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Abstract. In this paper,the spatial behaviors of a nonlinear and a quasi-linear parabolic equations
with nonlinear boundary conditions are studied on a half cylinder.Under suitable conditions, we
get a various, but closely related forms of Phragmén-Lindelöf principle, and we have proved
the smooth solution either fails to exist globally, or when it does exist globally,it must tend
asymptotically to zero with increasing long distance along the cylinder from the base.

1. Introduction

Saint-Venant in [25] formulated and conjectured a famous mathematical and me-
chanical principle which came to be known in subsequent literatures as Saint−Venant ,s
principle and led to an extensive investigation in the framework of applied mathematics.
A review of recent work on Saint-Venant’s principle is given in the work of Horgan and
Knowles [11], and has been periodically updated by Horgan [9], [10]. Early work on
Saint-Venant’s principle primarily focused on the spatial behavior of elliptic equations,
and one could refer to Flavin and Knops [7], Horgan and Payne [12], [13].

In recent years, a number of papers have dealt with the spatial decay of solutions
of linear and nonlinear parabolic initial-boundary problems defined in a semi-infinite
strips or cylinders. This work began perhaps with Boley [3], [4], who investigated the
spatial decay of heat equation. Other subsequent contributions mainly on the spatial be-
haviors of parabolic equations. These papers include Bofill and Quintanilla [5], Horgan
and Payne et. al. [14], Lin and Payne [15], [16], Liu and Lin [17], Payne and Phillipin
[18], Payne and Schaefer et. al. [19] and Quintanilla [23]. Most of this work has dealt
with the solutions of parabolic problems in a semi-infinite cylinder with homogeneous
initial data and homogeneous Dirichlet data on the lateral surface of the cylinder for
positive time.

It is known to us all that, the “blow-up”, or “non-existence” of the solution is an
important aspect in the study of partial differential equation, which had been extensively
studied in the literature. The contributions concerning this question were explained in
the work of Ames [1], the books of Ames and Straughan [2], Evans [6], Flavin and
Rionero [8], and the book of Straughan [26]. Recently, papers deal with the blow-up
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phenomenon is abound in literature. For example, Payne and Song [22], Payne and
Schaefer [20], [21], and Quintanilla [24], but most of them are concerned with the time
variable. Little attention has been given to the spatial blow-up of solutions in general.

In the present paper, the spatial behaviors of a nonlinear and a quasi-linear parabolic
equations with nonlinear boundary conditions are studied on a half cylinder. Under
suitable conditions, we get a various, but closely related forms of Phragmén-Lindelöf
principle, and we have proved the smooth solution either fails to exist globally, or when
it does exist globally, it must tend asymptotically to zero with increasing long distance
along the cylinder from the base.

Let R be the cylinder (0,∞)×D , where D is a two dimensional bounded domain
such that the boundary ∂D is smooth enough to apply the divergence theorem. Let
D(z) denote the cross section of those points in R such that x1 = z , R(z) denotes the
points of R such that x1 > z and Σ(z) denotes (z,∞)× ∂D . The equations we study
here are determined on the semi-infinite cylinder R.

The plan of the paper is the following: Section 2 is devoted to the study of the
nonlinear parabolic equation. We give sufficient conditions to assess that the solutions
either don’t exist for all spatial values or else they decay algebraically. In Section 3,
we give sufficient conditions to obtain a similar result for the quasi-linear parabolic
equation.

In this article, the usual summation convention is employed with repeated Latin
subscripts summed from 1 to 3, and repeated Greek subscripts from 2 to 3. The comma
is used to indicate partial differentiation, and the differentiation with respect to the
direction xk is denoted by, k .

2. Nonlinear parabolic equation

The first problem we consider is determined by the equation:

s(x,u)u,t = (ρ(x,u,q2)u,i),i −E(u),q2 = |∇u|2, (2.1)

and the boundary condition

ρ
∂u
∂n

+ f (u) = 0,∂D× (0,∞), (2.2)

where nα are the components of the unit outward normal on ∂D , and f(u) is assumed
to satisfy

f (u) � 0. (2.3)

It is worth noting that the homogeneous Neumann boundary condition ∂u
∂n = 0

is included in condition (2.2), because it corresponds to the case f(u)=0. To have the
problem determined, we need to impose boundary conditions on the finite end of the
cylinder. However, we don’t mention the explicit boundary condition on this part of the
boundary because this is not relevant in our analysis. The solution u satisfies the initial
condition:

u(x,0) = 0 x ∈ R. (2.4)
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For simplicity, we deal with the function ρ that verifies the following assumption:
There is a positive constant ρM such that

0 � ρ � ρM. (2.5)

And we consider the class for which

E(u) > 0, (2.6)

and ∫ ∞

0
E−β (η)dη < M. (2.7)

where M is a positive constant.
Simple example of such a nonlinearity is E(u) = (1+u2)2 satisfies the conditions (2.6)
and (2.7), for which β = 1

2 .
Now, we assume there exists a function S(x,u) � 0 which satisfies the conditions:

s(x,u)g(u) =
∂S(x,u)
∂u

, (2.8)

S(x,0) = 0. (2.9)

where g(u) is a positive function which will be defined later.
In this section, we consider the function:

Φ(z,t) = −
∫ t

0

∫
D(z)

exp(−ωs)ρg(u)u,1dads, (2.10)

where ω > 0 is a constant.
Using the divergence theorem and the boundary conditions, we see that

Φ(z, t) = Φ(z0,t)−
∫ t

0

∫ z

z0

∫
D(z)

exp(−ωs)(ρg(u)u,i),idvds

−
∫ t

0

∫ z

z0

∫
∂D(z)

exp(−ωs)g(u) f (u)dads (2.11)

= Φ(z0,t)−
∫ t

0

∫ z

z0

∫
D(z)

exp(−ωs)(ρu,i),ig(u)dvds

−
∫ t

0

∫ z

z0

∫
D(z)

exp(−ωs)ρu,ig
′(u)u,idvds

−
∫ t

0

∫ z

z0

∫
∂D(z)

exp(−ωs)g(u) f (u)dads. (2.12)

In view of (2.1), we obtain

Φ(z,t) = Φ(z0, t)−
∫ t

0

∫ z

z0

∫
D(z)

exp(−ωs)g(u)u,ss(x,u)dvds

−
∫ t

0

∫ z

z0

∫
D(z)

exp(−ωs)g(u)E(u)dvds−
∫ t

0

∫ z

z0

∫
D(z)

exp(−ωs)ρg′(u)q2dvds

−
∫ t

0

∫ z

z0

∫
∂D(z)

exp(−ωs)g(u) f (u)dads. (2.13)
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Making use of (2.8) and (2.9), we get

Φ(z, t) = Φ(z0, t)−ω
∫ t

0

∫ z

z0

∫
D(z)

exp(−ωs)S(x,u)dvds

−
∫ z

z0

∫
D(z)

exp(−ωs)S(x,u)dv|s=t −
∫ t

0

∫ z

z0

∫
D(z)

exp(−ωs)ρg′(u)q2dvds

−
∫ t

0

∫ z

z0

∫
∂D(z)

exp(−ωs)g(u) f (u)dads

−
∫ t

0

∫ z

z0

∫
D(z)

exp(−ωs)g(u)E(u)dvds, (2.14)

for every z � z0 . In case that Φ(z,t) → 0 as z → ∞ , from (2.14) we have

Φ(z, t) = ω
∫ t

0

∫
R(z)

exp(−ωs)S(x,u)dvds

+
∫

R(z)
exp(−ωs)S(x,u)dv|s=t +

∫ t

0

∫
R(z)

exp(−ωs)ρg′(u)q2dvds

+
∫ t

0

∫
Σ(z)

exp(−ωs)g(u) f (u)dads+
∫ t

0

∫
R(z)

exp(−ωs)g(u)E(u)dvds.

(2.15)

From (2.14), we see that

∂Φ(z, t)
∂ z

= −ω
∫ t

0

∫
D(z)

exp(−ωs)S(x,u)dads

−
∫

D(z)
exp(−ωs)S(x,u)da|s=t −

∫ t

0

∫
D(z)

exp(−ωs)ρg′(u)q2dads

−
∫ t

0

∫
∂D(z)

exp(−ωs)g(u) f (u)dlds−
∫ t

0

∫
D(z)

exp(−ωs)g(u)E(u)dads.

(2.16)

Now, we define

g(u) =
[∫ ∞

u
E−β (η)dη

] −1
1−β

, (2.17)

where β is a constant such that 0 < β < 1. Thus we have immediately that

g′(u) = g2−β (u)E−β (u)/(1−β ) � 0, (2.18)

and hence from (2.10), we have

|Φ(z, t)| � ρ
1
2
M

[∫ t

0

∫
D(z)

exp(−ωs)ρu,iu,iE
−β (u)g2−β (u)dads

×
∫ t

0

∫
D(z)

exp(−ωs)Eβ (u)gβ (u)dads

] 1
2

. (2.19)
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Applying the Schwarz and Hölder inequalities to (2.19), and using (2.18), we
obtain

|Φ(z, t)| � k1(t)(1−β )
[∫ t

0

∫
D(z)

exp(−ωs)ρu,iu,ig
′(u)dads

×
(∫ t

0

∫
D(z)

exp(−ωs)E(u)g(u)dads

)β
] 1

2

= k1(t)Q
1
2
1 Q

β
2
2 , (2.20)

where

k1(t) = ρ
1
2
M

(∫ t

0

∫
D(z)

exp(−ωs)dads

) 1−β
2

= ρ
1
2
M

(
|D(z)|

(
1− exp(−ωt)

w

)) 1−β
2

, (2.21)

and |D| denotes the measre of D .

Q1 = (1−β )
∫ t

0

∫
D(z)

exp(−ωs)ρu,iu,ig
′(u)dads,

Q2 =
∫ t

0

∫
D(z)

exp(−ωs)E(u)g(u)dads.

By virtue of Young’s inequality in the form

aqb1−q � qa+(1−q)b, 0 < q < 1, a > 0, b > 0. (2.22)

We may conclude from (2.20) that

|Φ(z,t)| � k1(t)

[
Q

1
1+β
1 Q

β
1+β
2

] 1+β
2

� k1(t)

(1+β )
1+β

2

[
γ−1
1 Q1 +βγ

1
β
1 Q2

] 1+β
2

, (2.23)

where γ1 is an arbitrary positive constant which we select to be given by

γ1 =
[

β
1−β

]− β
1+β

,

thus, we have

|Φ(z,t)| � k2(t)
[
−∂Φ
∂ z

] 1+β
2

, (2.24)
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where

k2(t) =
k1(t)

(1+β )
1+β

2

(1−β )
1

1+β β
β

1+β .

We should prove the following theorem basing on the inequality (2.24).

THEOREM 2.1. Let u be a solution of the initial boundary value problem deter-
mined by the equation (2.1) where ρ satisfies (2.5) and E satisfies conditions (2.6),
(2.7), and the initial boundary conditions (2.2), (2.3), (2.4) are also satisfied. Then,
either the solution ceases to exist for a finite value of the spatial variable z, or the
solution must tend asymptotically to zero as z tends to infinity.

The proof of Theorem 2. 1 is based upon the following two propositions.

PROPOSITION 2.2. If we assume that there exists a z0 � 0 , such that Φ(z0,t) < 0 ,
then the solution ceases to exist for a finite value of z.

Proof. We assume the contrary, and that a solution exists for all z , we then prove
a contradiction.

When we assume that Φ(z0,t) < 0, we have Φ(z,t) < 0 for all z � z0 .
Hence, from (2.24), we conclude that

−∂Φ(z,t)
∂ z

�
(
−Φ(z,t)

k2(t)

) 2
1+β

, (2.25)

which integrating yields

(−Φ(z, t))
−(1−β)

1+β � (−Φ(z0,t))
− 1−β

1+β − 1−β
1+β

k2(t)
− 2

1+β (z− z0). (2.26)

From (2.26), if z −→ ∞ , then −Φ(z,t) < 0, this is a contradiction to Φ(z,t) < 0
for all z � z0 . So the solutions cease to exist for a finite value of z. Thus, we have
proved proposition 2. 2. �

PROPOSITION 2.3. On the other hand, if we assume that Φ(z,t) � 0 for all z,
then, the solution must tend asymptotically to zero as z tends to infinity.

Proof. If we assume that Φ(z,t) � 0 for all z, then from (2.24), we have

Φ(z,t) � k2(t)
(
−∂Φ(z,t)

∂ z

) 1+β
2

. (2.27)

So, we have obtain the inequality

k2(t)
− 2

1+β � −(Φ(z,t))−
2

1+β

(
∂Φ(z,t)

∂ z

)
, (2.28)
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and integrating, we obtain the inequality

Φ(z, t) �
[
1−β
1+β

k2(t)
− 2

1+β (z− z0)+Φ(z0,t)
β−1
1+β

]− 1+β
1−β

. (2.29)

That gives a description of the spatial decay of solutions whenever they exist for
all z � 0. Then we have proved Proposition (2.3). �

Combining Proposition 2. 2 and Proposition 2. 3, we have proved Theorem 2. 1.
We will discuss the quasi-linear equation in a different method in the next section.

3. Quasi-linear parabolic equation

Now, we consider the quasi-linear parabolic equation

u,t − (ai j(x,u, | ∇u |2)u,i), j +g(u) = 0, (3.1)

in R× (0,∞) and satisfies the initial condition

u(x,0) = 0 in R, (3.2)

and the boundary condition

aiαu,inα + f (u) = 0 on ∂D× (0,∞), (3.3)

and

u f (u) � 0. (3.4)

We also assume

ug(u) � γ|u|2α , (3.5)

where γ and α are all constants with γ > 0,α > 1. And ai j are symmetric and satisfy
the ellipticity conditions

a0ξiξi � ai jξiξ j � a1ξiξi, (3.6)

where a0 and a1 are positive constants, for all ξ ∈ R3 .
In this section, we consider the function

H(z,t) = −
∫ t

0

∫
D(z)

exp(−ws)ai1uu,idads, (3.7)

where w > 0 is also a constant.
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Using the divergence theorem and the boundary conditions, we see that

H(z, t) = H(z0, t)−
∫ t

0

∫ z

z0

∫
D(z)

exp(−ws)(ai juu,i), jdvds

+
∫ t

0

∫ z

z0

∫
∂D(z)

exp(−ws)aiαuu,inαdads

= H(z0, t)−
∫ t

0

∫ z

z0

∫
D(z)

exp(−ws)(u,s +g)udvds

−
∫ t

0

∫ z

z0

∫
D(z)

exp(−ws)ai ju, ju,idvds

−
∫ t

0

∫ z

z0

∫
∂D(z)

exp(−ws) f (u)udads

= H(z0, t)− 1
2

∫ t

0

∫ z

z0

∫
D(z)

wexp(−ws)u2dvds− 1
2

∫ z

z0

∫
D(z)

wexp(−ws)u2dv

−
∫ t

0

∫ z

z0

∫
D(z)

exp(−ws)ai ju, ju,idvds−
∫ t

0

∫ z

z0

∫
D(z)

exp(−ws)gudvds

−
∫ t

0

∫ z

z0

∫
∂D(z)

exp(−ws) f (u)udads. (3.8)

From (3.8), we get

∂H(z, t)
∂ z

= −1
2

∫ t

0

∫
D(z)

wexp(−ws)u2dads− 1
2

∫
D(z)

wexp(−ws)u2da

−
∫ t

0

∫
D(z)

exp(−ws)ai ju, ju,idads−
∫ t

0

∫
D(z)

exp(−ws)gudads

−
∫ t

0

∫
∂D(z)

exp(−ws) f (u)udlds. (3.9)

Using (3.4), (3.5) and (3.6), we obtain

−∂H(z, t)
∂ z

�
∫ t

0

∫
D(z)

exp(−ws)ai ju, ju,idads+
∫ t

0

∫
D(z)

exp(−ws)gudads

�
∫ t

0

∫
D(z)

exp(−ws)γ|u|2αdads

+
∫ t

0

∫
D(z)

exp(−ws)a0|∇u|2dads. (3.10)

For every z � z0 , in case that H(z,t) −→ 0 as z −→ ∞ , from (3.8), we have

H(z, t) =
1
2

∫ t

0

∫
R(z)

wexp(−ws)u2dvds+
1
2

∫
R(z)

wexp(−ws)u2dv

+
∫ t

0

∫
R(z)

exp(−ws)ai ju, ju,idvds

+
∫ t

0

∫
R(z)

exp(−ws)gudvds+
∫ t

0

∫
Σ(z)

exp(−ws) f (u)udads. (3.11)
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To obtain the basic inequality like (2.24), using Schwarz inequality, we can obtain

|H(z, t)| =
∣∣∣∣
∫ t

0

∫
D(z)

exp(−ws)ai1uu,idads

∣∣∣∣
� a

1
2
1

(∫ t

0

∫
D(z)

exp(−ws)ai ju, ju,idads ·
∫ t

0

∫
D(z)

exp(−ws)|u|2dads

) 1
2

. (3.12)

In view of (3.6), we obtain

|H(z, t)| =
∣∣∣∣
∫ t

0

∫
D(z)

exp(−ws)ai1uu,idads

∣∣∣∣
� a1

(∫ t

0

∫
D(z)

exp(−ws)|∇u|2dads ·
∫ t

0

∫
D(z)

exp(−ws)|u|2dads

) 1
2

� c1(t)
(∫ t

0

∫
D(z)

exp(−ws)|∇u|2dads ·
∫ t

0

∫
D(z)

exp(−ws)|u|2αdads

) 1
2

, (3.13)

where

c1(t) = a1

(∫ t

0

∫
D(z)

exp(−ws)dads

) α−1
2α

= a1

[
1
w

(1− exp(−wt))|D|
] α−1

2α
.

For arbitrary positive constant υ ,

|H(z, t)| � c1(t)

[(
υα

∫ t

0

∫
D(z)

exp(−ws)|u|2αdads

) 1
α+1

×
(
υ−1

∫ t

0

∫
D(z)

exp(−ws)|∇u|2dads

) α
α+1

] α+1
2α

. (3.14)

Applying Young’s inequality, we get

|H(z, t)| � c2(t)
[
υα

γ

∫ t

0

∫
D(z)

exp(−ws)γ|u|2αdads

+
αυ−1

a0

∫ t

0

∫
D(z)

exp(−ws)a0|∇u|2dads

] α+1
2α

(3.15)

where c2(t) = c1(t)

(α+1)
α+1
2α

.

If we choose υ =
(
αγ
a0

) 1
α+1

, we can get from (3.15) that

|H(z,t)| � c3(t)
(
−∂H(z,t)

∂ z

) α+1
2α

, (3.16)

where c3(t) = c2(t)a
− α

1+α
0 γ−

1
α+1α

α
1+α .
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When we assume that H(z0,t) < 0, we have that H(z,t) < 0 for all z � z0 . Hence,
we conclude that

−∂H(z,t)
∂ z

�
(
−H(z,t)

c3(t)

) 2α
α+1

, (3.17)

which integrating yields

(−H(z, t))−
α−1
α+1 � (−H(z0,t))−

α−1
α+1 − α−1

α +1
c3(t)−

2α
α+1 (z− z0). (3.18)

The inequality (3.18) shows that the solutions cease to exist for a finite value z.
On the other hand, if we assume that H(z,t) � 0 for all z, we obtain from (3.16),

c3(t)−
2α

1+α � (H(z,t))−
2α

1+α
∂H(z,t)

∂ z
. (3.19)

Integrating (3.19), we obtain

H(z, t) �
[
H(z0,t)

1−α
1+α +

α−1
α +1

c3(t)
2α

1+α (z− z0)
]− α+1

α−1

. (3.20)

that gives a description of the spatial decay of the solutions whenever they exist for all
z � 0.

Above all, we have proved the following theorem:

THEOREM 3.1. Let u be a solution of the initial boundary value problem deter-
mined by the equation (3.1), g(u) satisfies the condition (3.5), ai j satisfies (3.6), and the
initial-boundry conditions (3.2), (3.3), (3.4) are also satisfied. Then, either the solution
ceases to exist for a finite value of the spatial variable z, or the solution must tend
asymptotically to zero as z tends to infinity.
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