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Abstract. In this paper, we consider a general composed convex optimization problem with in-
equality systems involving a finite number of convex constraints. We establish the strong duality
between the primal problem and the Fenchel-Lagrange dual problem by a conjugate duality ap-
proach. Moreover, we obtain some new Farkas-type results for this problem by using weak and
strong duality theorems. Our results contain some recent results as special cases.

1. Introduction

It is well-known that the Farkas lemma [7] plays an important role in the devel-
opment of linear programming and optimization theory. During the last two decades, a
number of Farkas-type results have been given in the literature with application to more
general nonlinear programming problems and nonsmooth optimization problems (see,
for example, [8]–[12], [15], [17], [21]).

Recently, Bot and Wanka [5] obtained some new Farkas-type results for inequality
systems involving a finite as well as infinite number of convex constraints using the epi-
sum formula (see Lemma 2.2 below) and the theory of conjugate duality (see [6]) for
convex problems. Also recently, by using the epi-sum formula, Bot et al. [2] presented
some Farkas-type results for composed convex optimization problems with inequality
systems involving finitely many functions. In deriving the Farkas-type duality results,
the epi-sum formula plays an important role. Recently, some useful new sufficient
conditions in terms of separability (see Lemma 3.1 of [14]) and interesting extensions
(see [15]) for the epi-sum formula have been derived. Some relevant discussion of the
epi-sum formula can be found in the new comprehensive monograph [18].

Motivated and inspired by the research works mentioned above, in this paper, we
consider a general composed convex optimization problems with inequality systems
involving a finite number of convex constraints. We give a Fenchel-Lagrange dual for
this problem and establish weak and strong duality assertions. Moreover, we obtain
some new Farkas-type results for general composed convex optimization problems.
Our results extend and improve some corresponding results in [2, 3, 5].
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2. Preliminaries

In this section, we describe the notations and present preliminary results. Through-
out this paper, all vectors will be column vectors. A column vector will be transposed to
a row vector by an upper index T . The inner product of two vectors x = (x1, . . . ,xn)T

and y = (y1, . . . ,yn)T in the n -dimensional real space R
n will be denoted by xT y =

∑n
i=1 xiyi . A nonempty subset K of R

m is said to be a cone if λK ⊆ K for all λ � 0.
Also K is said to be a convex cone if K is a cone and K +K ⊆ K .

Let K be a nonempty closed convex cone with

K∗ = {α ∈ Rm : αT x � 0, ∀ x ∈ K}

its dual cone. Consider the ordering �K in R
m induced by K as

y �K x iff x− y ∈ K, ∀ x,y ∈ R
m.

Let X ⊆ R
n be a nonempty subset. The relative interior and the convex hull of the

set X are denoted by ri (X) and co(X) , respectively. Furthermore, the cone and convex
cone generalized by the set X are denoted by cone(X) =

⋃
λ�0λX and coneco(X) =⋃

λ�0λco(X) , respectively. Let X ⊆ R
n be a given subset. We consider the following

two functions, respectively, the support function σX given by

σX(u) = sup
x∈X

uT x

and the indictor function δX given by

δX (x) =
{

0, if x ∈ X ,
+∞, otherwise.

For a given function f : R
n → R = R∪{±∞} , we denote by dom ( f ) = {x ∈ R

n :
f (x) < +∞} its effective domain and by epi( f ) = {(x,r) ∈ R

n ×R : f (x) � r} its
epigraph, respectively. We say that f is proper if its effective domain is a nonempty set
and f (x) > −∞ for all x ∈ R

n .
Now, we define for the function f the conjugate relative to X by

f ∗X : R
n → R, f ∗X (p) = sup

x∈X
{pTx− f (x)}.

Clearly, if X = R
n , then the conjugate function relative to X becomes the classical

conjugate function of f (the Fenchel-Moreau conjugate)

f ∗ : R
n → R, f ∗(p) = sup

x∈Rn
{pT x− f (x)}.

In addition, it can be easily proved that

f ∗X = ( f + δX)∗ and δ ∗
X = σX .



FARKAS-TYPE RESULTS FOR GENERAL COMPOSED CONVEX OPTIMIZATION PROBLEMS 137

We consider also the linear operator

M : R
n ×R → R×R

n, M(x,r) = (r,x).

DEFINITION 2.1. A function f : R
m → R is said to be K -increasing if, for any

x,y ∈ R
m with x �K y , we have f (x) � f (y) .

DEFINITION 2.2. A function F : R
n → R

m is said to be K -convex if, for all
x,y ∈ R

n and λ ∈ [0,1] , we have

λF(x)+ (1−λ )F(y) ∈ F(λx+(1−λ )y)+K.

DEFINITION 2.3. [16] Let f1, · · · , fm : R
n → R be given functions. The function

f1� · · ·� fm : R
n → R , defined by

( f1� · · ·� fm)(x) := inf{
m

∑
i=1

fi(xi) :
m

∑
i=1

xi = x},

is called the infimal convolution function of f1, · · · , fm .
The following lemmas will be used in the sequel.

LEMMA 2.1. [16] Let f1, · · · , fm : R
n → R be proper convex functions. If the set⋂m

i=1 ri (dom ( fi)) is nonempty, then

(
m

∑
i=1

fi)∗(p) = ( f ∗1 � · · ·� f ∗m)(p) = inf{
m

∑
i=1

f ∗i (pi) :
m

∑
i=1

pi = p}

and for each p ∈ R
n the infimum is attained.

LEMMA 2.2. [2] Let f1, · · · , fm : R
n → R be proper convex functions. If the set⋂m

i=1 ri (dom ( fi)) is nonempty, then

epi((
m

∑
i=1

fi)∗) =
m

∑
i=1

epi( f ∗i ).

LEMMA 2.3. [2] Let f : R
k → R be a proper convex function and α > 0 be a

real number. Then
epi((α f )∗) = αepi( f ∗).

3. Duality for general composed convex optimization problems

Let X be a nonempty convex subset of R
n and K be a nonempty closed convex

cone in R
k . Assume that f : R

k → R is a proper, convex and K -increasing function,
h : R

n → R is a proper convex function, F : R
n → R

k is a K -convex function and
g = (g1, · · · ,gm)T : R

n → R
m is a vector-valued function, where gi is convex for i =

1, · · · ,m . Moreover, we assume that

X ∩dom (h)∩F−1(dom ( f )) 	= /0, (3.1)

where F−1(dom ( f )) = {x ∈ R
n : F(x) ∈ dom ( f )} .
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In this section, we consider the following optimization problem:

(P) inf
x∈X , g(x)�0

f (F(x))+h(x).

Denote by v(P) the optimal objective value of the optimization problem (P) .
Since condition (3.1) holds, it is easy to see that v(P) < +∞ . By Proposition 2 in

[20], the function f ◦F is a convex function. Thus, the problem (P) is a convex opti-
mization problem. In order to give a dual problem for (P) , we consider the following
convex optimization problem:

(P1) inf
x∈X , g(x)�0, y∈Rk , F(x)−y∈−K

f (y)+h(x).

PROPOSITION 3.1. For the optimal objective values of (P) and (P1) , we have
v(P) = v(P1) .

Proof. Let x be feasible to (P) . If x /∈ dom (h)
⋂

F−1(dom ( f )) , then either
h(x) = +∞ or f (F(x)) = +∞ or both, such that

f (F(x))+h(x) = +∞� v(P1).

If x∈ dom (h)
⋂

F−1(dom ( f )) , let y = F(x) . It follows that F(x)−y = 0∈−K . Thus,
(x,y) is feasible to (P1) and

f (F(x))+h(x) = f (y)+h(x) � v(P1).

Conversely, let us consider (x,y) feasible to (P1) . Then x is feasible to (P) and
F(x)− y ∈ −K . It follows that F(x) �K y . Since f is K -increasing,

v(P) � f (F(x))+h(x) � f (y)+h(x).

Taking the infimum on the right side over (x,y) feasible to (P1) , we obtain v(P) �
v(P1) . Therefore, v(P) = v(P1) . This completes the proof. �

This result allows us to affirm that any dual problem of (P1) is automatically a
dual problem of (P) .

For the problem (P1) , we consider its Lagrange dual problem:

(DL) sup
α�0, β∈K∗

inf
x∈X , y∈Rk

{ f (y)+h(x)+αTg(x)+β T (F(x)− y)}.

By the definition of the conjugate relative to a set and Lemma 2.1, we have

inf
x∈X , y∈Rk

{ f (y)+h(x)+αTg(x)+β T (F(x)− y)}

= inf
x∈X

{h(x)+αTg(x)+β TF(x)}+ inf
y∈Rk

{ f (y)−β T y}

= −sup
x∈X

{−h(x)−αTg(x)−β TF(x)}− sup
y∈Rk

{β T y− f (y)}

= −(h+αTg+β TF)∗X (0)− f ∗(β )

= − f ∗(β )− inf
p∈Rn, q∈Rn

{h∗(p)+ (αTg)∗X(q)+ (β TF)∗(−p−q)},

and the last infimum is attained for some p, q ∈ R
n .
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Therefore, the Fenchel-Lagrange dual problem (more information regarding this
type of dual is to be found in [4], [19] and [20]) to (P1) is

(D) sup
α�0, β∈K∗, p∈Rn, q∈Rn

{− f ∗(β )−h∗(p)− (αT g)∗X(q)− (β TF)∗(−p−q)}.

As a direct consequence of our construction of (D) , the following weak duality
holds.

THEOREM 3.1. v(P) � v(D) .
It is well-known that strong duality may not hold in general. In order to obtain

strong duality, many constraint qualifications have been extensively studied (see, for
example, [1, 2, 3, 13, 14, 15]). In this paper, we consider the following constraint
qualification:

(CQ) ∃ x0 ∈ ri (X) ∩ ri (dom (h)) such that

⎧⎨
⎩

F(x0) ∈ ri (dom ( f ))− ri (K),
gi(x0) � 0, i ∈ L,
gi(x0) < 0, i ∈ N,

where L := {i ∈ {1, · · · ,m} : gi is an affine function} and N := {i ∈ {1, · · · ,m}}\L.

THEOREM 3.2. Assume that v(P) is finite. If (CQ) is satisfied then v(P) = v(D)
and the dual problem has an optimal solution.

Proof. Since v(P) = v(P1) , we need only to prove that v(P1) = v(D) . Now, we
consider the Lagrange dual to the problem (P1)

(DL) sup
α�0, β∈K∗

inf
x∈X , y∈Rk

{ f (y)+h(x)+αTg(x)+β T (F(x)− y)}.

Since condition (CQ) is fulfilled and all the involved functions are convex, it is well-
known from the literature (see, [16]) that strong duality between (DL) and (P1) holds,
i.e., v(DL) = v(P1) . Therefore, there exist α � 0 and β ∈ K∗ such that

v(P1) = sup
α�0, β∈K∗

inf
x∈X , y∈Rk

{ f (y)+h(x)+αTg(x)+β T (F(x)− y)}

= inf
x∈X , y∈Rk

{ f (y)+h(x)+αT g(x)+β
T
(F(x)− y)}

= inf
x∈X

{h(x)+αT g(x)+βT
F(x)}+ inf

y∈Rk
{ f (y)−βT

y}

=− sup
x∈X

{−h(x)−αT g(x)−β
T
F(x)}− sup

y∈Rk
{βT

y− f (y)}

=− f ∗(β )− (h+αT g+βT
F)∗X(0).

Now since

ri (dom (h))∩ ri (F−1(dom ( f )))∩ ri (dom (g)) = ri (X) 	= /0,



140 XIAN-JUN LONG, NAN-JING HUANG AND DONAL O’REGAN

by Lemma 2.1, we get

v(P1) = − f ∗(β )− inf
p∈Rn, q∈Rn

{h∗(p)+ (αT g)∗X(q)+ (β
T
F)∗(−p−q)}

and there exist p∗, q∗ ∈ R
n such that the infimum is attained, i.e.,

v(P1) = − f ∗(β )−h∗(p∗)− (αT g)∗X(q∗)− (β
T
F)∗(−p∗−q∗).

This with Proposition 3.1 yields v(P) = v(D) and (p∗,q∗,α ,β ) is an optimal solution
for (D) . This completes the proof. �

To illustrate Theorem 3.2, we give the following example.

EXAMPLE 3.1. Let m = k = n = 1, X = [0,1] and K = R+ . Let F(x) = x2 ,
g(x) = x2 −1 and h(x) = |x| for all x ∈ R . Let

f (x) =
{

x, if x ∈ [0,+∞),
+∞, otherwise.

Clearly the conditions of Theorem 3.2 are satisfied. It is easy to verify that v(P) =
v(D) = 0.

4. Some Farkas-type results via weak and strong duality

In this section, we obtain some Farkas-type results for a general composed con-
vex optimization problem with finitely many constraints by using the weak and strong
duality obtained in the previous section. Also some special cases are discussed.

THEOREM 4.1. Suppose that (CQ) holds. Then the following statements are
equivalent:

(i) x ∈ X , g(x) � 0 ⇒ f (F(x))+h(x) � 0 ;

(ii) there exist p, q ∈ R
n , α � 0 and β ∈ K∗ such that

f ∗(β )+h∗(p)+ (αTg)∗X(q)+ (β TF)∗(−p−q) � 0.

Proof. (i)⇒ (ii). Suppose that (i) holds. It follows that v(P) � 0. Since the
assumptions of Theorem 3.2 are satisfied, strong duality holds, i.e., v(P) = v(D) � 0
and the dual (D) has an optimal solution. Therefore, there exist p, q ∈ R

n , α � 0 and
β ∈ K∗ such that

f ∗(β )+h∗(p)+ (αTg)∗X(q)+ (β TF)∗(−p−q) � 0.

(ii)⇒(i). Choose p, q ∈ R
n , α � 0 and β ∈ K∗ such that

f ∗(β )+h∗(p)+ (αTg)∗X(q)+ (β TF)∗(−p−q) � 0.

It follows that

v(D) � − f ∗(β )−h∗(p)− (αTg)∗X(q)− (β TF)∗(−p−q) � 0.

Since weak duality between (P) and (D) holds, v(P) � 0 and so (i) holds. This com-
pletes the proof. �
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COROLLARY 4.1. Suppose (CQ) holds. Then either the inequality system

(I) x ∈ X , g(x) � 0 ⇒ f (F(x))+h(x) < 0

has no solution or the system

(II) f ∗(β )+h∗(p)+ (αTg)∗X(q)+ (β TF)∗(−p−q) � 0, p, q ∈ R
n, α � 0, β ∈ K∗.

has a solution but never both.

REMARK 4.1. A slight modification of the proof in Theorem 4.3 in [1] guarantees
the following:

Statement (ii) in Theorem 4.1 is equivalent to

(0,0,0) ∈{0}×M(epi( f ∗))+
⋃

β∈K∗
(epi((β T F)∗))×{−β}+ epi(σX )×{0}

+ coneco(
m⋃

i=1

epi(g∗i ))×{0}+ epi(h∗)×{0}. (4.1)

EXAMPLE 4.1. Let X , K , F , g , h and f be the same as in Example 3.1. It is
easy to verify that

epi( f ∗) = [0,1]×R+, epi(h∗) = [0,1]×R+,

epi(σX ) = {0}×R+, epi(g∗) = {0}× [1,+∞)

and
epi((βF)∗) = {0}×R+, ∀β � 0.

Note that (0,0) ∈ coneco(epi(g∗)) . Thus, we can find β = 0 such that (4.1) holds.
Now, we consider some special cases.
If h(x) = 0 for all x ∈ R

n , then the constraint qualification (CQ) becomes

(CQ1) ∃ x0 ∈ ri(X) such that

⎧⎨
⎩

F(x0) ∈ ri (dom ( f ))− ri (K),
gi(x0) � 0, i ∈ L,
gi(x0) < 0, i ∈ N.

Therefore, we have the following results.

COROLLARY 4.2. Suppose that (CQ1) holds. Then the following statements are
equivalent:

(i) x ∈ X , g(x) � 0 ⇒ f (F(x)) � 0 ;

(ii) there exist p ∈ R
n , α � 0 and β ∈ K∗ such that

f ∗(β )+ (αTg)∗X (p)+ (β TF)∗(−p) � 0.
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REMARK 4.2. Statement (ii) in Corollary 4.2 is equivalent to

(0,0,0) ∈{0}×M(epi( f ∗))+
⋃

β∈K∗
(epi((β T F)∗))×{−β}

+ coneco(
m⋃

i=1

epi(g∗i ))×{0}+ epi(σX)×{0}.

REMARK 4.3. If K = R
m
+ , then Corollary 4.2 and Remark 4.2 reduce to the cor-

responding results of Bot et al. in [2].
If F(x) = x and h(x) = 0 for all x ∈ R

n , then the constraint qualification (CQ)
becomes

(CQ2) ∃ x0 ∈ ri(X)∩ ri (dom ( f )) such that

{
gi(x0) � 0, i ∈ L,
gi(x0) < 0, i ∈ N.

Thus, it is easy to get the following results.

COROLLARY 4.3. Suppose that (CQ2) holds. Then the following statements are
equivalent:

(i) x ∈ X , g(x) � 0 ⇒ f (x) � 0 ;

(ii) there exist p ∈ R
n and α � 0 such that

f ∗(p)+ (αT g)∗X(−p) � 0.

REMARK 4.4. Statement (ii) in Corollary 4.3 is equivalent to

(0,0) ∈epi( f ∗)+ coneco(
m⋃

i=1

epi(g∗i ))+ epi(σX).

REMARK 4.5. Corollary 4.3 and Remark 4.4 were obtained by Bot and Wanka in
[5].

REMARK 4.6. If g(x) = 0 for all x ∈ R
n , then Theorem 4.1 and Remark 4.1

reduce to the corresponding results in [3].

REMARK 4.7. As pointed out by the referee, the analysis in this paper can be
carried forward to the cone constraints case with some suitable modifications. We leave
it to readers who are interested in this area.
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