a
corresponding sequence {Cj} of finite cones, each congruent to some fixed finite cone
C , such that

1) There exists M < ∞ such that every Uj has diameter less than M .
2) Ωδ ⊂ ∪∞

j=1Uj for some δ > 0 , where Ωδ = {x ∈ Ω : dist (x, ∂Ω) < δ} .
3) Qj ≡ ∪x∈Ω∩Uj(x + Cj) ⊂ Ω for every j .
4) ord {Qj} � K for some finite K , namely, every collection of K + 1 of the sets

Qj has empty intersection.
In [2, p. 83] it is also defined that Ω satisfies the strong local Lipschitz condition,

which, when Ω is bounded, is just that Ω has a locally Lipschitz boundary. Between
these conditions there holds the following relation (see [2, p. 84]):

the strong local Lipschitz condition =⇒ the uniform cone condition

=⇒ the cone condition.

Note that the classical Sobolev embedding theorems from W1,p (Ω) into some
Lebesgue space Lq(Ω) are obtained under the cone condition (see [2, p. 85]).

Let us first consider the case when Ω is bounded.
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Let Ω be a bounded open set in R
N . A function p : Ω → R is said to be

log-Hölder continuous on Ω , denoted by p ∈ C
0, 1

|log t| (Ω) , if there exists a positive
constant L such that

|p(x) − p(y)| � L
|log |x − y|| , ∀x, y ∈ Ω with |x − y| <

1
2
. (2.2)

PROPOSITION 2.1. (see [8]) Let Ω ⊂ RN be a bounded domain with Lipschitz

boundary. Suppose that p ∈ C
0, 1

|log t| (Ω) and

1 < p− � p+ < N.

Then there holds a continuous embedding W1,p(·) (Ω) ↪→ Lp∗(·)(Ω) , and consequently
for any q ∈ L∞(Ω) satisfying condition

1 � q(x) � p∗(x) for a.e. x ∈ Ω, (2.3)

there holds a continuous embedding W1,p(·) (Ω) ↪→ Lq(·)(Ω) .

Based on Proposition 2.1 we can easily obtain the following proposition in which
the restrictive condition p+ < N , required in Proposition 2.1, is canceled.

PROPOSITION 2.2. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary.

Suppose p ∈ C
0, 1

|log t| (Ω) and 1 < p− . Then for any q ∈ L∞(Ω) satisfying (2.3), there
holds a continuous embedding W1,p(·) (Ω) ↪→ Lq(·)(Ω) .

Proof. Let q ∈ L∞(Ω) satisfy (2.3). Take r � q+ such that r∗ > 1 . Define
p̃ : Ω → R by

p̃(x) =
{

p(x), if p(x) < r∗
r∗, if p(x) � r∗.

Then p̃ ∈ C
0, 1

|log t| (Ω) , p̃− > 1, p̃+ < N and p̃(x) � p(x) for all x ∈ Ω . For x ∈ Ω
with p(x) < r∗ , we have p̃∗(x) = p∗(x) � q(x) . For x ∈ Ω with p(x) � r∗ , we
have p̃∗(x) = (r∗)

∗ = r � q+ � q(x) . Thus 1 � q(x) � p̃∗(x) for a.e. x ∈ Ω . By

Proposition 2.1, W1,̃p(·) (Ω) ↪→ Lq(·)(Ω) and hence W1,p(·) (Ω) ↪→ Lq(·)(Ω) because

W1,p(·) (Ω) ↪→ W1,̃p(·) (Ω) . �

REMARK 2.1. There are some variants of Proposition 2.1 asserting the critical
embedding W1,p(·) (Ω) ↪→ Lp∗(·)(Ω) with p+ < N . Such embedding has been obtained
by Edmunds and Rákosnı́k [11], Edmunds and Rákosnı́k [12], Fan, Shen and Zhao [15],
and Harjulehto and Hästö [20] under the hypotheses that Ω ⊂ R

N is a bounded domain
with Lipschitz boundary, p ∈ C0,1(Ω) and 1 � p− (see [11]); that Ω ⊂ R

N is a
bounded domain with Lipschitz boundary, p ∈ W1,σ(Ω) with σ > N and 1 � p−
(see [12]); that Ω ⊂ R

N is a bounded (or unbounded) domain satisfying the cone
condition, p ∈ C0,1(Ω) and 1 < p− (see [15]); and that Ω ⊂ R

N be a bounded John

domain with Lipschitz boundary p ∈ C
0, 1

|log t| (Ω) and 1 � p− (see [20]); respectively.
Based on such variants of Proposition 2.1 we can obtain the corresponding variants of
Proposition 2.2.
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Now let us turn to consider the case when Ω is unbounded. A basis of the
main theorems of the present paper is the following proposition asserting the critical
embedding W1,p(·) (Ω) ↪→ Lp∗(·)(Ω) in the case when Ω is unbounded and p+ < N .

PROPOSITION 2.3. (see [15]) Let Ω ⊂ RN be a bounded or an unboundeddomain
satisfying the cone condition, p ∈ C0,1(Ω) with Lipschitz constant L and 1 < p− �
p+ < N . Then there holds a continuous embedding W1,p(·) (Ω) ↪→ Lp∗(·)(Ω) , where
the embedding constant c depends only on N , p− , p+ , L and the dimensions of the
cone C in the cone condition. Furthermore, for any q ∈ L∞(Ω) satisfying condition

p(x) � q(x) � p∗(x) for a.e. x ∈ Ω,

there holds a continuous embedding W1,p(·) (Ω) ↪→ Lq(·)(Ω) .

We want prove Theorem 1.1 by using Proposition 2.3. However, the methods used
in the proof of Proposition 2.2 are not completely suitable for the unbounded domain

case because in the proof of Proposition 2.2 the fact W1,p(·) (Ω) ↪→ W1,̃p(·) (Ω) is used
but it is not true in the unbounded domain case. To prove Theorem 1.1 we need some
new methods, in particular the following result is useful.

PROPOSITION 2.4. Let Q be a bounded open set in RN with |Q| � 1 . Suppose
that p1, p2 ∈ L∞(Q) and

1 � p1(x) � p2(x) for a.e. x ∈ Q.

Then |u|Lp1(·)(Q) � 2 |u|Lp2 (·)(Q) for every u ∈ Lp2(·) (Q) , and ‖u‖W1,p1(·)(Q) � 2 ‖u‖W1,p2(·)(Q)

for every u ∈ W1,p2(·) (Q) .

Proof. Take any u ∈ Lp2(·) (Q) with |u|p2(·) = 1 . Obviously, u ∈ Lp1(·) (Q) . Put

Q0 = {x ∈ Q : p1(x) = p2(x)} and Q1 = Q \ Q0.

Then, by the Young inequality,∫
Q
|u|p1(x) dx =

∫
Q0

|u|p1(x) dx +
∫

Q1

1 · |u|p1(x) dx

=
∫

Q0

|u|p2(x) dx +
∫

Q1

1(
p2(x)
p1(x)

)′ dx +
∫

Q1

|u|p2(x)

p2(x)
p1(x)

dx

�
∫

Q0

|u|p2(x) dx + |Q1| +
∫

Q1

|u|p2(x) dx

� 1 +
∫

Q
|u|p2(x) dx = 1 + 1 = 2,

which implies |u|p1(·) � 2 . This shows that |u|p1(·) � 2 |u|p2(·) for every u ∈ Lp2(·) (Q) .

When u ∈ W1,p2(·) (Q) , we have that u ∈ W1,p1(·) (Q) and

‖u‖W1,p1(·)(Q) = |u|Lp1 (·)(Q) + |∇u|Lp1(·)(Q)

� 2 |u|Lp2(·)(Q) + 2 |∇u|Lp2 (·)(Q) = 2 ‖u‖W1,p2(·)(Q) . �
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3. Proof of main results

In this section we prove Theorems 1.1–1.3.

Proof of Theorem 1.1. Let the hypotheses of Theorem 1.1 hold and let q ∈ L∞(Ω)
satisfy (1.1). Analogously to the proof of Proposition 2.2, take r > q+ such that
r∗ > 1 , and define p̃ : Ω → R by

p̃(x) =
{

p(x), if p(x) < r∗
r∗, if p(x) � r∗.

(3.1)

Then p̃ ∈ C0,1(Ω) , p̃− > 1, p̃+ � r∗ < N and p̃(x) � p(x) for every x ∈ Ω . For
x ∈ Ω with p(x) < r∗ , we have that p̃(x) = p(x) , p̃∗(x) = p∗(x) � q(x) . For x ∈ Ω
with p(x) � r∗ , we have p̃∗(x) = (r∗)

∗ = r > q+ � q(x) � p(x) . Thus

p̃ (·) � p (·) � q (·) � p̃∗ (·) on Ω and p (·) � p̃∗ (·) on Ω. (3.2)

Below we shall prove that there holds a continuous embedding

W1,p(·) (Ω) ↪→ Lp̃∗(·)(Ω). (3.3)

It is obvious that the assertion of Theorem 1.1, W1,p(·) (Ω) ↪→ Lq(·)(Ω) , follows from
(3.3) and (3.2).

Let any u ∈ W1,p(·) (Ω) be given. We shall prove that u ∈ Lp̃∗(·)(Ω) .
Since p̃ and p are uniformly continuous on Ω , by (3.2), there exists δ1 > 0 small

enough such that

(p̃∗)− (E) � p+(E) for any E ⊂ Ω with diamE � δ1. (3.4)

Since u ∈ W1,p(·) (Ω) , there exists δ2 ∈ (0, 1) small enough such that∫
E

(
|∇u|p(x) + |u|p(x)

)
dx � 1 for any E ⊂ Ω with |E| � δ2. (3.5)

Note that Ω satisfies the uniform cone condition. Let {Uj} , C , δ , and K be as in
the definition of the uniform cone condition. From the definition we can see that there
exists a locally finite open cover {Vi}∞i=1 of ∂Ω , being a refinement of {Uj} , such that
for each i , diamVi � δ1 , |Vi| � δ2 , Vi ∩ Ω satisfies the cone condition with a finite
cone ε1C , where ε1 ∈ (0, 1) is independent of i , ∪∞

i=1Vi ⊃ Ωδ3 for some δ3 ∈ (0, δ) ,
and ord{Vi} � K1 for some positive integer K1 � K . Without loss of generality,
we may assume that the aperture angle of the cone C is less than π

2 . Take δ4 > 0
small enough such that for a N -cube Q with edge length δ4 , there hold |Q| � δ2 and
diamQ < min{δ1, δ3} . We can find a closed-cube over {Qi}∞i=1 of Ω \ Ωδ3 such that
each Qi is an open N -cube with edge length δ4 , Qi ∩ (Ω \Ωδ3) �= ∅ for every i , and
Qi∩Qj = ∅ for i �= j . Note that Qi ⊂ Ω because diamQi < δ3 , and each N -cube with
edge length δ4 satisfies the cone condition with a finite cone ε2C for some sufficiently
small ε2 ∈ (0, 1) . Put Wi = Vi ∩ Ω . We renumber {Wi}∞i=1 ∪ {Qi}∞i=1 and denote it
by {Gj}∞j=1 , where Gj = Wi or Qi . Then {Gj}∞j=1 satisfies the following conditions:
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1) Each Gj ⊂ Ω is open and
∣∣Ω \ (∪∞

j=1Gj
)∣∣ = 0.

2) Each Gj satisfies the cone condition with a finite cone C0 independent of j ,
where C0 = εC with ε = min{ε1, ε2} .

3) For each j , diamGj � δ1 and |Gj| � δ2 < 1 .
4) ord {Gj} � K2 for some positive integer K2 .
For each bounded open set Gj , since p̃(x) � p(x) for all x ∈ Ω and |Gj| < 1 , we

have that W1,p(·) (Gj) ↪→ W1,̃p(·) (Gj) , and by Proposition 2.4,

‖u‖
W1,̃p(·)(Gj)

� 2 ‖u‖W1,p(·)(Gj) for every u ∈ W1,p(·) (Gj) . (3.6)

Since diamGj � δ1 ,
(p̃∗)− (Gj) � p+(Gj) for every j. (3.7)

Applying Proposition 2.3 to W1,̃p(·) (Gj) , we know that there holds the embedding

W1,̃p(·) (Gj) ↪→ Lp̃∗(·)(Gj) (3.8)

and the embedding constant cj depends only on N , p̃− , p̃+ and the dimensions of the
cone C0 , and hence we can take the embedding constant cj = c0 which is independent
of j (note that this is a key of the proof). We may assume c0 � 1 .

Since |Gj| � δ2 , by (3.5),∫
Gj

(
|∇u|p(x) + |u|p(x)

)
dx � 1 for every j. (3.9)

Thus, for each Gj , by (3.6)-(3.9), we have that∫
Gj

|u|̃p∗(x) dx =
(
|u|

L̃p∗ (·)(Gj)

)p̃∗(ξj)
�
(

c0 ‖u‖
W1,̃p(·)(Gj)

)p̃∗(ξj)

�
(
2c0 ‖u‖W1,p(·)(Gj)

)p̃∗(ξj)

� 2rcr
0

(∫
Gj

(
|∇u|p(x) + |u|p(x)

)
dx

) p̃∗(ξj)
p(ηj)

� 2rcr
0

∫
Gj

(
|∇u|p(x) + |u|p(x)

)
dx, (3.10)

where ξj and ηj are some elements in Gj , and by (3.7),
p̃∗(ξj)
p(ηj)

� 1 .

From (3.10) and ord{Gj} � K it follows that∫
Ω
|u|̃p∗(x) dx �

∞∑
j=1

∫
Gj

|u|̃p∗(x) dx � 2rcr
0

∞∑
j=1

∫
Gj

(
|∇u|p(x) + |u|p(x)

)
dx

� 2rcr
0K2

∫
Ω

(
|∇u|p(x) + |u|p(x)

)
dx, (3.11)
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which shows that (3.3) holds. Theorem 1.1 is proved. �

Proof of Theorem 1.2. Let the hypotheses of Theorem 1.2 hold and let q ∈ L∞(Ω)
satisfy (1.2). Take r > q+ such that r∗ > 1 . Define p̃1 : Ω → R by

p̃1(x) =
{

p(x), if p(x) < r∗
r∗, if p(x) � r∗.

Then p̃1 : Ω → R is uniformly continuous, (p̃1)− > 1, (p̃1)+ < N and p̃1(x) � p(x)
for every x ∈ Ω . It is easy to verify that

p̃1 (·) � p (·) � q (·) � (p̃1)
∗ (·) on Ω. (3.12)

Since p̃1 : Ω → R is uniformly continuous, given any ε1 > 0 , there exists a
Lipschitz function p̃ : Ω → R such that

p̃(x) � p̃1(x) � p̃(x) + ε1 for every x ∈ Ω.

Noting that q (·) � (p̃1)
∗ (·) on Ω , we can take ε1 > 0 small enough such that

p̃ (·) � p (·) � q (·) � (p̃)∗ (·) on Ω. (3.13)

Note that (3.13) implies (3.2). Using the same arguments as were done in the
proof of Theorem 1.1, we can prove that

W1,p(·) (Ω) ↪→ Lp̃∗(·)(Ω), (3.14)

and then the assertion of Theorem 1.2, W1,p(·) (Ω) ↪→ Lq(·)(Ω) , follows from (3.14)
and (3.13). �

We omit the proof of Theorem 1.3 because it can be carried out in the same way as
the proof of Theorem 3.1 in [17]. Indeed, the only difference between the two theorems
is that in Theorem 1.3 the assumption p+ < N is not required. The only difference
between the proofs of the two theorems is that in the proof of Theorem 1.3 we need use
Theorem 1.2 instead of Theorem 1.2 in [15] used in the proof of Theorem 3.1 in [17].

As was noted in [13], there are some variants of Proposition 2.3. In [13] the
following definition was introduced.

DEFINITION 3.1. Let γ ∈ S(Ω) satisfy 1 � γ− � γ+ < ∞ . The space
W1,(∞,γ (·))(Ω) is defined by

W1,(∞,γ (·))(Ω) :=
{

u ∈ L∞(Ω) : |∇u| ∈ Lγ (·)(Ω)
}

with the norm ‖u‖W1,(∞,γ (·))(Ω) = ‖u‖1,(∞,γ (·)) := |u|∞ + |∇u|γ (·) .

In [13] the following proposition was proved.
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PROPOSITION 3.1. (see [13]) Let Ω be a (bounded or unbounded) domain in R
N

satisfying the cone condition and p ∈ W1,(∞,γ (·))(Ω) with 1 � p− � p+ < N ,
where γ ∈ S(Ω) and N < γ− � γ+ < ∞ . Then there is a continuous embedding
W1,p(·) (Ω) ↪→ Lq(·)(Ω) provided q ∈ S(Ω) satisfies condition (1.1).

Note that the condition p ∈ W1,(∞,γ (·))(Ω) is a generalization of the condition
p ∈ W1,σ(Ω) with σ > N , introduced by Edmunds and Rákosnı́k [12] in the bounded
domain case, to the unbounded domain case. As was noted in [13], condition p ∈
W1,(∞,γ (·))(Ω) and condition p ∈ C0,1(Ω) can have a uniform form such that |∇p| ∈
Lγ1(Ω) + Lγ2(Ω) with N < γ1 � γ2 � ∞ .

Based on Proposition 3.1, we can obtain a variant of Theorem 1.1 as follows.

THEOREM 3.1. Let Ω ⊂ RN be an unbounded domain satisfying the strong local
Lipschitz condition. Suppose that p ∈ W1,(∞,γ (·))(Ω) with 1 � p− � p+ < ∞ ,
where γ ∈ S(Ω) and N < γ− � γ+ < ∞ . Then there holds a continuous embedding
W1,p(·)(Ω) ↪→ Lq(·)(Ω) for any q ∈ L∞(Ω) satisfying condition (1.1).

Let Ω ⊂ R
N be an unbounded domain. We say that p : Ω → R is globally

log-Hölder continuous on Ω , denoted still by p ∈ C
0, 1

|log t| (Ω) , if p satisfies (2.2) and

|p(x) − p(y)| � C
log(e + |x|) , ∀x, y ∈ Ω with |y| � |x| .

It is well-known that, when p ∈ C
0, 1

|log t| (RN) , there holds the critical embedding
W1,p(·)(RN) ↪→ Lp∗(·)(RN) (see e.g. [7]). It is also well-known that, in the case when Ω
is a boundeddomain satisfying the Lipschicz condition and p ∈ C

0, 1
|log t| (Ω) , there exists

a satisfactory bounded linear extension operator from W1,p(·) (Ω) into W1,p(·)(RN) , and
consequently, Proposition 2.1 holds (see [8]). If, in the case when Ω is an unbounded

domain satisfying the strong local Lipschicz condition and p ∈ C
0, 1

|log t| (Ω) , there exists
the corresponding extension operator, (the author believes this is true), then the assertion

of Theorem3.1 remains in force if use p ∈ C
0, 1

|log t| (Ω) with 1 < p− � p+ < ∞ instead
of p ∈ W1,(∞,γ (·))(Ω) with 1 � p− � p+ < ∞ .

It is obvious that, for bounded Ω,

C0,1(Ω) ⊂ W1,γ (Ω) ⊂ C
0, 1

|log t| (Ω),

where γ > N . However, for unbounded Ω , as was noted in [13], the three conditions
that i) p ∈ C0,1(Ω) , ii) p ∈ W1,(∞,γ (·))(Ω) with N < γ− � γ+ < ∞ and iii)

p ∈ C
0, 1

|log t| (Ω) are independent each other.
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